In JoVE (1)

Other Publications (20)

Articles by Fuminori Iwasa in JoVE

Other articles by Fuminori Iwasa on PubMed

Ultraviolet Treatment Overcomes Time-related Degrading Bioactivity of Titanium

Tissue Engineering. Part A. Dec, 2009  |  Pubmed ID: 19397472

The shelf life of titanium implant products, that is, a possible time-related change of their bioactivity, has rarely been addressed. The objective of this study was to examine the bioactivity of newly processed and aged titanium surfaces and determine whether ultraviolet (UV) light treatment of the titanium surface restores the possible adverse effects of titanium aging. Titanium disks, either acid-etched or sandblasted, were used immediately after processing (fresh surface) or after storing in dark for 4 weeks (aged surface). Some disks were treated with UV light for 48 h after 4 weeks of storage. Albumin adsorbed to the aged surfaces was only 15% of that adsorbed to the fresh surfaces during 2-h incubation, whereas UV-treated aged surfaces adsorbed equivalent amount of albumin to that for the fresh surfaces. During 24-h incubation, the number of human mesenchymal stem cells attached to the aged surfaces was less than half of that for the fresh surfaces, whereas UV treatment of the aged surfaces increased the number three times. Proliferation, alkaline phosphatase activity, and calcium deposition of the cells were substantially lower on the aged surfaces than on the fresh surfaces, while those on the UV-treated aged surfaces were higher than on the fresh surfaces. The strength of bone-implant integration evaluated at week 2 of healing in a rat femur model was reduced to half after 4 weeks of titanium aging, whereas UV treatment of the aged implants increased the strength to the level equivalent to or even higher than the freshly prepared implants. Fresh and UV-treated aged surfaces were superhydrophilic, while the aged surface was hydrophobic. The data suggest that bioactivity of titanium surfaces degrades with time and that UV treatment of the aged surface increases the bioactivity over the level of the freshly prepared surface.

Ultraviolet Light-mediated Photofunctionalization of Titanium to Promote Human Mesenchymal Stem Cell Migration, Attachment, Proliferation and Differentiation

Acta Biomaterialia. Oct, 2009  |  Pubmed ID: 19427421

Improving the osteoconductive potential of titanium implants has been of continuing interest in the fields of dentistry and orthopedic surgery. This study determined the bioactivity of ultraviolet (UV) light-treated titanium. Human mesenchymal stem cells (MSCs) were cultured on acid-etched microtopographical titanium surfaces with and without 48h pretreatment with UVA (peak wavelength of 360n m) or UVC (peak wavelength of 250 nm). The number of cells that migrated to the UVC-treated surface during the first 3h of incubation was eight times higher than those that migrated to the untreated surface. After 24h of incubation, the number of cells attached to the UVC-treated surface was over three times more than those attached to the untreated surface. On the UVC-treated surface, the cellular spread was expedited with an extensive and intensive expression of the focal adhesion protein vinculin. The cells on the UVC-treated surface exhibited a threefold higher bromodeoxyuridine incorporation, a doubling of the alkaline phosphatase-positive area and the up-regulated expression of bone-related genes, indicating the accelerated proliferation and differentiation. The UVC-treated surface did not adversely affect the viability of the cells. These biological effects were not seen after UVA treatment, despite the generation of superhydrophilicity. Thus, we discovered a novel photofunctionalization of titanium dioxide that substantially enhances its bioactivity in human MSCs. Further studies are required to investigate the universal effectiveness of this surface modification for different titanium-containing materials, with varying chemistries and textures, as well as to understand its significance in enhancing in vivo osteoconductivity.

