Skip to content
Other Publications (51)
- Arteriosclerosis, Thrombosis, and Vascular Biology
- Circulation Research
- The Journal of Biological Chemistry
- FEBS Letters
- Aging Cell
- Endocrine
- Arteriosclerosis, Thrombosis, and Vascular Biology
- Journal of Inorganic Biochemistry
- FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology
- Aging Cell
- Free Radical Biology & Medicine
- Experimental Neurology
- Diabetes
- Cardiovascular Toxicology
- Rejuvenation Research
- Obesity (Silver Spring, Md.)
- Methods in Molecular Medicine
- American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
- Obesity (Silver Spring, Md.)
- European Journal of Pharmacology
- The Journal of Nutrition
- Journal of Cardiovascular Pharmacology
- The Journal of Nutritional Biochemistry
- Biochemical Pharmacology
- Biochemical Pharmacology
- Journal of Cardiovascular Pharmacology
- Biochemical and Biophysical Research Communications
- Toxicology Mechanisms and Methods
- Journal of Molecular and Cellular Cardiology
- Journal of Inorganic Biochemistry
- Journal of Inorganic Biochemistry
- The Journal of Nutritional Biochemistry
- Cell Cycle (Georgetown, Tex.)
- Diabetes
- Journal of Molecular Cell Biology
- Basic Research in Cardiology
- Biochimica Et Biophysica Acta
- Hypertension
- Molecular Nutrition & Food Research
- Journal of Molecular and Cellular Cardiology
- The Journal of Nutritional Biochemistry
- PloS One
- Hypertension
- The Journal of Pharmacology and Experimental Therapeutics
- Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology
- Toxicological Sciences : an Official Journal of the Society of Toxicology
- Recent Patents on Endocrine, Metabolic & Immune Drug Discovery
- Biochimica Et Biophysica Acta
- Biochimica Et Biophysica Acta
- Aging Cell
- Free Radical Research
Articles by Sreejayan Nair in JoVE
-
Borttagning av spårämnen av kopparoxid nanopartiklar från uran
Jodi R. Schilz1, K. J. Reddy2, Sreejayan Nair3, Thomas E. Johnson4, Ronald B. Tjalkens5, Kem P. Krueger3, Suzanne Clark6
1Division of Physical Therapy, Department of Orthopedics & Rehabilitation, University of New Mexico, 2Department of Ecosystem Science and Management, University of Wyoming, 3School of Pharmacy, University of Wyoming, 4Department of Environmental and Radiological Health Sciences, Colorado State University, 5Center for Environmental Medicine, Colorado State University, 6College of Pharmacy, California Northstate University
Other articles by Sreejayan Nair on PubMed
-
-
Nitric Oxide-induced Motility in Aortic Smooth Muscle Cells: Role of Protein Tyrosine Phosphatase SHP-2 and GTP-binding Protein Rho
Circulation Research.
Sep, 2002 |
Pubmed ID: 12215487 We have previously reported that SHP-2 upregulation is necessary for NO-stimulated motility in differentiated rat aortic smooth muscle cells. We now test the hypothesis that upregulation of SHP-2 is necessary and sufficient to stimulate cell motility. Overexpression of SHP-2 via recombinant adenoviral vector stimulated motility to the same extent as NO, whereas the expression of C463S-SHP-2, the dominant-negative SHP-2 allele, blocked the motogenic effect of NO. On the basis of previous studies, we next tested the hypothesis that NO decreases RhoA activity and that this event is necessary and sufficient to explain NO-induced motogenesis. We found that NO decreased RhoA activity in a concentration-dependent manner. Moreover, a dominant-negative SHP-2 allele, DSH2, blocked the NO-induced inhibition of RhoA activity, indicating that upregulation of SHP-2 is necessary for this event. Expression of G14V-RhoA, the constitutively active RhoA allele, decreased cell motility and blocked the motogenic effect of NO, whereas the expression of T19N-RhoA, the dominant-negative RhoA allele, increased cell motility to an extent similar to that induced by NO. Dominant-negative RhoA reversed the effect of dominant-negative SHP-2, indicating that RhoA functions downstream from SHP-2. To investigate events downstream from RhoA, we treated cells with fasudil, a selective Rho kinase inhibitor, and found that it increased cell motility. These results indicate that upregulation of SHP-2, leading to downregulation of RhoA, which is followed by decreased Rho kinase activity, is a sequence of events necessary and sufficient to explain NO-induced cell motility in differentiated aortic smooth muscle cells. The results may be of relevance to in vivo events such as neointimal formation, angiogenesis, and vasculogenesis.
-
Protein-tyrosine Phosphatase-1B (PTP1B) Mediates the Anti-migratory Actions of Sprouty
The Journal of Biological Chemistry.
Jan, 2003 |
Pubmed ID: 12414790 Mammalian Sprouty proteins have been shown to inhibit the proliferation and migration of cells in response to growth factors and serum. In this communication, using HeLa cells, we have examined the possibility that human Sprouty 2 (hSPRY2) mediates its anti-migratory actions by modulating the activity or intracellular localization of protein-tyrosine phosphatases. In HeLa cells, overexpression of hSPRY2 resulted in an increase in protein-tyrosine phosphatase (PTP1B) amount and activity in the soluble (100,000 x g) fraction of cells without an increase in total amount of cellular PTP1B. This increase in the soluble form of PTP1B was accompanied by a decrease in the amount of the enzyme in the particulate fraction. The amounts of PTP-PEST or PTP1D in the soluble fractions were not altered. Consistent with an increase in soluble PTP1B amount and activity, the tyrosine phosphorylation of cellular proteins and p130(Cas) was decreased in hSPRY2-expressing cells. In control cells, overexpression of wild-type (WT) PTP1B, but not its C215S catalytically inactive mutant mimicked the actions of hSPRY2 on tyrosine phosphorylation of cellular proteins and migration. On the other hand, in hSPRY2-expressing cells, the C215S mutant, but not WT PTP1B, increased tyrosine phosphorylation of cellular proteins and attenuated the anti-migratory actions of hSPRY2. Interestingly, neither WT nor C215S mutant forms of PTP1B modulated the anti-mitogenic actions of hSPRY2. Therefore, we conclude that an increase in soluble PTP1B activity contributes to the anti-migratory, but not anti-mitogenic, actions of hSPRY2.
-
-
Aging Induces Cardiac Diastolic Dysfunction, Oxidative Stress, Accumulation of Advanced Glycation Endproducts and Protein Modification
Aging Cell.
