In JoVE (1)

Other Publications (40)

Articles by Lawren Sack in JoVE

Other articles by Lawren Sack on PubMed

Global Allocation Rules for Patterns of Biomass Partitioning

Science (New York, N.Y.). Jun, 2002  |  Pubmed ID: 12065803

The Hydraulic Conductance of the Angiosperm Leaf Lamina: a Comparison of Three Measurement Methods

Journal of Experimental Botany. Nov, 2002  |  Pubmed ID: 12379784

A comparison was made of three methods for measuring the leaf lamina hydraulic conductance (K(lamina)) for detached mature leaves of six woody temperate angiosperm species. The high-pressure method, the evaporative flux method and the vacuum pump method involve, respectively, pushing, evaporating and pulling water out of the lamina while determining the flow rate into the petiole and the water potential drop across the leaf. Tests were made of whether the high-pressure method and vacuum pump method measurements of K(lamina) on single leaves were affected by irradiance. In Quercus rubra, the high pressure method was sensitive to irradiance; K(lamina) measured under high irradiance (>1200 micro mol m(-2) s(-1 )photosynthetically active radiation) was 4.6-8.8 times larger than under ambient laboratory lighting (approximately 6 micro mol m(-2) s(-1 )photosynthetically active radiation). By constrast, the vacuum pump method was theoretically expected to be insensitive to irradiance, and this expectation was confirmed in experiments on Hedera helix. When used in the ways recommended here, the three methods produced measurements that agreed typically within 10%. There were significant differences in species' K(lamina); values ranged from 1.24x10(-4) kg s(-1) m(-2) MPa(-1) for Acer saccharum to 2.89x10(-4) kg s(-1) m(-2) MPa(-1) for Vitis labrusca. Accurate, rapid determination of K(lamina) will allow testing of the links between K(lamina), water-use, drought tolerance, and the enormous diversity of leaf form, structure and composition.

The Major Veins of Mesomorphic Leaves Revisited: Tests for Conductive Overload in Acer Saccharum (Aceraceae) and Quercus Rubra (Fagaceae)

American Journal of Botany. Jan, 2003  |  Pubmed ID: 21659078

Many leaves survive the severing of their major veins in apparently excellent health. According to the classical explanation, the leaf minor veins provide "conductive overload," an excess of parallel conductive paths, rendering the major veins hydraulically dispensable. Whether such an excess of conductive paths exists has important implications for vascular design and for leaf response to vascular damage. We subjected leaves of Acer saccharum and Quercus rubra to cutting treatments that disrupted the major vein system and determined leaf survival, stomatal conductance (g), quantum yield of photosystem II (Φ(PSII)), and leaf hydraulic conductance (K(leaf)). For A. saccharum, the cuts led to the death of distal lamina. For Q. rubra, however, the treated leaves typically remained apparently healthy. Despite their appearance, the treated Q. rubra leaves had a strongly reduced K(leaf), relative to control leaves, and g and Φ(PSII) were reduced distal to the cuts, respectively, by 75-97% and 48-76%. Gas exchange proximal to the cuts was unaffected, indicating the independence of lamina regions and their local stomata. Analogous results were obtained with excised Q. rubra leaves. These studies demonstrate an indispensable, vital role of the major veins in conducting water throughout the lamina.

Hydraulic Analysis of Water Flow Through Leaves of Sugar Maple and Red Oak

Plant Physiology. Apr, 2004  |  Pubmed ID: 15064368

Leaves constitute a substantial fraction of the total resistance to water flow through plants. A key question is how hydraulic resistance within the leaf is distributed among petiole, major veins, minor veins, and the pathways downstream of the veins. We partitioned the leaf hydraulic resistance (R(leaf)) for sugar maple (Acer saccharum) and red oak (Quercus rubra) by measuring the resistance to water flow through leaves before and after cutting specific vein orders. Simulations using an electronic circuit analog with resistors arranged in a hierarchical reticulate network justified the partitioning of total R(leaf) into component additive resistances. On average 64% and 74% of the R(leaf) was situated within the leaf xylem for sugar maple and red oak, respectively. Substantial resistance-32% and 49%- was in the minor venation, 18% and 21% in the major venation, and 14% and 4% in the petiole. The large number of parallel paths (i.e. a large transfer surface) for water leaving the minor veins through the bundle sheath and out of the leaf resulted in the pathways outside the venation comprising only 36% and 26% of R(leaf). Changing leaf temperature during measurement of R(leaf) for intact leaves resulted in a temperature response beyond that expected from changes in viscosity. The extra response was not found for leaves with veins cut, indicating that water crosses cell membranes after it leaves the xylem. The large proportion of resistance in the venation can explain why stomata respond to leaf xylem damage and cavitation. The hydraulic importance of the leaf vein system suggests that the diversity of vein system architectures observed in angiosperms may reflect variation in whole-leaf hydraulic capacity.

The Dependence of Leaf Hydraulic Conductance on Irradiance During HPFM Measurements: Any Role for Stomatal Response?

Journal of Experimental Botany. Feb, 2005  |  Pubmed ID: 15582928

This paper examines the dependence of whole leaf hydraulic conductance to liquid water (K(L)) on irradiance when measured with a high pressure flowmeter (HPFM). During HPFM measurements, water is perfused into leaves faster than it evaporates hence water infiltrates leaf air spaces and must pass through stomates in the liquid state. Since stomates open and close under high versus low irradiance, respectively, the possibility exists that K(L) might change with irradiance if stomates close tightly enough to restrict water movement. However, the dependence of K(L) on irradiance could be due to a direct effect of irradiance on the hydraulic properties of other tissues in the leaf. In the present study, K(L) increased with irradiance for 6 of the 11 species tested. Whole leaf conductance to water vapour, g(L), was used as a proxy for stomatal aperture and the time-course of changes in K(L) and g(L) was studied during the transition from low to high irradiance and from high to low irradiance. Experiments showed that in some species K(L) changes were not paralleled by g(L) changes. Measurements were also done after perfusion of leaves with ABA which inhibited the g(L) response to irradiance. These leaves showed the same K(L) response to irradiance as control leaves. These experimental results and theoretical calculations suggest that the irradiance dependence of K(L) is more consistent with an effect on extravascular (and/or vascular) tissues rather than stomatal aperture. Irradiance-mediated stimulation of aquaporins or hydrogel effects in leaf tracheids may be involved.