The Effect of UV-photofunctionalization on the Time-related Bioactivity of Titanium and Chromium-cobalt Alloys

Biomaterials. Sep, 2009  |  Pubmed ID: 19473697

This study examined the possible changes in the bioactivity of titanium surfaces during their aging and investigated the effect of ultraviolet (UV) light treatment during the age-related change of titanium bioactivity. Rat bone marrow-derived osteoblastic cells were cultured on new titanium disks (immediately after either acid-etching, machining, or sandblasting), 4-week-old disks (stored after processing for 4 weeks in dark ambient conditions), and 4-week-old disks treated with UVA (peak wavelength of 365 nm) or UVC (peak wavelength of 250 nm). During incubation for 24 h, only 50% of the cells were attached to the 4-week-old surfaces as compared to the new surface. UVC treatment of the aged surface increased its cell attachment capacity to a level 50% higher than the new surfaces, whereas UVA treatment had no effect. Proliferation, alkaline phosphatase activity, and mineralization of cells were substantially lower on the 4-week-old surfaces than on the new surfaces, while they were higher on the UVC-treated 4-week-old surfaces as compared to the new surfaces. The age-related impaired bioactivity was found on all titanium topographies as well as on a chromium-cobalt alloy, and was associated with an increased percentage of surface carbon. Although both UVA and UVC treatment converted the 4-week-old titanium surfaces from hydrophobic to superhydrophilic, only UVC treatment effectively reduced the surface carbon to a level equivalent to the new surface. Thus, this study uncovered a time-dependent biological degradation of titanium and chromium-cobalt alloy, and its restoration enabled by UVC phototreatment, which surmounts the innate bioactivity of new surfaces, which is more closely linked to hydrocarbon removal than the induced superhydrophilicity.

Cellular Behavior on TiO2 Nanonodular Structures in a Micro-to-nanoscale Hierarchy Model

Biomaterials. Oct, 2009  |  Pubmed ID: 19589591

Biological tissues involve hierarchical organizations of structures and components. We created a micropit-and-nanonodule hybrid topography of TiO(2) by applying a recently reported nanonodular self-assembly technique on acid-etch-created micropit titanium surfaces. The size of the nanonodules was controllable by changing the assembly time. The created micro-nano-hybrid surface rendered a greater surface area and roughness, and extensive geographical undercut on the existing micropit surface and resembled the surface morphology of biomineralized matrices. Rat bone marrow-derived osteoblasts were cultured on titanium disks with either micropits alone, micropits with 100-nm nodules, micropits with 300-nm nodules, or micropits with 500-nm nodules. The addition of nanonodules to micropits selectively promoted osteoblast but not fibroblast function. Unlike the reported advantages of microfeatures that promote osteoblast differentiation but inhibit its proliferation, micro-nano-hybrid topography substantially enhanced both. We also demonstrated that these biological effects were most pronounced when the nanonodules were tailored to a diameter of 300nm within the micropits. An implant biomechanical test in a rat femur model revealed that the strength of bone-titanium integration was more than three times greater for the implants with micropits and 300-nm nanonodules than the implants with micropits alone. These results suggest the establishment of functionalized nano-in-microtitanium surfaces for improved osteoconductivity, and may provide a biomimetic micro-to-nanoscale hierarchical model to study the nanofeatures of biomaterials.

Selective Cell Affinity of Biomimetic Micro-nano-hybrid Structured TiO2 Overcomes the Biological Dilemma of Osteoblasts

Dental Materials : Official Publication of the Academy of Dental Materials. Apr, 2010  |  Pubmed ID: 20006380

There is a great demand for dental implant surfaces to accelerate the process of peri-implant bone generation to reduce its healing time and enable early loading. To this end, an inverse correlation between the proliferation and functional maturation (differentiation) in osteoblasts presents a challenge for the rapid generation of greater amounts of bone. For instance, osteoblasts exhibit faster differentiation but slower proliferation on micro-roughened titanium surfaces. Using a unique micro-nano-hierarchical topography of TiO(2) that mimics biomineralized matrices, this study demonstrates that this challenge can be overcome without the use of biological agents.