Apr, 2005 |
Pubmed ID: 15771609 Evidence suggests that aging, per se, is a major risk factor for cardiac dysfunction. Oxidative modification of cardiac proteins by non-enzymatic glycation, i.e. advanced glycation endproducts (AGEs), has been implicated as a causal factor in the aging process. This study was designed to examine the role of aging on cardiomyocyte contractile function, cardiac protein oxidation and oxidative modification. Mechanical properties were evaluated in ventricular myocytes from young (2-month) and aged (24-26-month) mice using a MyoCam system. The mechanical indices evaluated were peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90) and maximal velocity of shortening/relengthening (+/- dL/dt). Oxidative stress and protein damage were evaluated by glutathione and glutathione disulfide (GSH/GSSG) ratio and protein carbonyl content, respectively. Activation of NAD(P)H oxidase was determined by immunoblotting. Aged myocytes displayed a larger cell cross-sectional area, prolonged TR90, and normal PS, +/- dL/dt and TPS compared with young myocytes. Aged myocytes were less tolerant of high stimulus frequency (from 0.1 to 5 Hz) compared with young myocytes. Oxidative stress and protein oxidative damage were both elevated in the aging group associated with significantly enhanced p47phox but not gp91phox expression. In addition, level of cardiac AGEs was approximately 2.5-fold higher in aged hearts than young ones determined by AGEs-ELISA. A group of proteins with a molecular range between 50 and 75 kDa with pI of 4-7 was distinctively modified in aged heart using one- or two-dimension SDS gel electrophoresis analysis. These data demonstrate cardiac diastolic dysfunction and reduced stress tolerance in aged cardiac myocytes, which may be associated with enhanced cardiac oxidative damage, level of AGEs and protein modification by AGEs.
-
-
Curcumin Inhibits Platelet-derived Growth Factor-stimulated Vascular Smooth Muscle Cell Function and Injury-induced Neointima Formation
Arteriosclerosis, Thrombosis, and Vascular Biology.
Jan, 2006 |
Pubmed ID: 16239599 Vascular smooth muscle cell (VSMC) migration, proliferation, and collagen synthesis are key events involved in the pathogenesis of cardiovascular disease. Growth factors, such as platelet-derived growth factor (PDGF) and fibroblast growth factor, released during vascular injury plays a pivotal role in regulating these events. Curcumin (diferuloyl methane), a major component of the spice turmeric (Curcuma longa), has been shown recently to have beneficial effects in chronic conditions, such as inflammation, cancer, cystic fibrosis, and Alzheimer's disease. The objective of this study was to investigate the ability of curcumin to inhibit PDGF-stimulated migration, proliferation, and collagen synthesis in cultured VSMCs and neointima formation after carotid artery injury in rats.
-
-
Metallothionein Prolongs Survival and Antagonizes Senescence-associated Cardiomyocyte Diastolic Dysfunction: Role of Oxidative Stress
FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology.
May, 2006 |
Pubmed ID: 16585059 Senescence is accompanied by oxidative stress and cardiac dysfunction, although the link between the two remains unclear. This study examined the role of antioxidant metallothionein on cardiomyocyte function, superoxide generation, the oxidative stress biomarker aconitase activity, cytochrome c release, and expression of oxidative stress-related proteins, such as the GTPase RhoA and NADPH oxidase protein p47phox in young (5-6 mo) and aged (26-28 mo) FVB wild-type (WT) and cardiac-specific metallothionein transgenic mice. Metallothionein mice showed a longer life span (by approximately 4 mo) than FVB mice evaluated by the Kaplan-Meier survival curve. Compared with young cardiomyocytes, aged myocytes displayed prolonged TR(90), reduced tolerance to high stimulus frequency, and slowed intracellular Ca2+ decay, all of which were nullified by metallothionein. Aging increased superoxide generation, active RhoA abundance, cytochrome c release, and p47phox expression and suppressed aconitase activity without affecting protein nitrotyrosine formation in the hearts. These aging-induced changes in oxidative stress and related protein biomarkers were attenuated by metallothionein. Aged metallothionein mouse myocytes were more resistant to the superoxide donor pyrogallol-induced superoxide generation and apoptosis. In addition, aging-associated prolongation in TR90 was blunted by the Rho kinase inhibitor Y-27632. Collectively, our data demonstrated that metallothionein may alleviate aging-induced cardiac contractile defects and oxidative stress, which may contribute to prolonged life span in metallothionein transgenic mice.
-
Metallothionein Antagonizes Aging-induced Cardiac Contractile Dysfunction: Role of PTP1B, Insulin Receptor Tyrosine Phosphorylation and Akt
Aging Cell.
Apr, 2006 |
Pubmed ID: 16626396 Aging is often accompanied by reduced insulin sensitivity and cardiac dysfunction. However, the causal relationship between the two remains poorly understood. This study was designed to determine the impact of cardiac-specific overexpression of antioxidant metallothionein (MT) on aging-associated cardiac dysfunction and impaired insulin signaling. Contractile and intracellular Ca(2+) properties were evaluated in left ventricular myocytes including peak shortening (PS), maximal velocity of shortening/relengthening (+/- dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR(90)), fura-2 fluorescence intensity change (DeltaFFI) and intracellular Ca(2+) decay rate. Expression of insulin receptor, protein-tyrosine phosphatase 1B (PTP1B), phosphorylation of insulin receptor (Tyr1146) and Akt were evaluated by Western blot analysis. Aged wild-type FVB and MT transgenic mice (26-28 months old) displayed glucose intolerance and hyperinsulinemia. Cardiomyocytes from aged FVB mice exhibited prolonged TR(90) and intracellular Ca(2+) decay associated with normal PS, +/- dL/dt, TPS and DeltaFFI compared with those from young (2-3 months old) mice. Western blot analysis revealed reduced Akt expression and insulin (5 mU g(-1))-stimulated Akt phosphorylation, elevated PTP1B expression and diminished basal insulin receptor tyrosine phosphorylation associated with comparable insulin receptor expression in aged FVB mouse hearts. All of these aging-related defects in cardiac contractile function and insulin signaling (although not hyperinsulinemia and glucose intolerance) were significantly attenuated or ablated by MT transgene. These data indicate that enhanced antioxidant defense is beneficial for aging-induced cardiac contractile dysfunction and alteration in insulin signaling.
-
Metallothionein Alleviates Cardiac Dysfunction in Streptozotocin-induced Diabetes: Role of Ca2+ Cycling Proteins, NADPH Oxidase, Poly(ADP-Ribose) Polymerase and Myosin Heavy Chain Isozyme
Free Radical Biology & Medicine.
