Skip to content
Articles by Neha Khandelwal in JoVE
-
Etiquetagem de corantes fluorescentes de eritrócitos e leucócitos para estudar a dinâmica do fluxo na circulação da retina do mouse
Rupesh Agrawal*1,2,3, Praveen Kumar Balne*2, Sai Bo Bo Tun2, Yeo Sia Wey2, Neha Khandelwal1, Veluchamy A. Barathi2,4,5
1National Healthcare Group Eye Institute, Tan Tock Seng Hospital, 2Singapore Eye Research Institute (SERI), Singapore National Eye Center, 3School of Material Science and Engineering, Nanyang Technological University, 4Department of Ophthalmology, Yong Loo Lin School of Medicine, National University Health Systems, National University of Singapore, 5Ophthalmology Academic Clinical Research Program, DUKE-NUS Graduate Medical School
A imagem em células vivas das células sanguíneas marcadas na circulação ocular pode fornecer informações sobre inflamação e isquemia na retinopatia diabética e degeneração macular relacionada à idade. É descrito um protocolo para rotular as células do sangue e imagem das células rotuladas na circulação da retina.
Other articles by Neha Khandelwal on PubMed
-
Interaction of Recombinant CanPIs with Helicoverpa Armigera Gut Proteases Reveals Their Processing Patterns, Stability and Efficiency
Proteomics.
Aug, 2010 |
Pubmed ID: 20517884 Six diverse representative Capsicum annuum (common name: hot pepper; Solanaceae) protease inhibitor genes, viz CanPI-5, -7, -13, -15, -19, and 22 comprising 1-4 inhibitory repeat domains (IRDs), were cloned and expressed in Pichia pastoris. The recombinant proteins were evaluated for their interactions with bovine trypsin, chymotrypsin, and Helicoverpa armigera gut proteases (HGP) using electrophoretic (native and denaturing) and mass spectrometric (MALDI-TOF-MS in combination with intensity fading assays) techniques. These techniques allow qualitative and semiquantitative analysis of multiple and processed IRDs of purified recombinant Capsicum annuum proteinase inhibitor (rCanPI) proteins. rCanPIs showed over 90% trypsin inhibition, varying chymotrypsin inhibition depending on the number of respective IRDs and over 60% inhibition of total HGP. rCanPI-15 that has only one IRD showed exceptionally low inhibition of these proteases. Interaction studies of rCanPIs with proteases using intensity fading-MALDI-TOF-MS revealed gradual processing of multi-IRD rCanPIs into single IRD forms by the action of HGP at the linker region, unlike their interactions with trypsin and chymotrypsin. Intensity fading-MALDI-TOF-MS assay showed that CanPI-13 and -15, possessing single IRD and expressed predominantly in stem tissue are degraded by HGP; indicating their function other than defense. In vitro and in vivo studies on rCanPI-5 and -7 showed maximum inhibition of HGP isoforms and their processed IRDs were also found to be stable in the presence of HGP. Even single amino acid variations in IRDs were found to change the HGP specificity like in the case of HGP-8 inhibited only by IRD-12. The presence of active PI in insect gut might be responsible for changed HGP profile. rCanPI-5 and -7 enhanced HGP-7, reduced HGP-4, -5, -10 expression and new protease isoforms were induced. These results signify isoform complexity in plant PIs and insect proteases.
-
-
-
-
-
Budding Trends in Integrated Pest Management Using Advanced Micro- and Nano-materials: Challenges and Perspectives
Journal of Environmental Management.
Dec, 2016 |
Pubmed ID: 27697374 One of the most vital supports to sustain human life on the planet earth is the agriculture system that has been constantly challenged in terms of yield. Crop losses due to insect pest attack even after excessive use of chemical pesticides, are major concerns for humanity and environment protection. By the virtue of unique properties possessed by micro and nano-structures, their implementation in Agri-biotechnology is largely anticipated. Hence, traditional pest management strategies are now forestalling the potential of micro and nanotechnology as an effective and viable approach to alleviate problems pertaining to pest control. These technological innovations hold promise to contribute enhanced productivity by providing novel agrochemical agents and delivery systems. Application of these systems engages to achieve: i) control release of agrochemicals, ii) site-targeted delivery of active ingredients to manage specific pests, iii) reduced pesticide use, iv) detection of chemical residues, v) pesticide degradation, vi) nucleic acid delivery and vii) to mitigate post-harvest damage. Applications of micro and nano-technology are still marginal owing to the perception of low economic returns, stringent regulatory issues involving safety assessment and public awareness over their uses. In this review, we highlight the potential application of micro and nano-materials with a major focus on effective pest management strategies including safe handling of pesticides.
-
-
Get cutting-edge science videos from JoVE sent straight to your inbox every month.