Enhancement of Osteoblast Adhesion to UV-photofunctionalized Titanium Via an Electrostatic Mechanism

Biomaterials. Apr, 2010  |  Pubmed ID: 20035996

The mechanism underlying the recently found photofunctionalization of titanium is unknown. We focused on how the initial interaction between the cells and photofunctionalized titanium is enhanced at a molecular-level and the role played by the electrostatic status of the titanium surfaces in the possible regulatory mechanism for determining their bioactivity. Rat bone marrow-derived osteoblasts were cultured on untreated and ultraviolet (UV)-treated titanium surfaces. UV treatment converted the titanium surfaces from hydrophobic to superhydrophilic. The number of osteoblasts attached to UV-treated titanium surfaces was substantially greater than that attached to untreated surfaces (5-fold and 2-fold after 3 and 24 h of incubation, respectively). Osteoblasts cultured for 3 and 24 h on these titanium surfaces were detached mechanically by vibrational force and enzymatically by trypsin treatment. Cell adhesion evaluated by the percentage of remaining cells after these detachments was substantially greater for cells on UV-treated titanium surfaces compared to untreated titanium surfaces (110-120% greater for cells incubated for 3 h and 50-60% greater for cells incubated for 24 h). Osteoblasts on UV-treated surfaces expressed more vinculin. UV-enhancing effect in cell adhesion was also demonstrated under a serum-free condition. UV-enhanced cell adhesion was abrogated when the UV-treated titanium surfaces were electrostatically neutralized by either removing the electric charge or masking with monovalent anions, while the surfaces maintained superhydrophilicity. In conclusion, the establishment of osteoblast adhesion is accelerated and augmented remarkably on UV-treated titanium surfaces, associated with upregulated expression of vinculin. This study has identified an electrostatic property of UV-treated titanium surfaces playing a regulatory role in determining their bioactivity, superseding the effect of the hydrophilic nature of these surfaces. A mechanism underlying the UV-induced conversion of titanium from bioinert to bioactive, in which direct cell-titanium interaction is exclusively enabled, is proposed.

The Enhanced Characteristics of Osteoblast Adhesion to Photofunctionalized Nanoscale TiO2 Layers on Biomaterials Surfaces

Biomaterials. May, 2010  |  Pubmed ID: 20153521

Recently, UV photofunctionalization of titanium has been shown to be effective in enhancing osteogenic environment around this functional surface, in particular for the use of endosseous implants. However, the underlying mechanism remains unknown and its potential application to other tissue engineering materials has never been explored. We determined whether adhesion of a single osteoblast is enhanced on UV-treated nano-thin TiO(2) layer with virtually no surface roughness or topographical features. Rat bone marrow-derived osteoblasts were cultured on UV-treated or untreated 200-nm thick TiO(2) sputter-coated glass plates. After an incubation of 3 h, the mean critical shear force required to initiate detachment of a single osteoblast was determined to be 1280 +/- 430 nN on UV-treated TiO(2) surfaces, which was 2.5-fold greater than the force required on untreated TiO(2) surfaces. The total energy required to complete the detachment was 37.0 +/- 23.2 pJ on UV-treated surfaces, 3.5-fold greater than that required on untreated surfaces. Such substantial increases in single cell adhesion were also observed for osteoblasts cultured for 24 h. Osteoblasts on UV-treated TiO(2) surfaces were larger and characterized with increased levels of vinculin expression and focal contact formation. However, the density of vinculin or focal contact was not influenced by UV treatment. In contrast, both total expression and density of actin fibers increased on UV-treated surfaces. Thin layer TiO(2) coating and UV treatment of Co-Cr alloy and PTFE membrane synergistically resulted in a significant increase in the ability of cell attachment and osteoblastic production of alkaline phosphatase. These results indicated that the adhesive nature of a single osteoblast is substantially enhanced on UV-treated TiO(2) surfaces, providing the first evidence showing that each individual cell attached to these surfaces is substantially more resistant to exogenous load potentially from blood and fluid flow and mechanical force in the initial stage of in vivo biological environment. This enhanced osteoblast adhesion was supported synergistically but disproportionately by enhancement in focal adhesion and cytoskeletal developments. Also, this study demonstrated that UV treatment is effective on nano-thin TiO(2) depositioned onto non-Ti materials to enhance their bioactivity, providing a basis for TiO(2)-mediated photofunctionalization of biomaterials, a new method of developing functional biomaterials.

