Waiting
Login-Verarbeitung ...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Immunology and Infection

口服联合抗逆转录病毒治疗HIV-1感染人源化小鼠

Published: October 6, 2022 doi: 10.3791/63696

Summary

该协议描述了一种提供口服联合抗逆转录病毒药物的新方法,该方法成功抑制人源化小鼠中的HIV-1 RNA复制。

Abstract

人类免疫缺陷病毒(HIV-1)大流行继续在世界范围内有增无减地蔓延,目前还没有针对艾滋病毒的疫苗。虽然联合抗逆转录病毒疗法(cART)成功地抑制了病毒复制,但它不能完全根除艾滋病毒感染者的宿主。安全有效的HIV感染治愈策略需要多管齐下的方法,因此HIV-1感染动物模型的进步对于HIV治愈研究的发展至关重要。人源化小鼠概括了HIV-1感染的关键特征。人源化小鼠模型可以被HIV-1感染,并且可以通过cART方案控制病毒复制。此外,cART中断导致人源化小鼠的病毒迅速反弹。然而,对动物进行cART给药可能无效、困难或有毒,并且许多临床相关的cART方案无法得到最佳利用。除了对研究人员来说可能不安全之外,通过常用的强化日常注射程序施用cART还会通过动物的身体约束来引起压力。本文中描述的治疗HIV-1感染人源化小鼠的新型口服cART方法导致病毒血症抑制低于检测水平,增加CD4 +恢复率,并改善HIV-1感染人源化小鼠的整体健康状况。

Introduction

慢性人类免疫缺陷病毒(HIV)感染者的预期寿命通过联合抗逆转录病毒治疗(cART)显著提高12。cART成功地减少了大多数HIV-1慢性感染参与者的HIV-1复制并将CD4 + T细胞计数提高到正常水平3,从而改善了整体健康状况并显着减少了疾病进展4。然而,即使在急性感染期间开始 ART 时,潜伏的 HIV-1 储库也会建立567在 ART 期间,储库持续多年,并且 ART 中断后病毒快速反弹是有据可查的89。接受抗逆转录病毒治疗的艾滋病毒感染者也容易患心血管疾病、癌症和神经系统疾病等合并症的风险更高101112。因此,需要一种功能性的HIV治疗方法。HIV-1感染的动物模型在开发和验证新的HIV治疗策略方面具有明显的优势131415。人源化小鼠作为一种小动物模型,可以在不同组织中提供多谱系人免疫细胞重建,从而可以密切研究HIV感染16171819在人源化模型中,人源化骨髓-肝脏-胸腺(BLT)模型成功地概括了慢性HIV-1感染以及人类对HIV-1感染的功能性免疫反应202122,2324因此,人源化BLT小鼠模型已被广泛用于HIV研究领域的各个方面的研究。人源化BLT小鼠不仅是重现持续HIV-1感染和发病机制的成熟模型,也是评估基于细胞疗法的干预策略的重要工具。目前的作者和其他人已经证明,人源化BLT小鼠模型概括了持续的HIV-1感染和发病机制25,2627,并提供了评估基于细胞疗法的干预策略的工具2829,30,313233

cART方案由每天服用的抗逆转录病毒药物组合组成,可抑制HIV-1复制,以至于成功治疗的个体的病毒载量在长期内仍然无法检测到34。用临床相关的cART方案治疗HIV感染的人源化小鼠的结果类似于在HIV-1感染的ART治疗个体中观察到的结果22:HIV-1水平被抑制在检测限以下,并且cART的中断导致HIV复制从潜伏库反弹35。皮下注射(SC)27,36,37或腹膜内(IP)373839是人源化小鼠cART治疗的常用途径。然而,每天密集的注射会通过身体约束给动物带来压力40。它也是劳动密集型的,并且由于在使用锐器时暴露于艾滋病毒而增加,因此对研究人员来说可能是不安全的。口服给药是模仿HIV-1感染者服用的cART药物的吸收、分布和排泄的理想选择。口服给药通常涉及定制且通常费力的程序,将抗逆转录病毒药物放入灭菌(由于小鼠的免疫缺陷而必需)食物2437,41或水42,43,444546,这可能与许多抗逆转录病毒药物在化学上相容,也可能不相容,或者导致小鼠不容易吃或喝的东西(这会影响体内的剂量和药物水平)。这里提出的新型经口cART给药方法超越了以前的给药尝试,因为它与不同类型的抗逆转录病毒药物相容,安全性和易于制备和给药,以及减少每日注射引起的动物压力和焦虑。