Apr, 2006 |
Pubmed ID: 16631532 Diabetic cardiomyopathy contributes to high morbidity and mortality in diabetic populations. It is manifested by compromised ventricular contraction and prolonged relaxation attributable to multiple causative factors including oxidative stress. This study was designed to examine the effect of cardiac overexpression of the heavy metal scavenger metallothionein (MT) on cardiac contractile function, intracellular Ca(2+) cycling proteins, stress-activated signaling molecules and the myosin heavy chain (MHC) isozyme in diabetes. Adult male wild-type (FVB) and MT transgenic mice were made diabetic by a single injection of streptozotocin (STZ). Contractile properties were evaluated in cardiomyocytes including peak shortening (PS), time-to-PS (TPS), time-to-relengthening (TR(90)), maximal velocity of shortening/relengthening (+/-dL/dt) and intracellular Ca(2+) fluorescence. Diabetes significantly depressed PS, +/-dL/dt, prolonged TPS, TR(90) and intracellular Ca(2+) clearing, elevated resting intracellular Ca(2+), reduced caffeine-induced sarcoplasmic reticulum Ca(2+) release and dampened stress tolerance at high stimulus frequencies. MT itself exhibited little effect on myocyte mechanics but it significantly alleviated STZ-induced myocyte contractile dysfunctions. Diabetes enhanced expression of the AT(1) receptor, phospholamban, the p47(phox) NADPH oxidase subunit and poly(ADP-ribose) polymerase (PARP), depressed the level of SERCA2a, Na(+)-Ca(2+) exchanger and triggered a beta-MHC isozyme switch. All of these STZ-induced alterations with the exception of depressed SERCA2a and enhanced phospholamban were reconciled by MT. Collectively, these data suggest a beneficial effect of MT in the therapeutics of diabetic cardiomyopathy, possibly through a mechanism related to NADPH oxidase, PARP and MHC isozyme switch.
-
Acetaldehyde Promotes Rapamycin-dependent Activation of P70(S6K) and Glucose Uptake Despite Inhibition of Akt and MTOR in Dopaminergic SH-SY5Y Human Neuroblastoma Cells
Experimental Neurology.
Jan, 2007 |
Pubmed ID: 16962100 Alcohol intake is one of the important lifestyle factors for the risk of insulin resistance and type 2 diabetes. Acetaldehyde, the major ethanol metabolite which is far more reactive than ethanol, has been postulated to participate in alcohol-induced tissue injury although its direct impact on insulin signaling is unclear. This study was designed to examine the effect of acetaldehyde on glucose uptake and insulin signaling in human dopaminergic SH-SY5Y cells. Akt, mammalian target of rapamycin (mTOR), ribosomal-S6 kinase (p70(S6K)), the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) and insulin receptor substrate (IRS)-2 were evaluated by Western blot analysis. Glucose uptake and apoptosis were measured using [(3)H]-2-deoxyglucose uptake and caspase-3 assay, respectively. Short-term exposure (12 h) of acetaldehyde (150 muM) facilitated glucose uptake in a rapamycin-dependent manner without affecting apoptosis, IRS-2 expression and insulin-stimulated glucose uptake in SH-SY5Y cells. Acetaldehyde suppressed basal and insulin-stimulated Akt phosphorylation without affecting total Akt expression. Acetaldehyde inhibited mTOR phosphorylation without affecting total mTOR and insulin-elicited response on mTOR phosphorylation. Rapamycin, which inhibits mTOR leading to inactivation of p70(S6K), did not affect acetaldehyde-induced inhibition on phosphorylation of Akt and mTOR. Interestingly, acetaldehyde enhanced p70(S6K) activation and depressed 4E-BP1 phosphorylation, the effect of which was blunted and exaggerated, respectively, by rapamycin. Collectively, these data suggested that acetaldehyde did not adversely affect glucose uptake despite inhibition of insulin signaling cascade at the levels of Akt and mTOR, possibly due to presence of certain mechanism(s) responsible for enhanced p70(S6K) phosphorylation.
-
Metallothionein Prevents High-fat Diet Induced Cardiac Contractile Dysfunction: Role of Peroxisome Proliferator Activated Receptor Gamma Coactivator 1alpha and Mitochondrial Biogenesis
Diabetes.
Sep, 2007 |
Pubmed ID: 17575086 Obesity is associated with oxidative stress and mitochondrial and myocardial dysfunction, although interaction among which remains elusive. This study was designed to evaluate the impact of the free radical scavenger metallothionein on high-fat diet-induced myocardial, intracellular Ca(2+), and mitochondrial dysfunction. FVB and metallothionein transgenic mice were fed a high- or low-fat diet for 5 months to induce obesity. Echocardiography revealed decreased fractional shortening, increased end-systolic diameter, and cardiac hypertrophy in high-fat-fed FVB mice. Cardiomyocytes from high-fat-fed FVB mice displayed enhanced reactive oxygen species (ROS) production, contractile and intracellular Ca(2+) defects including depressed peak shortening and maximal velocity of shortening/relengthening, prolonged duration of relengthening, and reduced intracellular Ca(2+) rise and clearance. Transmission microscopy noted overt mitochondrial damage with reduced mitochondrial density. Western blot analysis revealed enhanced phosphorylation of nuclear factor Foxo3a without changes in Foxo3a, Foxo1a, pFoxo1a, silent information regulator (Sirt), and Akt and pAkt in hearts of high-fat diet-fed FVB mice. The peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), a key regulator of mitochondrial biogenesis, was significantly depressed by high-fat diet feeding and in vitro palmitic acid treatment. RT-PCR further depicted reduced levels of the PGC-1alpha downstream nuclear respiratory factors 1 and 2, mitochondrial transcription factor A, and mitochondrial DNA copy number in hearts of high-fat-fed FVB mice. Intriguingly, the high-fat diet-induced alterations in ROS, myocardial contractile, and mitochondrial and cell signaling were negated by metallothionein, with the exception of pFoxo3a. These data suggest that metallothionein may protect against high-fat diet-induced cardiac dysfunction possibly associated with upregulation of PGC-1alpha and preservation of mitochondrial biogenesis.
-
Impact of Insulin-like Growth Factor-I on Migration, Proliferation and Akt-ERK Signaling in Early and Late-passages of Vascular Smooth Muscle Cells
Cardiovascular Toxicology.
2007 |
Pubmed ID: 17960499 Migration and proliferation of vascular smooth muscle cells (VSMCs) are important events in the progression of atherosclerosis. Insulin-like growth factor I (IGF-1) possesses both antiapoptotic and mitogenic/motogenic effects in VSMCs although the influence of life cycle on IGF-1-induced effects is unclear. This study was designed to evaluate the effect of IGF-1 on migration, proliferation, and signaling mechanisms in VSMCs from early (3-5) to late (20-22) passages. Migration, proliferation, and cell survival were measured using monolayer wounding, 3[H]-thymidine incorporation and MTT assay, respectively. Akt and ERK, which are critical to proliferation, differentiation and migration, were examined using Western blot analysis. DCF-DA fluorescence was used to quantify Reactive Oxygen Species (ROS) production. Late-passage VSMCs exhibited significantly higher basal cell proliferation and enhanced sensitivity to IGF-1-stimulated migration compared to cells from early-passages. Phosphorylated Akt and ERK levels were significantly higher in late-passage cells compared to early-passage, which was further enhanced by IGF-1 treatment. Late-passage cells exhibited higher levels of ROS production compared to early-passage, cells. IGF-1 did not significantly alter ROS levels in either passage. Expression of the cell cycle regulator p53, p21, and p16 was not affected by repeated passaging of cells. These results indicated that repeated passaging of VSMCs exhibits a phenotype which has higher proliferative capacity. Activation of trophic signaling molecules such as ERK1/2 and Akt and generation of ROS may represent the mechanisms by which repeated passages of VSMCs acquire a motogenic and mitogenic phenotype.