Electrostatic Control of Protein Adsorption on UV-photofunctionalized Titanium

Acta Biomaterialia. Oct, 2010  |  Pubmed ID: 20466081

Ultraviolet (UV)-photofunctionalization of titanium to enable the establishment of a nearly complete bone-implant contact was reported recently. However, the underlying mechanism for this is unknown. We hypothesized that UV-treated titanium surfaces acquire distinct electrostatic properties that may play important roles in determining the bioactivity of these surfaces. The objective of this study was to determine the protein adsorption capability of UV-treated titanium surfaces under various electrostatic environments. The amount of albumin adsorbed on UV-treated and untreated titanium disks was evaluated under different pH conditions above and below the isoelectric points of albumin and titanium. The effects of additional treatment with various ionic solutions were also examined. Albumin adsorption on UV-treated surfaces at pH 7.0 was considerably greater (6-fold after 3h of incubation and 2.5-fold after 24h) than that to UV-untreated surfaces. UV-enhanced albumin adsorption was abrogated at pH 3.0 or when these titanium surfaces were treated with anions, while maintaining UV-induced superhydrophilicity. Albumin adsorption on UV-untreated titanium surfaces increased after treating these surfaces with divalent cations but not after treating them with monovalent cations. These results indicated that UV-treated titanium surfaces are electropositively charged as opposed to electronegatively charged UV-untreated titanium surfaces. This distinct UV-induced electrostatic property predominantly regulates the protein adsorption capability of titanium, superseding the effect of hydrophilic status, and converts titanium surfaces from bioinert to bioactive. As a result, direct titanium-protein interactions take place exclusively on UV-treated titanium surfaces without the aid of bridging ions.

Amino Acid Derivative-mediated Detoxification and Functionalization of Dual Cure Dental Restorative Material for Dental Pulp Cell Mineralization

Biomaterials. Oct, 2010  |  Pubmed ID: 20621351

Current dental restorative materials are only used to fill the defect of hard tissues, such as dentin and enamel, because of their cytotoxicity. Therefore, exposed dental pulp tissues in deep cavities must be first covered by a pulp capping material like calcium hydroxide to form a layer of mineralized tissue. However, this tissue mineralization is based on pathological reaction and triggers long-lasting inflammation, often causing clinical problems. This study tested the ability of N-acetyl cysteine (NAC), amino acid derivative, to reduce cytotoxicity and induce mineralized tissue conductivity in resin-modified glass ionomer (RMGI), a widely used dental restorative material having dual cure mechanism. Rat dental pulp cells were cultured on untreated or NAC-supplemented RMGI. NAC supplementation substantially increased the percentage of viable cells from 46.7 to 73.3% after 24-h incubation. Cell attachment, spreading, proliferative activity, and odontoblast-related gene and protein expressions increased significantly on NAC-supplemented RMGI. The mineralization capability of cells, which was nearly suppressed on untreated RMGI, was induced on NAC-supplemented RMGI. These improved behaviors and functions of dental pulp cells on NAC-supplemented RMGI were associated with a considerable reduction in the production of intracellular reactive oxygen species and with the increased level of intracellular glutathione reserves. These results demonstrated that NAC could detoxify and functionalize RMGIs via two different mechanisms involving in situ material detoxification and antioxidant cell protection. We believe that this study provides a new approach for developing dental restorative materials that enables mineralized tissue regeneration.

Alleviation of Commercial Collagen Sponge- and Membrane-induced Apoptosis and Dysfunction in Cultured Osteoblasts by an Amino Acid Derivative

The International Journal of Oral & Maxillofacial Implants. Sep-Oct, 2010  |  Pubmed ID: 20862407

The objectives of this in vitro study were to determine whether the commercial collagen material used in bone augmentation procedures induces oxidative stress-mediated adverse effects on the viability and function of osteoblasts and to determine whether N-acetyl cysteine (NAC), an antioxidant amino acid derivative, can alleviate these effects.