How Are Leaves Plumbed Inside a Branch? Differences in Leaf-to-leaf Hydraulic Sectoriality Among Six Temperate Tree Species

Journal of Experimental Botany. Aug, 2005  |  Pubmed ID: 15983007

The transport of water, sugar, and nutrients in trees is restricted to specific vascular pathways, and thus organs may be relatively isolated from one another (i.e. sectored). Strongly sectored leaf-to-leaf pathways have been shown for the transport of sugar and signal molecules within a shoot, but not previously for water transport. The hydraulic sectoriality of leaf-to-leaf pathways was determined for current year shoots of six temperate deciduous tree species (three ring-porous: Castanea dentata, Fraxinus americana, and Quercus rubra, and three diffuse-porous: Acer saccharum, Betula papyrifera, and Liriodendron tulipifera). Hydraulic sectoriality was determined using dye staining and a hydraulic method. In the dye method, leaf blades were removed and dye was forced into the most proximal petiole. For each petiole the vascular traces that were shared with the proximal petiole were counted. For other shoots, measurements were made of the leaf-area-specific hydraulic conductivity for the leaf-to-leaf pathways (k(LL)). In five out of the six species, patterns of sectoriality reflected phyllotaxy; both the sharing of vascular bundles between leaves and k(LL) were higher for orthostichous than non-orthostichous leaf pairs. For each species, leaf-to-leaf sectoriality was determined as the proportional differences between non-orthostichous versus orthostichous leaf pairs in their staining of shared vascular bundles and in their k(LL); for the six species these two indices of sectoriality were strongly correlated (R2=0.94; P <0.002). Species varied 8-fold in their k(LL)-based sectoriality, and ring-porous species were more sectored than diffuse-porous species. Differential leaf-to-leaf sectoriality has implications for species-specific co-ordination of leaf gas exchange and water relations within a branch, especially during fluctuations in irradiance and water and nutrient availability.

Leaf Hydraulic Architecture Correlates with Regeneration Irradiance in Tropical Rainforest Trees

The New Phytologist. Aug, 2005  |  Pubmed ID: 15998394

The leaf hydraulic conductance (K(leaf)) is a major determinant of plant water transport capacity. Here, we measured K(leaf), and its basis in the resistances of leaf components, for fully illuminated leaves of five tree species that regenerate in deep shade, and five that regenerate in gaps or clearings, in Panamanian lowland tropical rainforest. We also determined coordination with stomatal characters and leaf mass per area. K(leaf) varied 10-fold across species, and was 3-fold higher in sun- than in shade-establishing species. On average, 12% of leaf hydraulic resistance (= 1/K(leaf)) was located in the petiole, 25% in the major veins, 25% in the minor veins, and 39% outside the xylem. Sun-establishing species had a higher proportion of leaf resistance in the xylem. Across species, component resistances correlated linearly with total leaf resistance. K(leaf) correlated tightly with indices of stomatal pore area, indicating a coordination of liquid- and vapor-phase conductances shifted relative to that of temperate woody species. Leaf hydraulic properties are integrally linked in the complex of traits that define differences in water use and carbon economy across habitats and vegetation zones.

Leaf Structural Diversity is Related to Hydraulic Capacity in Tropical Rain Forest Trees

Ecology. Feb, 2006  |  Pubmed ID: 16637372

The hydraulic resistance of the leaf (R1) is a major bottleneck in the whole plant water transport pathway and may thus be linked with the enormous variation in leaf structure and function among tropical rain forest trees. A previous study found that R1 varied by an order of magnitude across 10 tree species of Panamanian tropical lowland rain forest. Here, correlations were tested between R1 and 24 traits relating to leaf venation and mesophyll structure, and to gross leaf form. Across species, R1 was related to both venation architecture and mesophyll structure. R1 was positively related to the theoretical axial resistivity of the midrib, determined from xylem conduit numbers and dimensions, and R1 was negatively related to venation density in nine of 10 species. R1 was also negatively related to both palisade mesophyll thickness and to the ratio of palisade to spongy mesophyll. By contrast, numerous leaf traits were independent of R1, including area, shape, thickness, and density, demonstrating that leaves can be diverse in gross structure without intrinsic trade-offs in hydraulic capacity. Variation in both R1-linked and R1-independent traits related strongly to regeneration irradiance, indicating the potential importance of both types of traits in establishment ecology.

Leaf Hydraulics

Annual Review of Plant Biology. 2006  |  Pubmed ID: 16669766

Leaves are extraordinarily variable in form, longevity, venation architecture, and capacity for photosynthetic gas exchange. Much of this diversity is linked with water transport capacity. The pathways through the leaf constitute a substantial (>or=30%) part of the resistance to water flow through plants, and thus influence rates of transpiration and photosynthesis. Leaf hydraulic conductance (K(leaf)) varies more than 65-fold across species, reflecting differences in the anatomy of the petiole and the venation architecture, as well as pathways beyond the xylem through living tissues to sites of evaporation. K(leaf) is highly dynamic over a range of time scales, showing circadian and developmental trajectories, and responds rapidly, often reversibly, to changes in temperature, irradiance, and water supply. This review addresses how leaf structure and physiology influence K(leaf), and the mechanisms by which K(leaf) contributes to dynamic functional responses at the level of both individual leaves and the whole plant.

How Strong is Intracanopy Leaf Plasticity in Temperate Deciduous Trees?

American Journal of Botany. Jun, 2006  |  Pubmed ID: 21642145

Intracanopy plasticity in tree leaf form is a major determinant of whole-plant function and potentially of forest understory ecology. However, there exists little systematic information for the full extent of intracanopy plasticity, whether it is linked with height and exposure, or its variation across species. For arboretum-grown trees of six temperate deciduous species averaging 13-18 m in height, we quantified intracanopy plasticity for 11 leaf traits across three canopy locations (basal-interior, basal-exterior, and top). Plasticity was pronounced across the canopy, and maximum likelihood analyses indicated that plasticity was primarily linked with irradiance, regardless of height. Intracanopy plasticity (the quotient of values for top and basal-interior leaves) was often similar across species and statistically indistinguishable across species for several key traits. At canopy tops, the area of individual leaves was on average 0.5-0.6 times that at basal-interior, stomatal density 1.1-1.5 times higher, sapwood cross-sectional area up to 1.7 times higher, and leaf mass per area 1.5-2.2 times higher; guard cell and stomatal pore lengths were invariant across the canopy. Species differed in intracanopy plasticity for the mass of individual leaves, leaf margin dissection, ratio of leaf to sapwood areas, and stomatal pore area per leaf area; plasticity quotients ranged only up to ≈2. Across the six species, trait plasticities were uncorrelated and independent of the magnitude of the canopy gradient in irradiance or height and of the species' light requirements for regeneration. This convergence across species indicates general optimization or constraints in development, resulting in a bounded plasticity that improves canopy performance.