-
Insulin-like Growth Factor I Deficiency Prolongs Survival and Antagonizes Paraquat-induced Cardiomyocyte Dysfunction: Role of Oxidative Stress
Rejuvenation Research.
Dec, 2007 |
Pubmed ID: 17979500 Interruption of insulin-like growth factor I (IGF-1) signaling has been demonstrated to prolong life span although the underlying mechanism has not been elucidated. The aim of this study was to examine the influence of severe IGF-1 deficiency on survival rate, cardiomyocyte viability, contractile function, and intracellular Ca(2+) property in response to challenge with the pro-oxidant paraquat. C57 negative and liver IGF-1 deficient (LID) transgenic mice were administrated paraquat (75 mg/kg) and survival was monitored. LID mice displayed a significantly improved survival than did C57 mice evaluated by the Kaplan-Meier curve. MTT assay revealed that in vitro IGF-1 treatment significantly sensitized paraquat-induced cell death in both C57 and LID groups, with significantly better cell viability in LID cardiomyocytes. Compared to C57 mouse cardiomyocytes, LID myocytes displayed reduced peak shortening (PS), decreased maximal velocity of shortening/relengthening (+/- dL/dt), prolonged time-to-90% relengthening (TR(90)), and comparable tolerance to high stimulus frequency and intracellular Ca(2+) homeostasis. Paraquat treatment for 48 hours reduced PS, +/- dL/dt, tolerance to high stimulus frequency, resting and rise in intracellular Ca(2+), and prolonged TR(90), all of which were nullified or masked by IGF-1 deficiency. Paraquat increased reactive oxygen species and carbonyl production upregulated the Ca(2+) regulating protein SERCA2a, and downregulated Na(+) -Ca(2+) exchanger, the effects of which were nullified or masked by IGF-1 deficiency. Although LID mice displayed reduced whole body glucose clearance, cardiomyocytes from LID mice exhibited dramatically enhanced insulin-stimulated phosphorylation of insulin receptor and Akt. These data demonstrated that IGF-1 deficiency may antagonize or mask the paraquat-induced decrease in survival, cardiomyocyte dysfunction, oxidative stress, and change in Ca(2+) regulating proteins.
-
-
-
IGF-I Alleviates Diabetes-induced RhoA Activation, ENOS Uncoupling, and Myocardial Dysfunction
American Journal of Physiology. Regulatory, Integrative and Comparative Physiology.
Mar, 2008 |
Pubmed ID: 18199585 IGF-I rescues diabetic heart defects and oxidative stress, although the underlying mechanism of action remains poorly understood. This study was designed to delineate the beneficial effects of IGF-I with a focus on RhoA, Akt, and eNOS coupling. Echocardiography was performed in normal or diabetic Friend Virus-B type (FVB) and IGF-I transgenic mice. Cardiomyocyte contractile properties were evaluated using peak shortening (PS), time-to-90% relengthening (TR90), and intracellular Ca2+ rise and decay. Diabetes reduced fraction shortening, PS, and intracellular Ca2+; it increased chamber size, prolonged TR90, and intracellular Ca2+ decay. Levels of RhoA mRNA, active RhoA, and O2(-) were elevated, whereas nitric oxide (NO) levels were reduced in diabetes. Diabetes-induced O2(-) accumulation was ablated by the NO synthase (NOS) inhibitor nitro-L-arginine methyl ester (L-NAME), indicating endothelial NOS (eNOS) uncoupling, all of which except heart size were negated by IGF-I. The IGF-I-elicited beneficial effects were mimicked by the Rho kinase inhibitor Y27632 and BH4. Diabetes depressed expression of Kv1.2 and dihydrofolate reductase (DHFR), increased beta-myosin heavy-chain expression, stimulated p38 MAPK, and reduced levels of total Akt and phosphorylated Akt/eNOS, all of which with the exception of myosin heavy chain were attenuated by IGF-I. In addition, Y27632 and the eNOS coupler folate abrogated glucose toxicity-induced PS decline, TR90 prolongation, while it increased O2(-) and decreased NO and Kv1.2 levels. The DHFR inhibitor methotrexate impaired myocyte function, NO/O2(-) balance, and rescued Y27632-induced cardiac protection. These results revealed that IGF-I benefits diabetic hearts via Rho inhibition and antagonism of diabetes-induced decrease in pAkt, eNOS uncoupling, and K+ channel expression.
-
-
Antioxidant Properties of Argpyrimidine
European Journal of Pharmacology.
Sep, 2008 |
Pubmed ID: 18692042 Argpyrimidine, the product of non-enzymatic protein glycation by methylglyoxal, has been implicated in the pathophysiology of diabetes mellitus and neurodegenerative diseases. Chemically, argpyrimidine is a substituted pyrimidinol with structural features common to known antioxidants. The objective of this study was to investigate the antioxidant properties of argpyrimidine. Argpyrimidine was synthesized by mixing L-arginine with 3-acetoxypentane-2,4-dione under acidic conditions and purified by chromatography. Argpyrimidine inhibited lipid peroxidation of rat brain homogenates catalyzed by hydroxyl radicals, metal ions, and autooxidation in a concentration- and time-dependent manner. In addition, argpyrimidine scavenged superoxide anion, 1,1-diphenyl 2-picryl-hydrazyl-stable free radical, intracellular-hydrogen peroxide, and inhibited free-radical-mediated nicking of plasmid-DNA. Taken together, our data suggest that argpyrimidine has antioxidant properties and may therefore have biological relevance in pathophysiologies associated with diabetes mellitus and neurodegenerative diseases.
-
Chromium (D-phenylalanine)3 Supplementation Alters Glucose Disposal, Insulin Signaling, and Glucose Transporter-4 Membrane Translocation in Insulin-resistant Mice
The Journal of Nutrition.
Oct, 2008 |
Pubmed ID: 18806091 Chromium has gained popularity as a nutritional supplement for diabetic and insulin-resistant subjects. This study was designed to evaluate the effect of chronic administration of a novel chromium complex of d-phenylalanine [Cr(D-phe)(3)] in insulin-resistant, sucrose-fed mice. Whole-body insulin resistance was generated in FVB mice by 9 wk of sucrose feeding, following which they were randomly assigned to be unsupplemented (S group) or to receive oral Cr(D-phe)(3) in drinking water (SCr group) at a dose of 45 mug.kg(-1).d(-1) ( approximately 3.8 mug of elemental chromium.kg(-1).d(-1)). A control group (C) did not consume sucrose and was not supplemented. Sucrose-fed mice had an elevated serum insulin concentration compared with controls and this was significantly lower in sucrose-fed mice that received Cr(D-phe)(3), which did not differ from controls. Impaired glucose tolerance in sucrose-fed mice, evidenced by the poor glucose disposal rate following an intraperitoneal glucose tolerance test, was significantly improved in mice receiving Cr(D-phe)(3). Chromium supplementation significantly enhanced insulin-stimulated Akt phosphorylation and membrane-associated glucose transporter-4 in skeletal muscles of sucrose-fed mice. In cultured adipocytes rendered insulin resistant by chronic exposure to high concentrations of glucose and insulin, Cr(D-phe)(3) augmented Akt phosphorylation and glucose uptake. These results indicate that dietary supplementation with Cr(D-phe)(3) may have potential beneficial effects in insulin-resistant, prediabetic conditions.
