Skip to content
Articles by Eunice A. Varughese in JoVE
Other articles by Eunice A. Varughese on PubMed
-
-
-
Development and Evaluation of EPA Method 1615 for Detection of Enterovirus and Norovirus in Water
Applied and Environmental Microbiology.
Jan, 2013 |
Pubmed ID: 23087037 The U.S. EPA developed a sample concentration and preparation assay in conjunction with the total culturable virus assay for concentrating and measuring culturable viruses in source and drinking waters as part of the Information Collection Rule (ICR) promulgated in 1996. In an effort to improve upon this method, the U.S. EPA recently developed Method 1615: Measurement of Enterovirus and Norovirus Occurrence in Water by Culture and RT-qPCR. Method 1615 uses a culturable virus assay with reduced equipment and labor costs compared to the costs associated with the ICR virus method and introduces a new molecular assay for the detection of enteroviruses and noroviruses by reverse transcription-quantitative PCR. In this study, we describe the optimization of several new components of the molecular assay and examine virus recovery from ground, reagent-grade, and surface water samples seeded with poliovirus type 3 and murine norovirus. For the culturable virus and molecular assays, mean poliovirus recovery using the complete method was 58% and 20% in groundwater samples, 122% and 39% using low-titer spikes in reagent-grade water, 42% and 48% using high-titer spikes in reagent-grade water, and 11% and 10% in surface water with high turbidity, respectively. Murine norovirus recovery by the molecular assay was 30% in groundwater samples, less than 8% in both low- and high-titer spikes in reagent-grade water, and 6% in surface water with high turbidity. This study demonstrates the effectiveness of Method 1615 for use with groundwater samples and highlights the need for further research into its effectiveness with surface water.
-
A New in Vitro Model Using Small Intestinal Epithelial Cells to Enhance Infection of Cryptosporidium Parvum
Journal of Microbiological Methods.
Nov, 2014 |
Pubmed ID: 25072838 To better understand and study the infection of the protozoan parasite Cryptosporidium parvum, a more sensitive in vitro assay is required. In vivo, this parasite infects the epithelial cells of the microvilli layer in the small intestine. While cell infection models using colon, kidney, and stomach cells have been studied to understand the infectivity potential of the oocysts, an ideal in vitro model would be readily-available, human-derived, and originating from the small intestine. In this study, we developed a reproducible, quantitative infection model using a non-carcinoma, human small intestinal epithelial cell type, named FHs 74 Int. Our results show that FHs 74 Int cells are productively infected by viable oocysts, and exhibit higher levels of infection susceptibility compared to other cell types. Moreover, infection rate of the sporozoites on the monolayer was found to be comparable or better than other cell types. We furthermore demonstrate that infection can be improved by 65% when pre-treated oocysts are directly inoculated on cells, compared to inoculation of excysted sporozoites on cells. Identification of a better infection model, which captures the preferred site of infection in humans, will facilitate studies on the host pathogenesis mechanisms of this important parasitic human pathogen.
-
SHP-2 Mediates Cryptosporidium Parvum Infectivity in Human Intestinal Epithelial Cells
PloS One.
2015 |
Pubmed ID: 26556238 The parasite, Cryptosporidium parvum, induces human gastroenteritis through infection of host epithelial cells in the small intestine. During the initial stage of infection, C. parvum is reported to engage host mechanisms at the host cell-parasite interface to form a parasitophorous vacuole. We determined that upon infection, the larger molecular weight proteins in human small intestinal epithelial host cells (FHs 74 Int) appeared to globally undergo tyrosine dephosphorylation. In parallel, expression of the cytoplasmic protein tyrosine phosphatase Src homology-2 domain-containing phosphatase 2 (SHP-2) increased in a time-dependent manner. SHP-2 co-localized with the C. parvum sporozoite and this interaction increased the rate of C. parvum infectivity through SH2-mediated SHP-2 activity. Furthermore, we show that one potential target that SHP-2 acts upon is the focal adhesion protein, paxillin, which undergoes moderate dephosphorylation following infection, with inhibition of SHP-2 rescuing paxillin phosphorylation. Importantly, treatment with an inhibitor to SHP-2 and with an inhibitor to paxillin and Src family kinases, effectively decreased the multiplicity of C. parvum infection in a dose-dependent manner. Thus, our study reveals an important role for SHP-2 in the pathogenesis of C. parvum. Furthermore, while host proteins can be recruited to participate in the development of the electron dense band at the host cell-parasite interface, our study implies for the first time that SHP-2 appears to be recruited by the C. parvum sporozoite to regulate infectivity. Taken together, these findings suggest that SHP-2 and its down-stream target paxillin could serve as targets for intervention.
Get cutting-edge science videos from JoVE sent straight to your inbox every month.