Genetic Variation in Leaf Pigment, Optical and Photosynthetic Function Among Diverse Phenotypes of Metrosideros Polymorpha Grown in a Common Garden

Oecologia. Mar, 2007  |  Pubmed ID: 17124568

Coordinated variation has been reported for leaf structure, composition and function, across and within species, and theoretically should occur across populations of a species that span an extensive environmental range. We focused on Hawaiian keystone tree species Metrosideros polymorpha, specifically, 13-year old trees grown (2-4 m tall) in a common garden (approximately 1 ha field with 2-3 m between trees) from seeds collected from 14 populations along an altitude-soil age gradient. We determined the genetic component of relationships among specific leaf area (SLA), the concentrations of nitrogen (N) and pigments (chlorophylls, carotenoids, and anthocyanins), and photosynthetic light-use efficiency. These traits showed strong ecotypic variation; SLA declined 35% with increasing source elevation, and area-based concentrations of N, Chl a + b and Car increased by 50, 109 and 96%, respectively. Concentrations expressed on a mass basis were not well related to source elevation. Pigment ratios expressed covariation that suggested an increased capacity for light harvesting at higher source elevation; Chl/N and Car/Chl increased with source elevation, whereas Chl a/b declined; Chl a/b was higher for populations on younger soil, suggesting optimization for low N supply. Parallel trends were found for the photosynthetic reactions; light-saturated quantum yield of photosystem II (Phi (PSII)) and electron transport rate (ETR) increased with source elevation. Correlations of the concentrations of photosynthetic pigments, pigment ratios, and photosynthetic function across the ecotypes indicated a stoichiometric coordination of the components of the light-harvesting antennae and reaction centers. The constellation of coordinated morphological, biochemical and physiological properties was expressed in the leaf reflectance and transmittance properties in the visible and near-infrared wavelength region (400-950 nm), providing an integrated metric of leaf status among and between plant phenotypes.

Atmospheric and Soil Drought Reduce Nocturnal Conductance in Live Oaks

Tree Physiology. Apr, 2007  |  Pubmed ID: 17242002

Nocturnal and daytime whole-canopy transpiration rate (E) and conductance (g = E/VPD, where VPD is leaf to air vapor pressure difference) were assessed gravimetrically in drought-treated and well-watered 3-year-old saplings of live oak species (Quercus series Virentes Nixon) from the southeastern USA (Quercus virginiana Mill.) and Central America (Q. oleoides Cham. and Schlecter). Our objectives were to: (1) quantify nocturnal and daytime E and g in a controlled environment; (2) determine the impact of severe drought on nocturnal E and g; and (3) examine whether unavoidable water loss through the epidermis could account for nocturnal water loss. We calculated daytime E during peak daylight hours (between 0930 and 1330 h) and nocturnal E during complete darkness (between 2200 and 0500 h). In addition to reducing E and g during the daytime, drought-treated plants reduced nocturnal E and g on a whole-canopy basis by 62-64% and 59-61%, respectively, and on a leaf-level basis by 27-28% and 19-26%, respectively. In well-watered plants, nocturnal g declined with increasing VPD, providing evidence for stomatal regulation of nocturnal transpiration. In drought-treated plants, g was low and there was no relationship between nocturnal g and VPD, indicating that water loss could not be reduced further through stomatal regulation. Both daytime and nocturnal g declined curvilinearly with predawn water potential for all plants, but nocturnal g was unrelated to predawn water potentials below -1 MPa. The reductions in daytime and nocturnal E and g during drought were associated with decreases in whole-plant and leaf hydraulic conductances. Observed nocturnal g was within the same range as epidermal conductance for oak species determined in previous studies under a range of conditions. Nocturnal E rose from 6-8% of daytime E for well watered plants to 19-20% of daytime E for drought-treated plants. These results indicate that, during drought, saplings of live oak species reduce g to a minimum through stomatal closure, and experience unavoidable water loss through the epidermis.

Diversity of Hydraulic Traits in Nine Cordia Species Growing in Tropical Forests with Contrasting Precipitation

The New Phytologist. 2007  |  Pubmed ID: 17688584

Inter- and intraspecific variation in hydraulic traits was investigated in nine Cordia (Boraginaceae) species growing in three tropical rainforests differing in mean annual precipitation (MAP). Interspecific variation was examined for the different Cordia species found at each site, and intraspecific variation was studied in populations of the widespread species Cordia alliodora across the three sites. Strong intra- and interspecific variation were observed in vulnerability to drought-induced embolism. Species growing at drier sites were more resistant to embolism than those growing at moister sites; the same pattern was observed for populations of C. alliodora. By contrast, traits related to hydraulic capacity, including stem xylem vessel diameter, sapwood specific conductivity (K(s)) and leaf specific conductivity (K(L)), varied strongly but independently of MAP. For C. alliodora, xylem anatomy, K(s), K(L) and Huber value varied little across sites, with K(s) and K(L) being consistently high relative to other Cordia species. A constitutively high hydraulic capacity coupled with plastic or genotypic adjustment in vulnerability to embolism and leaf water relations would contribute to the ability of C. alliodora to establish and compete across a wide precipitation gradient.

Leaf Palmate Venation and Vascular Redundancy Confer Tolerance of Hydraulic Disruption

Proceedings of the National Academy of Sciences of the United States of America. Feb, 2008  |  Pubmed ID: 18227511

Leaf venation is a showcase of plant diversity, ranging from the grid-like network in grasses, to a wide variety of dendritic systems in other angiosperms. A principal function of the venation is to deliver water; however, a hydraulic significance has never been demonstrated for contrasting major venation architectures, including the most basic dichotomy, "pinnate" and "palmate" systems. We hypothesized that vascular redundancy confers tolerance of vein breakage such as would occur during mechanical or insect damage. We subjected leaves of woody angiosperms of contrasting venation architecture to severing treatments in vivo, and, after wounds healed, made detailed measurements of physiological performance relative to control leaves. When the midrib was severed near the leaf base, the pinnately veined leaves declined strongly in leaf hydraulic conductance, stomatal conductance, and photosynthetic rate, whereas palmately veined leaves were minimally affected. Across all of the species examined, a higher density of primary veins predicted tolerance of midrib damage. This benefit for palmate venation is consistent with its repeated evolution and its biogeographic and habitat distribution. All leaves tested showed complete tolerance of damage to second- and higher-order veins, demonstrating that the parallel flow paths provided by the redundant, reticulate minor vein network protect the leaf from the impact of hydraulic disruption. These findings point to a hydraulic explanation for the diversification of low-order vein architecture and the commonness of reticulate, hierarchical leaf venation. These structures suggest roles for both economic constraints and risk tolerance in shaping leaf morphology during 130 million years of flowering plant evolution.