富马酸替诺福韦二吡呋酯 (TDF)、艾维特拉韦 (ELV) 和拉替拉韦 (RAL) 是水溶性较差的药物。有趣的是,在高脂肪食物中观察到TDF的生物利用度增加,这表明脂肪食物对脂肪酶的竞争性抑制可能为TDF47提供一定的保护。因此,选择DietGel Boost杯代替普通啮齿动物食物作为交付方法,基于其适度的脂肪含量(每100克20.3克),与普通啮齿动物食物(每100克10克10克)和典型的小鼠高脂肪饮食(每100克40-60克)相比48。一杯的总重量为75克;因此,每个杯子将包含足够五只小鼠在3天内食用的食物量,因此也包含足够的药物。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

匿名的人类胎儿组织是通过商业获得的。动物研究是根据加州大学洛杉矶分校和(加州大学洛杉矶分校)动物研究委员会(ARC)根据所有联邦,州和地方指南批准的协议进行的。具体而言,所有实验均按照美国国立卫生研究院(NIH)和国际实验动物护理评估和认证协会(AALAC)关于实验动物住房和护理的建议和指南进行,根据加州大学洛杉矶分校ARC协议编号2010-038-02B。所有手术均在氯胺酮(100mg / kg)/甲苯噻嗪(5mg / kg)和异氟烷麻醉(2-3体积%)下进行,并尽一切努力减少动物疼痛和不适。

1.感染HIV-1的人源化小鼠

注意:人源化小鼠如前面在30,3149中所述。该协议简要描述如下。

  1. 根据制造商的方案,通过抗CD34微珠 人胎肝中纯化CD34 +造血祖细胞。
  2. 麻醉6-8周龄的NOD / SCID / IL2Rγ−/−(NSG)雄性和雌性小鼠,并在手术前进行亚致死照射(2.7 Gy)。
  3. 植入胸腺,来自与胎儿肝脏相同的供体,与肝脏一起在肾囊下。
  4. 植入后,静脉注射小鼠50万至100万个CD34 +细胞。
  5. 8-10 周后, 通过50 μL 的眶后出血收集 100 μL 小鼠血液到含有 5 μL EDTA 的微量离心管中,并以 350 x g 离心 3 分钟。
  6. 将血浆储存在-80°C以监测小鼠感染HIV-1后的病毒载量。加入 2 mL 83% NH4C 溶液,并在室温下孵育 5 分钟以裂解红细胞。
  7. 加入 10 mL RPMI 和 10% 胎牛血清 (FBS) 以停止裂解。以300 x g 离心5分钟。
  8. 吸出上清液。用抗体面板对细胞进行染色(见 材料表)并通过流式细胞术分析以检查人免疫细胞植入。
  9. 使用胰岛素注射器通过眶后静脉注射5152感染表现出超过50%循环CD45 +细胞的小鼠,至少200ng的HIV-1菌株(即NFNSXSL9305354)。每两周采集一次血液进行流式细胞术分析并测量病毒载量。

