Nir Qvit

Faculty of Medicine

Bar-Ilan University

Nir Qvit

Nir Qvit is an Associate Professor in the Faculty of Medicine, Bar-Ilan University, Israel. He received his undergraduate and a Ph.D. in organic chemistry developing different strategies for the synthesis of small molecules and peptides, in solution and on a solid support, for various therapeutic applications from the Hebrew University of Jerusalem, Israel. Dr. Qvit overcame challenging synthesis and developed an innovative procedure for generating novel and highly bioactive protein-protein interaction inhibitors and was awarded the prestigious Kaye Innovation Award for demonstrating extraordinary creativity as a medicinal chemist.

During Dr. Qvit’s training, he developed a keen focus on research that encompasses the maintenance of mitochondrial homeostasis and cell fate. As a post-doctoral fellow (2008 to 2016) in Daria Mochly-Rosen’s lab at the Department of Chemical and System Biology in Stanford School of Medicine, Stanford, CA, USA, He developed and studied the roles of inhibitors that selectively regulates the protein-protein interactions between a kinase and its specific substrate among many, and he developed specific inhibitors of large GTPase to modulate excessive mitochondrial fission. These inhibitors are highly active in models of neurodegenerative disease and cardiovascular disease, and one molecule has been licensed to a biopharmaceutical company.

Dr. Qvit served as a chairman for multiple sessions of several conferences and was the Chair of the first: “Gordon Research Seminar: The Future of Peptides in Chemistry and Biology, 2012”. He received the prestigious Kaye Innovation Award for demonstrating extraordinary creativity as a medicinal chemist, the Burroughs Wellcome Fund Collaborative Research Grant, and the European Molecular Biology Organization (EMBO) Fellowship, and in 2017 he was recruited as faculty at Bar-Ilan University. His research focuses on the development of novel tools to regulate protein-protein interactions in a highly specific manner for basic research and for therapeutic applications.