Scaling of Xylem Vessels and Veins Within the Leaves of Oak Species

Biology Letters. Jun, 2008  |  Pubmed ID: 18407890

General models of plant vascular architecture, based on scaling of pipe diameters to remove the length dependence of hydraulic resistance within the xylem, have attracted strong interest. However, these models have neglected to consider the leaf, an important hydraulic component; they assume all leaves to have similar hydraulic properties, including similar pipe diameters in the petiole. We examine the scaling of the leaf xylem in 10 temperate oak species, an important hydraulic component. The mean hydraulic diameter of petiole xylem vessels varied by 30% among the 10 oak species. Conduit diameters narrowed from the petiole to the midrib to the secondary veins, consistent with resistance minimization, but the power function scaling exponent differed from that predicted for stems. Leaf size was an organizing trait within and across species. These findings indicate that leaf vasculature needs to be included in whole-plant scaling models, for these to accurately reflect and predict whole-plant transport and its implications for performance and ecology.

Plant Hydraulics: New Discoveries in the Pipeline

The New Phytologist. 2008  |  Pubmed ID: 18715323

The Rapid Light Response of Leaf Hydraulic Conductance: New Evidence from Two Experimental Methods

Plant, Cell & Environment. Dec, 2008  |  Pubmed ID: 18771574

Previous studies have shown a rapid enhancement in leaf hydraulic conductance (K(leaf)) from low to high irradiance (from <10 to >1000 micromol photons m(-2) s(-1)), using the high-pressure flow meter (HPFM), for 7 of 14 tested woody species. However, theoretical suggestions have been made that this response might arise as an artifact of the HPFM. We tested the K(leaf) light response for six evergreen species using refined versions of the rehydration kinetics method (RKM) and the evaporative flux method (EFM). We found new evidence for a rapid, 60% to 100% increase in K(leaf) from low to high irradiance for three species. In the RKM, the leaf rehydration time constant declined by up to 70% under high irradiance relative to darkness. In the EFM, under higher irradiance, the flow rate increased disproportionately to the water potential gradient. Combining our data with those of previous studies, we found that heterobaric species, i.e. those with bundle sheath extensions (BSEs) showed a twofold greater K(leaf) light response on average than homobaric species, i.e. those without BSEs. We suggest further research to characterize this substantial dynamic at the nexus of plant light- and water-relations.

Hawaiian Native Forest Conserves Water Relative to Timber Plantation: Species and Stand Traits Influence Water Use

Ecological Applications : a Publication of the Ecological Society of America. Sep, 2009  |  Pubmed ID: 19769092

Tropical forests are becoming increasingly alien-dominated through the establishment of timber plantations and secondary forests. Despite widespread recognition that afforestation results in increased evapotranspiration and lower catchment yields, little is known of the impacts of timber plantations on water balance relative to native forest. Native forest trees have been claimed to use water conservatively and enhance groundwater recharge relative to faster-growing alien species, and this argument should motivate native forest preservation and restoration. However, data have been available primarily for leaf-level gas exchange rather than for whole-plant and stand levels. We measured sap flow of dominant tree and tree fern species over eight weeks in native Metrosideros polymorpha forest and adjacent alien timber plantations on the island of Hawai'i and estimated total stand transpiration. Metrosideros polymorpha had the lowest values of sap flux density and whole-tree water use (200 kg m(-2) sapwood d(-1), or 8 kg/d for trees of 35 cm mean diameter at breast height, D), substantially less than timber species Eucalyptus saligna or Fraxinus uhdei (33 and 34 kg/d for trees of 73 and 30 cm mean D, respectively). At the stand level, E. saligna and F. uhdei trees had three- and ninefold higher water use, respectively, than native M. polymorpha trees. Understory Cibotium tree ferns were most abundant in M. polymorpha-dominated forest where they accounted for 70% of water use. Overall, F. uhdei plantation had the highest water use at 1.8 mm/d, more than twice that of either E. saligna plantation or M. polymorpha forest. Forest water use was influenced by species composition, stem density, tree size, sapwood allocation, and understory contributions. Transpiration varied strongly among forest types even within the same wet tropical climate, and in this case, native forest had strikingly conservative water use. Comparisons of vegetation cover in water use should provide additional resolution to ecosystem valuation and land management decisions.

How Does Moss Photosynthesis Relate to Leaf and Canopy Structure? Trait Relationships for 10 Hawaiian Species of Contrasting Light Habitats

The New Phytologist. Jan, 2010  |  Pubmed ID: 19863726

Mosses are an understudied group of plants that can potentially confirm or expand principles of plant function described for tracheophytes, from which they diverge strongly in structure. We quantified 35 physiological and morphological traits from cell-, leaf- and canopy-level, for 10 ground-, trunk- and branch-dwelling Hawaiian species. We hypothesized that trait values would reflect the distinctive growth form and slow growth of mosses, but also that trait correlations would be analogous to those of tracheophytes. The moss species had low leaf mass per area and low gas exchange rate. Unlike for tracheophytes, light-saturated photosynthetic rate per mass (A(mass)) did not correlate with habitat irradiance. Other photosynthetic parameters and structural traits were aligned with microhabitat irradiance, driving an inter-correlation of traits including leaf area, cell size, cell wall thickness, and canopy density. In addition, we found a coordination of traits linked with structural allocation, including costa size, canopy height and A(mass). Across species, A(mass) and nitrogen concentration correlated negatively with canopy mass per area, analogous to linkages found for the 'leaf economic spectrum', with canopy mass per area replacing leaf mass per area. Despite divergence of mosses and tracheophytes in leaf size and function, analogous trait coordination has arisen during ecological differentiation.