2. 抗逆转录病毒药物的制备

  1. 称量单个药物;例如,要用 cART 制作 10 个食物杯,请使用无菌细胞刮刀将 250 mg FTC(恩曲他滨)、375 mg TDF 和 500 mg RAL 或 ELV 称量到生物安全柜中的单个无菌 15 mL 离心管中。
  2. 将 1 mL DMSO 加入 250 mg FTC 管中(终浓度为 250 mg/mL),将 1.5 mL DMSO 加入 375 mg TDF 管中(终浓度为 250 mg/mL),并将 1 mL DMSO 加入 500 mg RAL 或 ELV 管中(终浓度为 500 mg/mL)。搅拌或移液药物混合物,直到完全溶解并获得澄清溶液。
  3. 使用0.22μM孔径的亲水性PVDF膜过滤器用无菌注射器对溶液进行灭菌。单个药物溶液可在-20°C下储存12周。
  4. 准备使用时,在37°C下新鲜解冻每种药物溶液的一等分试样,直到溶液变得澄清。用移液管充分混合。
  5. 将药物混合并充分混合以构成预混液:DMSO 中 1 mL FTC,DMSO 中 1.5 mL TDF,DMSO 中 1 mL ELV 或 RAL。
    注意:这个数量将制作 10 个食物杯。
  6. 将 350 μL cART 预混液加入一杯中,制成一个 DietGel Boost cART 杯。
  7. 将 0.75 mL 甲氧苄啶-磺胺甲噁唑(0.48 mg/mL 终浓度)加入杯中。
  8. 使用 1 mL 无菌移液器吸头充分搅拌。
  9. 根据需要,用微型刮刀将含有原始杯子中cART的食物杯等分到60毫米培养皿上。在秤上称量食物,根据小鼠的数量计算每个笼子中装有cART的食物杯的量。

3.对HIV-1感染小鼠给予ART药物

  1. 从笼子中取出普通食物,并用装有cART的食物杯代替。
    注意:平均而言,一只老鼠每天最多会吃 5 克食物。大约一个食物杯可以施用给五只小鼠2天。
  2. 每周刷新 cART 食物三次。
  3. 称量用过的杯子以监测摄入量。每周称量小鼠以确认食用。

4. 通过实时荧光定量 PCR 监测病毒载量

  1. 通过眶后出血每 2 周评估 BLT 小鼠中的人免疫细胞(CD4 和 CD8 T 细胞水平)和 HIV-1 复制。按照步骤1.5-1.8中的说明收获血浆。
  2. 在口服cART给药之前和期间监测感染HIV-1的小鼠的血浆病毒载量8周。使用病毒RNA提取试剂盒从血浆中提取血浆病毒RNA,并使用引物和探针(参见材料表)通过实时PCR对其进行定量,如前所述273031。使用以下循环方案:48°C(15分钟),95°C(10分钟),然后循环95°C(15秒),60°C(1分钟)45个循环。

5. 通过流式细胞术评估 CD4/CD8 比率

  1. 按照步骤1.5-1.8从每两周出血的外周血制备单细胞悬浮液。
  2. 用表面标记物对细胞进行染色并通过流式细胞术进行分析。在流式细胞术中使用以下表面标志物抗体27,30,43,49:CD45(克隆HI30),CD8(克隆SK1),CD3(克隆OKT3),CD4(克隆RPA-T4)27304249

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

假设一只体重为25克的平均小鼠每天消耗4克食物,则通过口服摄入的每日药物剂量对应于2.88mg / kg TFV,83mg / kg FTC和768mg / kg RAL。为了测试与每日注射cART相比,优化的食物方案是否有毒并影响整体健康,在cART之前和期间通过口服或皮下注射每周监测小鼠体重。每组在cART给药前没有显着的体重差异(图1)。然而,在每日cART SC注射期间,小鼠重量不断下降。相比之下,DietGel中的FTC / TDF / ELV或FTC / TDF / RAL在口服cART给药5周后将小鼠体重恢复到ART开始前的水平。此外,在雷特拉韦组或艾维特拉韦组之间没有观察到显着的体重变化。