Synergistic Effects of UV Photofunctionalization and Micro-nano Hybrid Topography on the Biological Properties of Titanium

Biomaterials. Jul, 2011  |  Pubmed ID: 21421270

Titanium surfaces with micro-nano hybrid topography (nanoscale nodules in microscale pits) have been recently demonstrated to show higher biological capability than those with microtopography alone. On the other hand, UV treatment of titanium surfaces, which is called UV photofunctionalization, has recently been introduced to substantially increase the biological capability and osteoconductivity of titanium surfaces. However, synergistic effects of these two advanced surface modification technologies and regulatory factors to potentially modulate the mutual effects have never been addressed. In this study, utilization of a recently discovered controllable self-assembly of TiO(2) nanonodules has enabled the exploration of the relative contribution of different sizes of nanostructures to determine the biological capability of titanium surfaces and their relative responsiveness to UV photofunctionalization. Rat bone marrow-derived osteoblasts were cultured on titanium disks with either micropits alone, micropits with 100-nm nodules, micropits with 300-nm nodules, or micropits with 500-nm nodules, with or without UV treatment. Although UV treatment increased the attachment, spread, proliferation, and mineralization of these cells on all titanium surfaces, these effects were more accentuated (3-5 times) on nanonodular surfaces than on surfaces with micropits alone and were disproportionate depending on nanonodule sizes. For instance, on UV-treated micro-nano hybrid surfaces, cell attachment correlated with nanonodule sizes in a quadratic approximation with its peak for 300-nm nodules followed by a decline for 500-nm nodules, while cell attachment exponentially correlated with surface roughness with its plateau achieved for 300-nm nodules without a subsequent decline. Moreover, cell attachment increased in a linear correlation with the surface area, while no significant effect of the inter-irregularities space or degree of hydrophilicity was observed on cell attachment. These results suggest that the effect of UV photofunctionalization can be multiplied on micro-nano hybrid titanium surfaces compared with the surfaces with micropits alone. This multiplication is disproportionately regulated by a selected set of topographical parameters of the titanium surfaces. Among the nanonodules tested in this study, 300-nm nodules seemed to create the most effective morphological environment for responding to UV photofunctionalization. The data provide a systematic platform to effectively optimize nanostructures on titanium surfaces in order to enhance their biological capability as well as their susceptibility to UV photofunctionalization.

Effects of UV Photofunctionalization on the Nanotopography Enhanced Initial Bioactivity of Titanium

Acta Biomaterialia. Oct, 2011  |  Pubmed ID: 21723964

This study addresses the control of the biological capabilities of titanium through specific nanosurface features and its potential modulation by UV photofunctionalization. Rat bone marrow derived osteoblasts were cultured on titanium disks with micropits alone, micropits with 100 nm nodules, micropits with 300 nm nodules, or micropits with 500 nm nodules, with or without UV treatment. After a 24 h incubation protein adsorption, as well as the attachment, retention, and spread of osteoblasts were examined in correlation with the topographical parameters of the titanium substrates. Each of the biological events was governed by a different set of multiple surface topographical factors with a distinctive pattern of regulation. For instance, without UV treatment the protein adsorption and cell attachment capability of titanium substrates increased linearly with increasing average roughness (Ra) and surface area of titanium disks, but increased polynomially with increasing nanonodule diameter. The cell retention capability increased polynomially with increasing nanonodular diameter and Ra, but increased linearly with increasing surface area. Consequently, the micropits with 300 nm nodules created the most favorable environment for this initial osteoblast behavior and response. UV treatment of the nanonodular titanium surfaces resulted in considerable enhancement of all biological events. However, the pattern of UV-mediated enhancement was disproportionate; exponential and overriding effects were observed depending upon the biological event and topographical parameter. As an example of overriding enhancement, the cell retention capability, which fluctuated with changes in various topographical parameters, became invariably high after UV treatment. The present data provide a basis for understanding how to optimize nanostructures to create titanium surfaces with increased biological capabilities and uncover a novel advantage of UV photofunctionalization of titanium substrates that synergistically increases its nanotopography enhanced biological capabilities whereby most of the initial biological events of osteoblasts were overwhelmingly enhanced beyond a simple proportional increase.