-
-
-
A Newly Synthetic Chromium Complex-chromium (D-phenylalanine)3 Activates AMP-activated Protein Kinase and Stimulates Glucose Transport
Biochemical Pharmacology.
Mar, 2009 |
Pubmed ID: 19073152 We synthesized the chromium (phenylalanine)(3) [Cr(D-phe)(3)] by chelating chromium(III) with D-phenylalanine ligand in aqueous solution to improve the bioavailability of chromium, and reported that Cr(D-phe)(3) improved insulin sensitivity. AMP-activated protein kinase (AMPK) is a key mediator for glucose uptake and insulin sensitivity. To address the molecular mechanisms by which Cr(d-phe)(3) increases insulin sensitivity, we investigated whether Cr(D-phe)(3) stimulates glucose uptake via activation of AMPK signaling pathway. H9c2 myoblasts and isolated cardiomyocytes were treated with Cr(D-phe)(3) (25microM). Western blotting was used for signaling determination. The glucose uptake was determined by 2-deoxy-D-glucose-(3)H accumulation. HPLC measured concentrations of AMP. The mitochondrial membrane potential (Deltapsi) was detected by JC-1 fluorescence assay. Cr(D-phe)(3) stimulated the phosphorylation of alpha catalytic subunit of AMPK at Thr(172), as well the downstream targets of AMPK, acetyl-CoA carboxylase (ACC, Ser(212)) and eNOS (Ser(1177)). Moreover, Cr(D-phe)(3) significantly stimulated glucose uptake in both H9c2 cells and cardiomyocytes. AMPK inhibitor compound C (10microM) dramatically inhibited the glucose uptake stimulated by Cr(D-phe)(3), while it did not affect insulin stimulation of glucose uptake. Furthermore, in vivo studies showed that Cr(D-phe)(3) also activated cardiac AMPK signaling pathway. The increase of cardiac AMP concentration and the decrease of mitochondrial membrane potential (Deltapsi) may contribute to the activation of AMPK induced by Cr(D-phe)(3). Cr(D-phe)(3) is a novel compound that activates AMPK signaling pathway, which contributes to the regulation of glucose transport during stress conditions that may be associated the role of AMPK in increasing insulin sensitivity.
-
2-(3,4-Dihydro-2H-pyrrolium-1-yl)-3oxoindan-1-olate (DHPO), a Novel, Synthetic Small Molecule That Alleviates Insulin Resistance and Lipid Abnormalities
Biochemical Pharmacology.
Feb, 2010 |
Pubmed ID: 19769946 Type-2 diabetes is growing at epidemic proportions world-wide. This report describes the effect of a novel, synthetic, small molecule 2-(3,4-dihydro-2H-pyrrolium-1-yl)-3oxoindan-1-olate (DHPO), on metabolic abnormalities in genetic and dietary mouse models of type-2 diabetes. DHPO (20mg/kg/d i.p. for 21 days) attenuated fasting blood glucose, improved glucose disposal and corrected dyslipidemia in genetic (leptin deficient, ob/ob) and dietary (high-fat-fed) mouse models of insulin resistance. In addition, DHPO augmented 2-deoxy-d-glucose (2DG) uptake in gastrocnemius muscles of wild-type mice and in cultured myotubes. The increase in 2DG-uptake was associated with an increase in the phosphorylation of AMPK (thr-172) and its downstream effector acetyl-CoA carboxylase without any changes in the phosphorylation of Akt of insulin receptor. The AMPK inhibitor, compound C attenuated DHPO-induced glucose-uptake whereas the PI3-kinase inhibitor Wortmannin was less effective. In addition, DHPO failed to augment glucose-uptake in the gastrocnemius muscle from AMPK-alpha2-transgenic (kinase-dead) mice. Taken together, these results suggest that DHPO is a novel small molecule that alleviates impaired glucose tolerance and lipid abnormalities associated with type-2 diabetes.
-
-
-
Safety and Toxicological Evaluation of a Novel Chromium(III) Dinicocysteinate Complex
Toxicology Mechanisms and Methods.
Jul, 2010 |
Pubmed ID: 20515439 Chromium(III) is an essential trace element required for normal protein, fat and carbohydrate metabolism. It also helps in energy production and increasing lean body mass. Chromium(III) dinicocysteinate (CDNC) is a unique form of bioavailable chromium(III). This study was focused on determining the broad spectrum safety of CDNC. Acute oral, acute dermal, primary dermal and eye irritation studies, Ames' bacterial reverse mutation assay, mammalian erythrocyte micronucleus test, and a 90-day dose-dependent oral toxicity study were conducted. Acute oral and dermal LD(50) of CDNC was found to be greater than 2000 mg/kg in Sprague-Dawley rats. A primary skin irritation study in New Zealand Albino rabbits demonstrated CDNC as slightly irritating. An eye irritation study exhibited that CDNC is moderately irritating. Ames' bacterial reverse mutation assay and mammalian erythrocyte micronucleus test demonstrated CDNC as non-mutagenic. A dose-dependent 90-day oral toxicity study demonstrated no significant toxicity of CDNC. Body weight, food and water consumption, selected organ weights (expressed as percentages of body or brain weights), ocular health, hematology, blood chemistry, and histopathology showed no abnormal changes. Clinical and histopathological evaluation of CDNC identified a dose level of 5.7 mg/kg/day as the no observed adverse effect level (NOAEL). Overall, these results demonstrate the broad spectrum safety of CDNC.
-
Endoplasmic Reticulum Chaperon Tauroursodeoxycholic Acid Alleviates Obesity-induced Myocardial Contractile Dysfunction
Journal of Molecular and Cellular Cardiology.