Decoding Leaf Hydraulics with a Spatially Explicit Model: Principles of Venation Architecture and Implications for Its Evolution

The American Naturalist. Apr, 2010  |  Pubmed ID: 20178410

Leaf venation architecture is tremendously diverse across plant species. Understanding the hydraulic functions of given venation traits can clarify the organization of the vascular system and its adaptation to environment. Using a spatially explicit model (the program K_leaf), we subjected realistic simulated leaves to modifications and calculated the impacts on xylem and leaf hydraulic conductance (K(x) and K(leaf), respectively), important traits in determining photosynthesis and growth. We tested the sensitivity of leaves to altered vein order conductivities (1) in the absence or (2) presence of hierarchical vein architecture, (3) to major vein tapering, and (4) to modification of vein densities (length/leaf area). The K(x) and K(leaf) increased with individual vein order conductivities and densities; for hierarchical venation systems, the greatest impact was from increases in vein conductivity for lower vein orders and increases in density for higher vein orders. Individual vein order conductivities were colimiting of K(x) and K(leaf), as were their densities, but the effects of vein conductivities and densities were orthogonal. Both vein hierarchy and vein tapering increased K(x) relative to xylem construction cost. These results highlight the important consequences of venation traits for the economics, ecology, and evolution of plant transport capacity.

Turning over a New 'leaf': Multiple Functional Significances of Leaves Versus Phyllodes in Hawaiian Acacia Koa

Plant, Cell & Environment. Dec, 2010  |  Pubmed ID: 20636491

Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO(2) , vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area-based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass-based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts.

Comparative Water Use of Native and Invasive Plants at Multiple Scales: a Global Meta-analysis

Ecology. Sep, 2010  |  Pubmed ID: 20957964

Ecohydrology and invasive ecology have become increasingly important in the context of global climate change. This study presents the first in-depth analysis of the water use of invasive and native plants of the same growth form at multiple scales: leaf, plant, and ecosystem. We reanalyzed data for several hundred native and invasive species from over 40 published studies worldwide to glean global trends and to highlight how patterns vary depending on both scale and climate. We analyzed all pairwise combinations of co-occurring native and invasive species for higher comparative resolution of the likelihood of an invasive species using more water than a native species and tested for significance using bootstrap methods. At each scale, we found several-fold differences in water use between specific paired invasive and native species. At the leaf scale, we found a strong tendency for invasive species to have greater stomatal conductance than native species. At the plant scale, however, natives and invasives were equally likely to have the higher sap flow rates. Available data were much fewer for the ecosystem scale; nevertheless, we found that invasive-dominated ecosystems were more likely to have higher sap flow rates per unit ground area than native-dominated ecosystems. Ecosystem-scale evapotranspiration, on the other hand, was equally likely to be greater for systems dominated by invasive and native species of the same growth form. The inherent disconnects in the determination of water use when changing scales from leaf to plant to ecosystem reveal hypotheses for future studies and a critical need for more ecosystem-scale water use measurements in invasive- vs. native-dominated systems. The differences in water use of native and invasive species also depended strongly on climate, with the greater water use of invasives enhanced in hotter, wetter climates at the coarser scales.

Ecological Differentiation in Xylem Cavitation Resistance is Associated with Stem and Leaf Structural Traits

Plant, Cell & Environment. Jan, 2011  |  Pubmed ID: 20946587

Cavitation resistance is a critical determinant of drought tolerance in tropical tree species, but little is known of its association with life history strategies, particularly for seasonal dry forests, a system critically driven by variation in water availability. We analysed vulnerability curves for saplings of 13 tropical dry forest tree species differing in life history and leaf phenology. We examined how vulnerability to cavitation (Pâ‚…â‚€) related to dry season leaf water potentials and stem and leaf traits. Pâ‚…â‚€-values ranged from -0.8 to -6.2 MPa, with pioneers on average 38% more vulnerable to cavitation than shade-tolerants. Vulnerability to cavitation was related to structural traits conferring tissue stress vulnerability, being negatively correlated with wood density, and surprisingly maximum vessel length. Vulnerability to cavitation was negatively related to the Huber-value and leaf dry matter content, and positively with leaf size. It was not related to SLA. We found a strong trade-off between cavitation resistance and hydraulic efficiency. Most species in the field were operating at leaf water potentials well above their Pâ‚…â‚€, but pioneers and deciduous species had smaller hydraulic safety margins than shade-tolerants and evergreens. A trade-off between hydraulic safety and efficiency underlies ecological differentiation across these tropical dry forest tree species.

Shifts in Bryophyte Carbon Isotope Ratio Across an Elevation × Soil Age Matrix on Mauna Loa, Hawaii: Do Bryophytes Behave Like Vascular Plants?

Oecologia. May, 2011  |  Pubmed ID: 21279387

The carbon isotope ratio (δ(13)C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ(13)C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ(13)C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO(2) diffusion. Twelve bryophyte species were sampled across a matrix of elevation and soil ages on Mauna Loa, Hawaii Island. We tested hypotheses based on previous findings for vascular plants, which tend to have less negative δ(13)C at higher elevations or irradiances, and for leaves with higher leaf mass per area (LMA). Across the matrix, bryophytes spanned the range of δ(13)C values typical of C(3) vascular plants. Bryophytes were remarkably similar to vascular plants in exhibiting less negative δ(13)C with increasing elevation, and with lower overstory cover; additionally δ(13)C was related to bryophyte canopy projected mass per area, a trait analogous to LMA in vascular plants, also correlated negatively with overstory cover. The similarity of responses of δ(13)C in bryophytes and vascular plants to environmental factors, despite differing morphologies and diffusion pathways, points to a strong direct role of photosynthetic rate in determining δ(13)C variation at the landscape scale.

Impact of Light Quality on Leaf and Shoot Hydraulic Properties: a Case Study in Silver Birch (Betula Pendula)

Plant, Cell & Environment. Jul, 2011  |  Pubmed ID: 21414012

Responses of leaf and shoot hydraulic conductance to light quality were examined on shoots of silver birch (Betula pendula), cut from lower ('shade position') and upper thirds of the crowns ('sun position') of trees growing in a natural temperate forest stand. Hydraulic conductances of leaf blades (K(lb) ), petioles (K(P) ) and branches (i.e. leafless stem; K(B) ) were determined using a high pressure flow meter in steady state mode. The shoots were exposed to photosynthetic photon flux density of 200-250 µmol m⁻² s⁻¹ using white, blue or red light. K(lb) depended significantly on both light quality and canopy position (P<0.001), K(B) on canopy position (P<0.001) and exposure time (P=0.014), and none of the three factors had effect on K(P) . The highest values of K(lb) were recorded under the blue light (3.63 and 3.13×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ for the sun and shade leaves, respectively), intermediate values under white light (3.37 and 2.46×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹ , respectively) and lowest values under red light (2.83 and 2.02×10⁻⁴ kg m⁻² MPa⁻¹ s⁻¹, respectively). Light quality has an important impact on leaf hydraulic properties, independently of light intensity or of total light energy, and the specific light receptors involved in this response require identification. Given that natural canopy shade depletes blue and red light, K(lb) may be decreased both by reduced fluence and shifts in light spectra, indicating the need for studies of the natural heterogeneity of K(lb) within and under canopies, and its impacts on gas exchange.