TiO2 Micro-nano-hybrid Surface to Alleviate Biological Aging of UV-photofunctionalized Titanium

International Journal of Nanomedicine. 2011  |  Pubmed ID: 21760728

Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO(2) nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow-derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day- old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%-50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano- hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl(-)anions. A thin TiO(2) coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium bioactivity after UV photofunctionalization compared with titanium surfaces with microtopography alone. This antibiological aging effect was largely regulated by its sustained electropositivity uniquely conferred in TiO(2) nanonodules, and was independent of the degree of hydrophilicity. These results demonstrate the potential usefulness of these hybrid surfaces to effectively utilize the benefits of UV photofunctionalization and provide a model to explore the mechanisms underlying antibiological aging properties.

Effects of Pico-to-nanometer-thin TiO2 Coating on the Biological Properties of Microroughened Titanium

Biomaterials. Nov, 2011  |  Pubmed ID: 21840046

The independent, genuine role of surface chemistry in the biological properties of titanium is unknown. Although microtopography has been established as a standard surface feature in osseous titanium implants, unfavorable behavior and reactions of osteogenic cells are still observed on the surfaces. To further enhance the biological properties of microfeatured titanium surfaces, this study tested the hypotheses that (1) the surface chemistry of microroughened titanium surfaces can be controllably varied by coating with a very thin layer of TiO(2), without altering the existing topographical and roughness features; and (2) the change in the surface chemistry affects the biological properties of the titanium substrates. Using a slow-rate sputter deposition of molten TiO(2) nanoparticles, acid-etched microroughened titanium surfaces were coated with a TiO(2) layer of 300-pm to 6.3-nm thickness that increased the surface oxygen levels without altering the existing microtopography. The attachment, spreading behavior, and proliferation of osteoblasts, which are considered to be significantly impaired on microroughened surfaces compared with relatively smooth surfaces, were considerably increased on TiO(2)-coated microroughened surfaces. The rate of osteoblastic differentiation was represented by the increased levels of alkaline phosphatase activity and mineral deposition as well as by the upregulated expression of bone-related genes. These biological effects were exponentially correlated with the thickness of TiO(2) and surface oxygen percentage, implying that even a picometer-thin TiO(2) coating is effective in rapidly increasing the biological property of titanium followed by an additional mild increase or plateau induced by a nanometer-thick coating. These data suggest that a super-thin TiO(2) coating of pico-to-nanometer thickness enhances the biological properties of the proven microroughened titanium surfaces by controllably and exclusively modulating their surface chemistry while preserving the existing surface morphology. The improvements in proliferation and differentiation of osteoblasts attained by this chemical modification is of great significance, providing a new insight into how to develop new implant surfaces for better osseointegration, based on the established microtopographic surfaces.

Bone Integration Capability of Alkali- and Heat-treated Nanobimorphic Ti-15Mo-5Zr-3Al