Jan, 2011 |
Pubmed ID: 21035453 ER stress is involved in the pathophysiology of obesity although little is known about the role of ER stress on obesity-associated cardiac dysfunction. This study was designed to examine the effect of ER chaperone tauroursodeoxycholic acid (TUDCA) on obesity-induced myocardial dysfunction. Adult lean and ob/ob obese mice were treated with TUDCA (50mg/kg/day, p.o.) or vehicle for 5 weeks. Oral glucose tolerance test (OGTT) was performed. Echocardiography, cardiomyocyte contractile and intracellular Ca(2+) properties were assessed. Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) activity and protein expression of intracellular Ca(2+) regulatory proteins were measured using (45)Ca(2+) uptake and Western blot analysis, respectively. Insulin signaling, ER stress markers and HSP90 were evaluated. Our results revealed that chronic TUDCA treatment lowered systolic blood pressure and lessened glucose intolerance in obese mice. Obesity led to increased diastolic diameter, cardiac hypertrophy, compromised fractional shortening, cardiomyocyte contractile (peak shortening, maximal velocity of shortening/relengthening, and duration of contraction/relaxation) and intracellular Ca(2+) properties, all of which were significantly attenuated by TUDCA. TUDCA reconciled obesity-associated decrease in SERCA activity and expression, and increase in serine phosphorylation of IRS, total and phosphorylated cJun, ER stress markers Bip, peIF2α and pPERK. Obesity-induced changes in phospholamban and HSP90 were unaffected by TUDCA. In vitro finding revealed that TUDCA ablated palmitic acid-induced cardiomyocyte contractile dysfunction. In summary, these data depicted a pivotal role of ER stress in obesity-associated cardiac contractile dysfunction, suggesting the therapeutic potential of ER stress as a target in the management of cardiac dysfunction in obesity.
-
-
Overcoming Cisplatin Resistance Using Gold(III) Mimics: Anticancer Activity of Novel Gold(III) Polypyridyl Complexes
Journal of Inorganic Biochemistry.
Jan, 2012 |
Pubmed ID: 22112837 Gold(III) compounds have been recognized as anticancer agents due to their structural and electronic similarities with currently employed platinum(II) species. An added benefit to gold(III) agents is the ability to overcome cisplatin resistance. This work identified four gold(III) compounds, [Au(Phen)Cl(2)]PF(6), [Au(DPQ)Cl(2)]PF(6), [Au(DPPZ)Cl(2)]PF(6), and [Au(DPQC)Cl(2)]PF(6), (Phen = 1,10-phenanthroline, DPQ = dipyrido[3,2-d:2',3'-f]quinoxaline, DPPZ = dipyrido[3,2-a:2',3'-c] phenazine, DPQC = dipyrido[3,2-d:2',3'-f] cyclohexyl quinoxaline) that exhibited anticancer activity in both cisplatin sensitive and cisplatin resistant ovarian cancer cells. Two of these compounds, [Au(DPQ)Cl(2)]PF(6) (AQ) and [Au(DPPZ)Cl(2)]PF(6) (AZ), displayed exceptional anticancer activity and were the focus of more intensive mechanistic study. At the molecular level, AQ and AZ formed DNA adducts, generated free radicals, and upregulated pro-apoptotic signaling molecules (p53, caspases, PARP, death effectors). Taken together, these two novel gold(III) polypyridyl complexes exhibit potent antitumor activity in cisplatin resistant cancer cells. These activities may be mediated, in part, by the activation of apoptotic signaling.
-
Molecular Mechanisms of Chromium in Alleviating Insulin Resistance
The Journal of Nutritional Biochemistry.
Apr, 2012 |
Pubmed ID: 22423897 Type 2 diabetes is often associated with obesity, dyslipidemia and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown to reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance.
-
-
-
-
Cardiomyocyte-specific Deletion of Endothelin Receptor A Rescues Aging-associated Cardiac Hypertrophy and Contractile Dysfunction: Role of Autophagy
Basic Research in Cardiology.
Mar, 2013 |
Pubmed ID: 23381122 Cardiac aging is manifested as cardiac remodeling and contractile dysfunction although precise mechanisms remain elusive. This study was designed to examine the role of endothelin-1 (ET-1) in aging-associated myocardial morphological and contractile defects. Echocardiographic and cardiomyocyte contractile properties were evaluated in young (5-6 months) and old (26-28 months) C57BL/6 wild-type and cardiomyocyte-specific ET(A) receptor knockout (ETAKO) mice. Cardiac ROS production and histology were examined. Our data revealed that ETAKO mice displayed an improved survival. Aging increased plasma levels of ET-1 and Ang II, compromised cardiac function (fractional shortening, cardiomyocyte peak shortening, maximal velocity of shortening/relengthening and prolonged relengthening) and intracellular Ca(2+) handling (reduced intracellular Ca(2+) release and decay), the effects of which with the exception of ET-1 and Ang II levels was improved by ETAKO. Histological examination displayed cardiomyocyte hypertrophy and interstitial fibrosis associated with cardiac remodeling in aged C57 mice, which were alleviated in ETAKO mice. Aging promoted ROS generation, protein damage, ER stress, upregulated GATA4, ANP, NFATc3 and the autophagosome cargo protein p62, downregulated intracellular Ca(2+) regulatory proteins SERCA2a and phospholamban as well as the autophagic markers Beclin-1, Atg7, Atg5 and LC3BII, which were ablated by ETAKO. ET-1 triggered a decrease in autophagy and increased hypertrophic markers in vitro, the effect of which were reversed by the ET(A) receptor antagonist BQ123 and the autophagy inducer rapamycin. Antagonism of ET(A), but not ET(B) receptor, rescued cardiac aging, which was negated by autophagy inhibition. Taken together, our data suggest that cardiac ET(A) receptor ablation protects against aging-associated myocardial remodeling and contractile dysfunction possibly through autophagy regulation.
-
Chronic Akt Activation Attenuated Lipopolysaccharide-induced Cardiac Dysfunction Via Akt/GSK3β-dependent Inhibition of Apoptosis and ER Stress
Biochimica Et Biophysica Acta.
Jun, 2013 |
Pubmed ID: 23474308 Sepsis is characterized by systematic inflammation and contributes to cardiac dysfunction. This study was designed to examine the effect of protein kinase B (Akt) activation on lipopolysaccharide-induced cardiac anomalies and underlying mechanism(s) involved. Mechanical and intracellular Ca²⁺ properties were examined in myocardium from wild-type and transgenic mice with cardiac-specific chronic Akt overexpression following LPS (4 mg/kg, i.p.) challenge. Akt signaling cascade (Akt, phosphatase and tensin homologue deleted on chromosome ten, glycogen synthase kinase 3 beta), stress signal (extracellular-signal-regulated kinases, c-Jun N-terminal kinases, p38), apoptotic markers (Bcl-2 associated X protein, caspase-3/-9), endoplasmic reticulum (ER) stress markers (glucose-regulated protein 78, growth arrest and DNA damage induced gene-153, eukaryotic initiation factor 2α), inflammatory markers (tumor necrosis factor α, interleukin-1β, interleukin-6) and autophagic markers (Beclin-1, light chain 3B, autophagy-related gene 7 and sequestosome 1) were evaluated. Our results revealed that LPS induced marked decrease in ejection fraction, fractional shortening, cardiomyocyte contractile capacity with dampened intracellular Ca²⁺ release and clearance, elevated reactive oxygen species (ROS) generation and decreased glutathione and glutathione disulfide (GSH/GSSG) ratio, increased ERK, JNK, p38, GRP78, Gadd153, eIF2α, BAX, caspase-3 and -9, downregulated B cell lymphoma 2 (Bcl-2), the effects of which were significantly attenuated or obliterated by Akt activation. Akt activation itself did not affect cardiac contractile and intracellular Ca²⁺ properties, ROS production, oxidative stress, apoptosis and ER stress. In addition, LPS upregulated levels of Beclin-1, LC3B and Atg7, while suppressing p62 accumulation. Akt activation did not affect Beclin-1, LC3B, Atg7 and p62 in the presence or absence of LPS. Akt overexpression promoted phosphorylation of Akt and GSK3β. In vitro study using the GSK3β inhibitor SB216763 mimicked the response elicited by chronic Akt activation. Taken together, these data showed that Akt activation ameliorated LPS-induced cardiac contractile and intracellular Ca²⁺ anomalies through inhibition of apoptosis and ER stress, possibly involving an Akt/GSK3β-dependent mechanism.