The Role of Bundle Sheath Extensions and Life Form in Stomatal Responses to Leaf Water Status

Plant Physiology. Jun, 2011  |  Pubmed ID: 21459977

Bundle sheath extensions (BSEs) are key features of leaf structure with currently little-understood functions. To test the hypothesis that BSEs reduce the hydraulic resistance from the bundle sheath to the epidermis (r(be)) and thereby accelerate hydropassive stomatal movements, we compared stomatal responses with reduced humidity and leaf excision among 20 species with heterobaric or homobaric leaves and herbaceous or woody life forms. We hypothesized that low r(be) due to the presence of BSEs would increase the rate of stomatal opening (V) during transient wrong-way responses, but more so during wrong-way responses to excision (V(e)) than humidity (V(h)), thus increasing the ratio of V(e) to V(h). We predicted the same trends for herbaceous relative to woody species given greater hydraulic resistance in woody species. We found that V(e), V(h), and their ratio were 2.3 to 4.4 times greater in heterobaric than homobaric leaves and 2.0 to 3.1 times greater in herbaceous than woody species. To assess possible causes for these differences, we simulated these experiments in a dynamic compartment/resistance model, which predicted larger V(e) and V(e)/V(h) in leaves with smaller r(be). These results support the hypothesis that BSEs reduce r(be). Comparison of our data and simulations suggested that r(be) is approximately 4 to 16 times larger in homobaric than heterobaric leaves. Our study provides new evidence that variations in the distribution of hydraulic resistance within the leaf and plant are central to understanding dynamic stomatal responses to water status and their ecological correlates and that BSEs play several key roles in the functional ecology of heterobaric leaves.

Hydraulics and Life History of Tropical Dry Forest Tree Species: Coordination of Species' Drought and Shade Tolerance

The New Phytologist. Jul, 2011  |  Pubmed ID: 21477008

Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off.

Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture

Plant Physiology. Jun, 2011  |  Pubmed ID: 21511989

Across plant species, leaves vary enormously in their size and their venation architecture, of which one major function is to replace water lost to transpiration. The leaf hydraulic conductance (K(leaf)) represents the capacity of the transport system to deliver water, allowing stomata to remain open for photosynthesis. Previous studies showed that K(leaf) relates to vein density (vein length per area). Additionally, venation architecture determines the sensitivity of K(leaf) to damage; severing the midrib caused K(leaf) and gas exchange to decline, with lesser impacts in leaves with higher major vein density that provided more numerous water flow pathways around the damaged vein. Because xylem embolism during dehydration also reduces K(leaf), we hypothesized that higher major vein density would also reduce hydraulic vulnerability. Smaller leaves, which generally have higher major vein density, would thus have lower hydraulic vulnerability. Tests using simulations with a spatially explicit model confirmed that smaller leaves with higher major vein density were more tolerant of major vein embolism. Additionally, for 10 species ranging strongly in drought tolerance, hydraulic vulnerability, determined as the leaf water potential at 50% and 80% loss of K(leaf), was lower with greater major vein density and smaller leaf size (|r| = 0.85-0.90; P < 0.01). These relationships were independent of other aspects of physiological and morphological drought tolerance. These findings point to a new functional role of venation architecture and small leaf size in drought tolerance, potentially contributing to well-known biogeographic trends in leaf size.

Xylem Traits Mediate a Trade-off Between Resistance to Freeze-thaw-induced Embolism and Photosynthetic Capacity in Overwintering Evergreens

The New Phytologist. Sep, 2011  |  Pubmed ID: 21627664

Hydraulic traits were studied in temperate, woody evergreens in a high-elevation heath community to test for trade-offs between the delivery of water to canopies at rates sufficient to sustain photosynthesis and protection against disruption to vascular transport caused by freeze-thaw-induced embolism. Freeze-thaw-induced loss in hydraulic conductivity was studied in relation to xylem anatomy, leaf- and sapwood-specific hydraulic conductivity and gas exchange characteristics of leaves. We found evidence that a trade-off between xylem transport capacity and safety from freeze-thaw-induced embolism affects photosynthetic activity in overwintering evergreens. The mean hydraulically weighted xylem vessel diameter and sapwood-specific conductivity correlated with susceptibility to freeze-thaw-induced embolism. There was also a strong correlation of hydraulic supply and demand across species; interspecific differences in stomatal conductance and CO(2) assimilation rates were correlated linearly with sapwood- and leaf-specific hydraulic conductivity. Xylem vessel anatomy mediated an apparent trade-off between resistance to freeze-thaw-induced embolism and hydraulic and photosynthetic capacity during the winter. These results point to a new role for xylem functional traits in determining the degree to which species can maintain photosynthetic carbon gain despite freezing events and cold winter temperatures.

Drivers of Morphological Diversity and Distribution in the Hawaiian Fern Flora: Trait Associations with Size, Growth Form, and Environment

American Journal of Botany. Jun, 2011  |  Pubmed ID: 21653508

Hawaii is home to 238 native and 35 alien fern and lycophyte taxa distributed across steep gradients in elevation and resource availability. The fern flora spans a wide range of growth forms, with extraordinary diversity in morphology and plant size. Yet the potential factors underlying this diversity have remained enigmatic.