Acta Biomaterialia. Dec, 2011  |  Pubmed ID: 21888994

The role of nanofeatured titanium surfaces in a number of aspects of in vivo bone-implant integration, and, in particular, their potential advantages over microfeatured titanium surfaces, as well as their specific contribution to osteoconductivity, is largely unknown. This study reports the creation of a unique nanobimorphic titanium surface comprised of nanotrabecular and nanotuft-like structures and determines how the addition of this nanofeature to a microroughened surface affects bone-implant integration. Machined surfaces without microroughness, sandblasted microroughened surfaces, and micro-nano hybrid surfaces created by sandblasting and alkali and heat treatment of Ti-15Mo-5Zr-3Al alloy were subjected to biomechanical, interfacial and histological analyses in a rat model. The presence of microroughness enabled accelerated establishment of biomechanical implant fixation in the early stages of healing compared to the non-microroughened surfaces; however, it did not increase the implant fixation at the late stages of healing. The addition of nanobimorphic features to the microroughened surfaces further increased the implant fixation by as much as 60-100% over the healing time. Bone area within 50 μm of the implant surface, but not beyond this distance, was significantly increased by the presence of nanobimorphic features. Although the percentage of bone-implant contact was also significantly increased by the addition of nanobimorphic features, the greatest improvement was found in the soft tissue intervention between the bone and the implant, which was reduced from >30% to <5%. Mineralized tissue densely deposited with calcium-binding globular proteins was observed in an extensive area of nanobimorphic surfaces after biomechanical testing. This study clearly demonstrates the nanofeature-enhanced osteoconductivity of titanium by an alkali- and heat-treated nanobimorphic surface compared to that by microfeatured surfaces, which results not only in an acceleration but also an improvement of bone-implant integration. The identified biological parameters that successfully detect the advantages of nanofeatures over microfeatures will be useful in evaluating new implant surfaces in future studies.

Nanometer-thin TiO₂ Enhances Skeletal Muscle Cell Phenotype and Behavior

International Journal of Nanomedicine. 2011  |  Pubmed ID: 22114483

The independent role of the surface chemistry of titanium in determining its biological properties is yet to be determined. Although titanium implants are often in contact with muscle tissue, the interaction of muscle cells with titanium is largely unknown. This study tested the hypotheses that the surface chemistry of clinically established microroughened titanium surfaces could be controllably varied by coating with a minimally thin layer of TiO(2) (ideally pico-to-nanometer in thickness) without altering the existing topographical and roughness features, and that the change in superficial chemistry of titanium is effective in improving the biological properties of titanium.

Gamma Ray Treatment Enhances Bioactivity and Osseointegration Capability of Titanium

Journal of Biomedical Materials Research. Part B, Applied Biomaterials. Nov, 2012  |  Pubmed ID: 22987777

The time-dependent degradation of titanium bioactivity (i.e., the biological aging of titanium) has been reported in previous studies. This phenomenon is caused by the loss of hydrophilicity and the inevitable occurrence of progressive contamination of titanium surfaces by hydrocarbons. In this study, we tested the hypothesis that gamma ray treatment, owing to its high energy to decompose and remove organic contaminants, enhances the bioactivity and osteoconductivity of titanium. Titanium disks were acid-etched and stored for 4 weeks. Rat bone marrow-derived osteoblasts (BMOs) were cultured on titanium disks with or without gamma ray treatment (30 kGy) immediately before experiments. The cell density at day 2 increased by 50% on gamma-treated surfaces, which reflected the 25% higher rate of cell proliferation. Osteoblasts on gamma-treated surfaces showed 30% higher alkaline phosphatase activity at day 5 and 60% higher calcium deposition at day 20. The strength of in vivo bone-implant integration increased by 40% at the early healing stage of week 2 for gamma-treated implants. Gamma ray-treated surfaces regained hydrophilicity and showed a lower percentage of carbon (35%) as opposed to 48% on untreated aged surfaces. The data indicated that gamma ray pretreatment of titanium substantially enhances its bioactivity and osteoconductivity, in association with the significant reduction in surface carbon and the recovery of hydrophilicity. The results suggest that gamma ray treatment could be an effective surface enhancement technology to overcome biological aging of titanium and improve the biological properties of titanium implants.