-
Cathepsin K Knockout Alleviates Pressure Overload-induced Cardiac Hypertrophy
Hypertension.
Jun, 2013 |
Pubmed ID: 23529168 Evidence from human and animal studies has documented elevated levels of lysosomal cysteine protease cathepsin K in failing hearts. Here, we hypothesized that ablation of cathepsin K mitigates pressure overload-induced cardiac hypertrophy. Cathepsin K knockout mice and their wild-type littermates were subjected to abdominal aortic constriction, resulting in cardiac remodeling (heart weight, cardiomyocyte size, left ventricular wall thickness, and end diastolic and end systolic dimensions) and decreased fractional shortening, the effects of which were significantly attenuated or ablated by cathepsin K knockout. Pressure overload dampened cardiomyocyte contractile function along with decreased resting Ca2+ levels and delayed Ca2+ clearance, which were partly resolved by cathepsin K knockout. Cardiac mammalian target of rapamycin and extracellular signal-regulated kinases (ERK) signaling cascades were upregulated by pressure overload, the effects of which were attenuated by cathepsin K knockout. In cultured H9c2 myoblast cells, silencing of cathepsin K blunted, whereas cathepsin K transfection mimicked phenylephrine-induced hypertrophic response, along with elevated phosphorylation of mammalian target of rapamycin and ERK. In addition, cathepsin K protein levels were markedly elevated in human hearts of end-stage dilated cardiomyopathy. Collectively, our data suggest that cathepsin K ablation mitigates pressure overload-induced hypertrophy, possibly via inhibition of the mammalian target of rapamycin and ERK pathways.
-
-
Apelin Administration Ameliorates High Fat Diet-induced Cardiac Hypertrophy and Contractile Dysfunction
Journal of Molecular and Cellular Cardiology.
Jul, 2013 |
Pubmed ID: 23859766 Apelin has been recognized as an adipokine that plays an important role in regulating energy metabolism and is credited with antiobesity and antidiabetic properties. This study was designed to examine the effect of exogenous apelin on obesity-associated cardiac dysfunction. Oral glucose tolerance test, echocardiography, cardiomyocyte contractile and intracellular Ca(2+) properties were assessed in adult C57BL/6J mice fed - low or a - high-fat diet for 24weeks followed by apelin treatment (100nmol/kg, i.p. for 2weeks). High-fat diet resulted in increased left ventricular diastolic and systolic diameters, and wall thickness, compromised fractional shortening, impaired cardiomyocyte mechanics (peak-shortening, maximal velocity of shortening/relengthening, and duration of shortening and relengthening) and compromised intracellular Ca(2+) handling, all of which were reconciled by apelin. Apelin treatment also reversed high fat diet-induced changes in intracellular Ca(2+) regulatory proteins, ER stress, and autophagy. In addition, microRNAs (miR) -133a, miR-208 and miR-1 which were elevated following high-fat feeding were attenuated by apelin treatment. In cultured cardiomyocytes apelin reconciled palmitic acid-induced cardiomyocyte contractile anomalies. Collectively, these data depict a pivotal role of apelin in obesity-associated cardiac contractile dysfunction, suggesting a therapeutic potential of apelin in the management of cardiac dysfunction associated with obesity.
-
Influence of Gestational Overfeeding on Myocardial Proinflammatory Mediators in Fetal Sheep Heart
The Journal of Nutritional Biochemistry.
Nov, 2013 |
Pubmed ID: 24075902 Maternal overnutrition is associated with predisposition of offspring to cardiovascular disease in later life. Since maternal overnutrition may promote fetal and placental inflammatory responses, we hypothesized that maternal overnutrition/obesity increases expression of fetal cardiac proinflammatory mediators and alter cardiac morphometry. Multiparous ewes were fed either 150% of National Research Council (NRC) nutrient recommendations (overfed) or 100% of NRC requirement (control) from 60 days prior to mating to gestation Day 75 (D75), when ewes were euthanized. An additional cohort of overfed and control ewes were necropsied on D135. Cardiac morphometry, histology, mRNA and protein expression of toll-like receptor 4, iNOS, IL-1a, IL-1b, IL-6, IL-18, CD-14, CD-68, M-CSF and protein levels of phosphorylated I-κB and nuclear factor κB (NF-κB) were examined. Immunohistochemistry was performed to assess neutrophil and monocyte infiltration. Crown rump length, left and right ventricular free wall weights as well as left and right ventricular wall thickness were significantly increased in D75 fetuses of overfed mothers. Hematoxylin and eosin staining revealed irregular myofiber orientation and increased interstitial space in fetal ventricular tissues born to overfed mothers. Oil red O staining exhibited marked lipid droplet accumulation in the overfed fetuses. Overfeeding significantly enhanced TLR4, IL-1a, IL-1b IL-6 expression, promoted phosphorylation of IκB, decreased cytoplasmic NF-κB levels and increased neutrophil and monocyte infiltration. Collectively, these data suggest that maternal overfeeding prior to and throughout gestation leads to inflammation in the fetal heart and alters fetal cardiac morphometry.
-
-
Macrophage Migration Inhibitory Factor Deletion Exacerbates Pressure Overload-induced Cardiac Hypertrophy Through Mitigating Autophagy
Hypertension.
Mar, 2014 |
Pubmed ID: 24366076 The proinflammatory cytokine macrophage migration inhibitory factor (MIF) has been shown to be cardioprotective under various pathological conditions. However, the underlying mechanisms still remain elusive. In this study, we revealed that MIF deficiency overtly exacerbated abdominal aorta constriction-induced cardiac hypertrophy and contractile anomalies. MIF deficiency interrupted myocardial autophagy in hypertrophied hearts. Rapamycin administration mitigated the exacerbated hypertrophic responses in MIF(-/-) mice. Using the phenylephrine-induced hypertrophy in vitro model in H9C2 myoblasts, we confirmed that MIF governed the activation of AMP-activated protein kinase-mammalian target of rapamycin-autophagy cascade. Confocal microscopic examination demonstrated that MIF depletion prevented phenylephrine-induced mitophagy in H9C2 myoblasts. Myocardial Parkin, an E3 ubiquitin ligase and a marker for mitophagy, was significantly upregulated after sustained pressure overload, the effect of which was prevented by MIF knockout. Furthermore, our data exhibited that levels of MIF, AMP-activated protein kinase activation, and autophagy were elevated concurrently in human failing hearts. These data indicate that endogenous MIF regulates the mammalian target of rapamycin signaling to activate autophagy to preserve cardiac geometry and protect against hypertrophic responses.