Ecology of Hemiepiphytism in Fig Species is Based on Evolutionary Correlation of Hydraulics and Carbon Economy

Ecology. Nov, 2011  |  Pubmed ID: 22164836

Woody hemiepiphytic species (Hs) are important components of tropical rain forests, and they have been hypothesized to differ from non-hemiepiphytic tree species (NHs) in adaptations relating to water relations and carbon economy; but few studies have been conducted comparing ecophysiological traits between the two growth forms especially in an evolutionary context. Using common-garden plants of the genus Ficus, functional traits related to plant hydraulics and carbon economy were compared for seven NHs and seven Hs in their adult terrestrial "tree-like" growth phase. We used phylogenetically independent contrasts to test the hypothesis that differences in water availability selected for contrasting suites of traits in Hs and NHs, driving evolutionary correlations among functional traits including hydraulic conductivity and photosynthetic traits. Species of the two growth forms differed in functional traits; Hs had substantially lower xylem hydraulic conductivity and stomatal conductance, and higher instantaneous photosynthetic water use efficiency. Leaf morphological and structural traits also differed strikingly between the two growth forms. The Hs had significantly smaller leaves, higher leaf mass per area (LMA), and smaller xylem vessel lumen diameters. Across all the species, hydraulic conductivity was positively correlated with leaf gas exchange indicating high degrees of hydraulic-photosynthetic coordination. More importantly, these correlations were supported by correlations implemented on phylogenetic independent contrasts, suggesting that most trait correlations arose through repeated convergent evolution rather than as a result of chance events in the deep nodes of the lineage. Vatiation in xylem hydraulic conductivity was also centrally associated with a suite of other functional traits related to carbon economy and growth, such as LMA, water use efficiency, leaf nutrient concentration, and photosynthetic nutrient use efficiency, indicating important physiological constraints or trade-offs among functional traits. Shifts in this trait cluster apparently related to the adaptation to drought-prone canopy growth during the early life cycle of Hs and clearly affected ecophysiology of the later terrestrial stage of these species. Evolutionary flexibility in hydraulics and associated traits might be one basis for the hyper-diversification of Ficus species in tropical rain forests.

Hydraulic Conductance of Acacia Phyllodes (foliage) is Driven by Primary Nerve (vein) Conductance and Density

Plant, Cell & Environment. Jan, 2012  |  Pubmed ID: 21923760

We determined effects of venation traits on hydraulic conductance of phyllodes (foliage), using an array of Acacia s.str. species with diverse phyllode morphologies as the source of variation. Measurements were made on phyllodes from 44 species, grown in common gardens but originating from different positions along a precipitation gradient. K(phyllode) varied 18-fold and was positively correlated with primary nerve hydraulic conductance, and with primary nerve (vein) density but not with minor nerve density, in contrast with previous studies of true leaves in other dicotyledons. Phyllodes with higher primary nerve density also had greater mass per area (PMA) and larger bundle sheath extensions (BSEs) from their minor nerves. We suggest that higher primary nerve conductivity and density may decrease the distance travelled in the high-resistance extra-xylem pathways of the phyllode. Further, larger BSEs may increase the area available for dispersion of water from the xylem to the extra-xylem tissue. High PMA phyllodes were more common in acacias from areas receiving lower annual precipitation. Maximizing efficient water movement through phyllodes may be more important where rainfall is meagre and infrequent, explaining relationships between nerve patterns and the climates of origin in Australian phyllodinous Acacia.

Dynamics of Leaf Hydraulic Conductance with Water Status: Quantification and Analysis of Species Differences Under Steady State

Journal of Experimental Botany. Jan, 2012  |  Pubmed ID: 22016424

Leaf hydraulic conductance (K(leaf)) is a major determinant of photosynthetic rate in well-watered and drought-stressed plants. Previous work assessed the decline of K(leaf) with decreasing leaf water potential (Ψ(leaf)), most typically using rehydration kinetics methods, and found that species varied in the shape of their vulnerability curve, and that hydraulic vulnerability correlated with other leaf functional traits and with drought sensitivity. These findings were tested and extended, using a new steady-state evaporative flux method under high irradiance, and the function for the vulnerability curve of each species was determined individually using maximum likelihood for 10 species varying strongly in drought tolerance. Additionally, the ability of excised leaves to recover in K(leaf) with rehydration was assessed, and a new theoretical framework was developed to estimate how rehydration of measured leaves may affect estimation of hydraulic parameters. As hypothesized, species differed in their vulnerability function. Drought-tolerant species showed shallow linear declines and more negative Ψ(leaf) at 80% loss of K(leaf) (P(80)), whereas drought-sensitive species showed steeper, non-linear declines, and less negative P(80). Across species, the maximum K(leaf) was independent of hydraulic vulnerability. Recovery of K(leaf) after 1 h rehydration of leaves dehydrated below their turgor loss point occurred only for four of 10 species. Across species without recovery, a more negative P(80) correlated with the ability to maintain K(leaf) through both dehydration and rehydration. These findings indicate that resistance to K(leaf) decline is important not only in maintaining open stomata during the onset of drought, but also in enabling sustained function during drought recovery.

Combined Impacts of Irradiance and Dehydration on Leaf Hydraulic Conductance: Insights into Vulnerability and Stomatal Control

Plant, Cell & Environment. May, 2012  |  Pubmed ID: 22070647

The leaf is a hydraulic bottleneck, accounting for a large part of plant resistance. Thus, the leaf hydraulic conductance (K(leaf) ) is of key importance in determining stomatal conductance (g(s) ) and rates of gas exchange. Previous studies showed that K(leaf) is dynamic with leaf water status and irradiance. For four species, we tested the combined impacts of these factors on K(leaf) and on g(s) . We determined responses of K(leaf) and g(s) to declining leaf water potential (Ψ(leaf) ) under low and high irradiance (<6 and >900 µmol photons m(-2) s(-1) photosynthetically active radiation, respectively). We hypothesized greater K(leaf) vulnerability under high irradiance. We also hypothesized that K(leaf) and g(s) would be similar in their responses to either light or dehydration: similar light-responses of K(leaf) and g(s) would stabilize Ψ(leaf) across irradiances for leaves transpiring at a given vapour pressure deficit, and similar dehydration responses would arise from the control of stomata by Ψ(leaf) or a correlated signal. For all four species, the K(leaf) light response declined from full hydration to turgor loss point. The K(leaf) and g(s) differed strongly in their light- and dehydration responses, supporting optimization of hydraulic transport across irradiances, and semi-independent, flexible regulation of liquid and vapour phase water transport with leaf water status.