Downregulation of Carbonic Anhydrase IX Promotes Col10a1 Expression in Chondrocytes

PloS One. 2013  |  Pubmed ID: 23441228

Carbonic anhydrase (CA) IX is a transmembrane isozyme of CAs that catalyzes reversible hydration of CO(2). While it is known that CA IX is distributed in human embryonic chondrocytes, its role in chondrocyte differentiation has not been reported. In the present study, we found that Car9 mRNA and CA IX were expressed in proliferating but not hypertrophic chondrocytes. Next, we examined the role of CA IX in the expression of marker genes of chondrocyte differentiation in vitro. Introduction of Car9 siRNA to mouse primary chondrocytes obtained from costal cartilage induced the mRNA expressions of Col10a1, the gene for type X collagen α-1 chain, and Epas1, the gene for hypoxia-responsible factor-2α (HIF-2α), both of which are known to be characteristically expressed in hypertrophic chondrocytes. On the other hand, forced expression of CA IX had no effect of the proliferation of chondrocytes or the transcription of Col10a1 and Epas1, while the transcription of Col2a1 and Acan were up-regulated. Although HIF-2α has been reported to be a potent activator of Col10a1 transcription, Epas1 siRNA did not suppress Car9 siRNA-induced increment in Col10a1 expression, indicating that down-regulation of CA IX induces the expression of Col10a1 in chondrocytes in a HIF-2α-independent manner. On the other hand, cellular cAMP content was lowered by Car9 siRNA. Furthermore, the expression of Col10a1 mRNA after Car9 silencing was augmented by an inhibitor of protein kinase A, and suppressed by an inhibitor for phosphodiesterase as well as a brominated analog of cAMP. While these results suggest a possible involvement of cAMP-dependent pathway, at least in part, in induction of Col10a1 expression by down-regulation of Car9, more detailed study is required to clarify the role of CA IX in regulation of Col10a1 expression in chondrocytes.

Evaluation of the Durability and Antiadhesive Action of 2-methacryloyloxyethyl Phosphorylcholine Grafting on an Acrylic Resin Denture Base Material

The Journal of Prosthetic Dentistry. Aug, 2014  |  Pubmed ID: 24461942

The polymer 2-methacryloyloxyethyl phosphorylcholine is currently used on medical devices to prevent infection. Denture plaque-associated infection is regarded as a source of serious dental and medical complications in the elderly population, and denture hygiene, therefore, is an issue of considerable importance for denture wearers. Furthermore, because denture bases are exposed to mechanical stresses, for example, denture brushing, the durability of the coating is important for retaining the antiadhesive function of 2-methacryloyloxyethyl phosphorylcholine.

Enhanced Intracellular Signaling Pathway in Osteoblasts on Ultraviolet Lighttreated Hydrophilic Titanium

Biomedical Research (Tokyo, Japan). 2016  |  Pubmed ID: 26912135

Ultraviolet (UV) light treatment of titanium immediately prior to use, or photofunctionalization, reactivates the time-dependent degradation of bioactivity of titanium (biological aging of titanium) and increases its osseointegration capacity beyond the inherent maximal level. Although the initial osteoblast attachment is reportedly enhanced on UV-treated titanium surfaces, the detailed mechanism behind the increase in osseointegration is unknown. This study examined the potential modulation of intracellular signaling pathway in osteoblasts on UV-treated titanium surfaces. Rat bone marrow-derived osteoblasts were cultured on 4-week-old, new, and UV-treated titanium surfaces. The new and UV-treated surfaces were superhydrophilic, whereas the 4-week-old surface was hydrophobic. Although the rate of protein adsorption was similarly increased on the new and UV-treated surfaces compared with the 4-week-old surface, the number of attached cells and their spreading behavior were further enhanced on the UV-treated surface. This additional enhancement was associated with the remarkably upregulated expression of paxillin and phospho-paxillin and exclusive upregulation of Rho GTPase family genes. This study provides with the first molecular evidence of the enhanced initial behavior of osteoblasts on UV-treated titanium surfaces. The enhancement was accentuated and distinct from the new titanium surface with similar hydrophilicity, suggesting that surface properties other than the level of hydrophilicity are responsible.

Waiting
simple hit counter