-
Novel Curcumin Derivative CNB-001 Mitigates Obesity-associated Insulin Resistance
The Journal of Pharmacology and Experimental Therapeutics.
May, 2014 |
Pubmed ID: 24549372 Type 2 diabetes is growing at epidemic proportions, and pharmacological interventions are being actively sought. This study examined the effect of a novel neuroprotective curcuminoid, CNB-001 [4-((1E)-2-(5-(4-hydroxy-3-methoxystyryl-)-1-phenyl-1H-pyrazoyl-3-yl)vinyl)-2-methoxy-phenol], on glucose intolerance and insulin signaling in high-fat diet (HFD)-fed mice. C57BL6 mice (5-6 weeks old) were randomly assigned to receive either a HFD (45% fat) or a low-fat diet (LFD, 10% fat) for 24 weeks, together with CNB-001 (40 mg/kg i.p. per day). Glucose tolerance test revealed that the area under the curve of postchallenge glucose concentration was elevated on HF-feeding, which was attenuated by CNB-001. CNB-001 attenuated body weight gain, serum triglycerides, and IL-6, and augmented insulin signaling [elevated phosphoprotein kinase B (p-Akt), and phosphoinsulin receptor (p-IR)β, lowered endoplasmic reticulum (ER) stress, protein-tyrosine phosphatase 1B (PTP1B)] and glucose uptake in gastrocnemius muscle of HFD-fed mice. Respiratory quotient, measured using a metabolic chamber, was elevated in HFD-fed mice, which was unaltered by CNB-001, although CNB-001 treatment resulted in higher energy expenditure. In cultured myotubes, CNB-001 reversed palmitate-induced impairment of insulin signaling and glucose uptake. Docking studies suggest a potential interaction between CNB-001 and PTP1B. Taken together, CNB-001 alleviates obesity-induced glucose intolerance and represents a potential candidate for further development as an antidiabetic agent.
-
-
-
-
Proteases in Cardiometabolic Diseases: Pathophysiology, Molecular Mechanisms and Clinical Applications
Biochimica Et Biophysica Acta.
Feb, 2015 |
Pubmed ID: 24815358 Cardiovascular disease is the leading cause of death in the U.S. and other developed countries. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is a major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or over-express proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better understanding of the role of MMPs, cathepsins, calpains and caspases in cardiometabolic diseases process may yield novel therapeutic targets for treating or controlling these diseases. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
-
Deletion of Protein Tyrosine Phosphatase 1B Rescues Against Myocardial Anomalies in High Fat Diet-induced Obesity: Role of AMPK-dependent Autophagy
Biochimica Et Biophysica Acta.
Feb, 2015 |
Pubmed ID: 25018087 Obesity-induced cardiomyopathy may be mediated by alterations in multiple signaling cascades involved in glucose and lipid metabolism. Protein tyrosine phosphatase-1B (PTP1B) is an important negative regulator of insulin signaling. This study was designed to evaluate the role of PTP1B in high fat diet-induced cardiac contractile anomalies. Wild-type and PTP1B knockout mice were fed normal (10%) or high (45%) fat diet for 5months prior to evaluation of cardiac function. Myocardial function was assessed using echocardiography and an Ion-Optix MyoCam system. Western blot analysis was employed to evaluate levels of AMPK, mTOR, raptor, Beclin-1, p62 and LC3-II. RT-PCR technique was employed to assess genes involved in hypertrophy and lipid metabolism. Our data revealed increased LV thickness and LV chamber size as well as decreased fractional shortening following high fat diet intake, the effect was nullified by PTP1B knockout. High fat diet intake compromised cardiomyocyte contractile function as evidenced by decreased peak shortening, maximal velocity of shortening/relengthening, intracellular Ca²⁺ release as well as prolonged duration of relengthening and intracellular Ca²⁺ decay, the effects of which were alleviated by PTP1B knockout. High fat diet resulted in enlarged cardiomyocyte area and increased lipid accumulation, which were attenuated by PTP1B knockout. High fat diet intake dampened myocardial autophagy as evidenced by decreased LC3-II conversion and Beclin-1, increased p62 levels as well as decreased phosphorylation of AMPK and raptor, the effects of which were significantly alleviated by PTP1B knockout. Pharmacological inhibition of AMPK using compound C disengaged PTP1B knockout-conferred protection against fatty acid-induced cardiomyocyte contractile anomalies. Taken together, our results suggest that PTP1B knockout offers cardioprotection against high fat diet intake through activation of AMPK. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
-
Cathepsin K Knockout Alleviates Aging-induced Cardiac Dysfunction
Aging Cell.
Jun, 2015 |
Pubmed ID: 25692548 Aging is a major risk factor for cardiovascular disease. It has previously been shown that protein levels of cathepsin K, a lysosomal cysteine protease, are elevated in the failing heart and that genetic ablation of cathepsin K protects against pressure overload-induced cardiac hypertrophy and contractile dysfunction. Here we test the hypothesis that cathepsin K knockout alleviates age-dependent decline in cardiac function. Cardiac geometry, contractile function, intracellular Ca(2+) properties, and cardiomyocyte apoptosis were evaluated using echocardiography, fura-2 technique, immunohistochemistry, Western blot and TUNEL staining, respectively. Aged (24-month-old) mice exhibited significant cardiac remodeling (enlarged chamber size, wall thickness, myocyte cross-sectional area, and fibrosis), decreased cardiac contractility, prolonged relengthening along with compromised intracellular Ca(2+) release compared to young (6-month-old) mice, which were attenuated in the cathepsin K knockout mice. Cellular markers of senescence, including cardiac lipofuscin, p21 and p16, were lower in the aged-cathepsin K knockout mice compared to their wild-type counterpart. Mechanistically, cathepsin K knockout mice attenuated an age-induced increase in cardiomyocyte apoptosis and nuclear translocation of mitochondrial apoptosis-inducing factor (AIF). In cultured H9c2 cells, doxorubicin stimulated premature senescence and apoptosis. Silencing of cathepsin K blocked the doxorubicin-induced translocation of AIF from the mitochondria to the nuclei. Collectively, these results suggest that cathepsin K knockout attenuates age-related decline in cardiac function via suppressing caspase-dependent and caspase-independent apoptosis.
-
Get cutting-edge science videos from JoVE sent straight to your inbox every month.