Evolution of C4 Plants: a New Hypothesis for an Interaction of CO2 and Water Relations Mediated by Plant Hydraulics

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Feb, 2012  |  Pubmed ID: 22232769

C(4) photosynthesis has evolved more than 60 times as a carbon-concentrating mechanism to augment the ancestral C(3) photosynthetic pathway. The rate and the efficiency of photosynthesis are greater in the C(4) than C(3) type under atmospheric CO(2) depletion, high light and temperature, suggesting these factors as important selective agents. This hypothesis is consistent with comparative analyses of grasses, which indicate repeated evolutionary transitions from shaded forest to open habitats. However, such environmental transitions also impact strongly on plant-water relations. We hypothesize that excessive demand for water transport associated with low CO(2), high light and temperature would have selected for C(4) photosynthesis not only to increase the efficiency and rate of photosynthesis, but also as a water-conserving mechanism. Our proposal is supported by evidence from the literature and physiological models. The C(4) pathway allows high rates of photosynthesis at low stomatal conductance, even given low atmospheric CO(2). The resultant decrease in transpiration protects the hydraulic system, allowing stomata to remain open and photosynthesis to be sustained for longer under drying atmospheric and soil conditions. The evolution of C(4) photosynthesis therefore simultaneously improved plant carbon and water relations, conferring strong benefits as atmospheric CO(2) declined and ecological demand for water rose.

The Determinants of Leaf Turgor Loss Point and Prediction of Drought Tolerance of Species and Biomes: a Global Meta-analysis

Ecology Letters. May, 2012  |  Pubmed ID: 22435987

Increasing drought is one of the most critical challenges facing species and ecosystems worldwide, and improved theory and practices are needed for quantification of species tolerances. Leaf water potential at turgor loss, or wilting (π(tlp) ), is classically recognised as a major physiological determinant of plant water stress response. However, the cellular basis of π(tlp) and its importance for predicting ecological drought tolerance have been controversial. A meta-analysis of 317 species from 72 studies showed that π(tlp) was strongly correlated with water availability within and across biomes, indicating power for anticipating drought responses. We derived new equations giving both π(tlp) and relative water content at turgor loss point (RWC(tlp) ) as explicit functions of osmotic potential at full turgor (π(o) ) and bulk modulus of elasticity (ε). Sensitivity analyses and meta-analyses showed that π(o) is the major driver of π(tlp) . In contrast, ε plays no direct role in driving drought tolerance within or across species, but sclerophylly and elastic adjustments act to maintain RWC(tlp,) preventing cell dehydration, and additionally protect against nutrient, mechanical and herbivory stresses independent of drought tolerance. These findings clarify biogeographic trends and the underlying basis of drought tolerance parameters with applications in comparative assessments of species and ecosystems worldwide.

Developmentally Based Scaling of Leaf Venation Architecture Explains Global Ecological Patterns

Nature Communications. 2012  |  Pubmed ID: 22588299

Leaf size and venation show remarkable diversity across dicotyledons, and are key determinants of plant adaptation in ecosystems past and present. Here we present global scaling relationships of venation traits with leaf size. Across a new database for 485 globally distributed species, larger leaves had major veins of larger diameter, but lower length per leaf area, whereas minor vein traits were independent of leaf size. These scaling relationships allow estimation of intact leaf size from fragments, to improve hindcasting of past climate and biodiversity from fossil remains. The vein scaling relationships can be explained by a uniquely synthetic model for leaf anatomy and development derived from published data for numerous species. Vein scaling relationships can explain the global biogeographical trend for smaller leaves in drier areas, the greater construction cost of larger leaves and the ability of angiosperms to develop larger and more densely vascularised lamina to outcompete earlier-evolved plant lineages.

Evolution of Leaf Form Correlates with Tropical-temperate Transitions in Viburnum (Adoxaceae)

Proceedings. Biological Sciences / The Royal Society. Oct, 2012  |  Pubmed ID: 22810426

Strong latitudinal patterns in leaf form are well documented in floristic comparisons and palaeobotanical studies. However, there is little agreement about their functional significance; in fact, it is still unknown to what degree these patterns were generated by repeated evolutionary adaptation. We analysed leaf form in the woody angiosperm clade Viburnum (Adoxaceae) and document evolutionarily correlated shifts in leafing habit, leaf margin morphology, leaf shape and climate. Multiple independent shifts between tropical and temperate forest habitats have repeatedly been accompanied by a change between evergreen, elliptical leaves with entire margins and deciduous, more rounded leaves with toothed or lobed margins. These consistent shifts in Viburnum support repeated evolutionary adaptation as a major determinant of the global correlation between leaf form and mean annual temperature. Our results provide a new theoretical grounding for the inference of past climates using fossil leaf assemblages.

Is Hemiepiphytism an Adaptation to High Irradiance? Testing Seedling Responses to Light Levels and Drought in Hemiepiphytic and Non-hemiepiphytic Ficus

Physiologia Plantarum. Sep, 2012  |  Pubmed ID: 22989335

The epiphytic growth habit in many Ficus species during their juvenile stages has commonly been hypothesized to be an adaptation for avoiding deep shade in the forest understory, but this has never been tested experimentally. We examined growth and ecophysiology in seedlings of three hemiepiphytic (Hs) and three non-hemiepiphytic (NHs) Ficus species grown under different irradiance levels. Both Hs and NHs exhibited characteristics of high light requiring species, such as high plasticity to growth irradiance and relatively high maximum photosynthetic assimilation rates. Diurnal measurements of leaf gas exchange showed that Hs have much shorter active photosynthetic periods than NHs; moreover, leaves of Hs have lower xylem hydraulic conductivity but stronger drought tolerance as indicated by much lower rates of leaf diebacks during the drought treatment. Seedlings of NHs had 3.3- and 13.3-fold greater height and biomass than those of Hs species after growing in the nursery for 5 months, indicating a trade-off between growth and drought tolerance due to the conflicting requirements for xylem conductivity and cavitation resistance. This study does not support the shade-avoidance hypothesis; rather, it suggests that the canopy regeneration in Hs is an adaptation to avoid alternative terrestrial growth-related risks imposed to tiny Ficus seedlings. The NHs with terrestrial regeneration reduce these risks by having an initial burst of growth to rapidly gain relatively large seedling sizes, while in Hs seedlings more conservative water use and greater drought tolerance for surviving the canopy environment are intrinsically associated with slow growth.

Pitfalls and Possibilities in the Analysis of Biomass Allocation Patterns in Plants

Frontiers in Plant Science. 2012  |  Pubmed ID: 23227027

Plants can differentially allocate biomass to leaves, stems, roots, and reproduction, and follow ontogenetic trajectories that interact with the prevailing climate. Various methodological tools exist to analyze the resulting allocation patterns, based either on the calculation of biomass ratios or fractions of different organs at a given point in time, or on a so-called allometric analysis of biomass data sampled across species or over an experimental growth period. We discuss the weak and strong points of each of these methods. Although both approaches have useful features, we suggest that often a plot of biomass fractions against total plant size, either across species or in the comparison of treatment effects, combines the best of both worlds.

simple hit counter