为了测试口服cART给药是否像每日注射一样有效地抑制病毒载量,使用RT-PCR评估每两周一次的血浆病毒载量。 图2 显示,FTC/TDF/ELV ART食品方案在4周内100%有效地将病毒复制抑制到检测不到的水平;FTC/TDF/RAL ART食品方案可在4周内将80%的小鼠抑制至检测不到的水平,而接受SC注射的小鼠中只有70%在治疗4周后达到检测不到的水平。结果表明,口服给药比SC注射更快、更有效地抑制病毒复制。此外,cART食物方案比SC每日注射更早地防止了外周血中CD4 / CD8比率的进一步下降(图3)。这些结果表明,所提出的口服cART方案可以成功地抑制检测水平以下的血浆病毒血症,快速恢复CD4 T细胞水平,并改善HIV-1感染人源化小鼠动物的整体健康状况。

Figure 1
1:不同组HIV-1感染后cART治疗前后的小鼠体重变化。 人源化小鼠在免疫重建后感染HIVNFNSXSL9。在HIV-1感染4周后,小鼠通过皮下(SC)注射或口服FTC / TDF / RAL或FTC / TDF / ELV方案再治疗7.5周。从HIV感染前1周开始测量小鼠体重。所有统计比较均使用曼-惠特尼检验进行,报告组均值(± SE)。绿色星号表示FTC/TDF/ELV食品口服组与FTC/TDF/RAL SC注射组之间的统计学差异。*P < 0.05, **P < 0.01, ****P < 0.001每组 n=6-7。请点击此处查看此图的大图。

Figure 2
图2:食品口服cART给药显示出更快的病毒抑制。 如图 1所示,小鼠要么未经治疗,要么通过皮下注射和口服食物杯模拟,FTC / TDF / RAL或FTC / TDF / ELV食品方案再治疗7.5周。(A)不同群体感染HIV-1后一段时间内的血浆病毒载量。(B)不同组HIV-1感染后病毒载量随时间推移的总结,报告组几何平均值和95%置信区间(CI)。黑色箭头表示cART治疗组的cART启动时间。(C)每组cART治疗后对检测不到病毒载量的生存分析。每组n = 6-7。 请点击此处查看此图的大图。

Figure 3
图3:ART食品口服给药显示CD4 / CD8比率恢复更快。 每组HIV-1感染后外周血CD4 / CD8比率随时间的变化。所有统计比较均使用曼-惠特尼检验,报告组均值(± SE)进行。红色星号星显示FTC/TDF/RAL食品口服组与FTC/TDF/RAL SC注射组之间的统计学差异。*P < 0.05。每组 n=6-7。 请点击此处查看此图的大图。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

本文开发了一种口服cART给药方法,用于HIV-1感染的人源化小鼠,方法是在高营养食物中结合三种抗逆转录病毒药物。与每日注射给药相比,口服给药更易于使用,限制给药频率,减少动物处理,最大限度地减少压力并提高安全性55。到目前为止,只有少数针对人源化小鼠243741的研究使用含有粉碎ART药物的食物颗粒来治疗小鼠。然而,由于制造特殊食品颗粒的机会有限,这种方法很难广泛应用。其他研究4243444546使用饮用水作为cART输送系统。然而,将药物配制到饮用水中可能会改变活性成分的稳定性、纯度甚至效力。此外,许多抗逆转录病毒药物,包括TDF,RAL和ELV,水溶性差。研究表明,高脂肪餐后TDF的口服生物利用度增加了40%56,这表明食物对脂肪酶的竞争性抑制可能为TDF57提供一定的保护。DietGel Boost是一种食品补充剂,可提供水合作用,营养和浓缩产品,可改善研究动物的整体福利58。营养强化凝胶由25%-30%的纯净水组成,并添加了碳水化合物,蛋白质,脂肪,矿物质和电解质,并且经认证不含植物雌激素和亚硝胺58。它为醪液饮食提供了一种经济、有效和劳动的替代品58。由于Boost杯中含有20.3%的总脂肪,我们建议高营养水平可以更好地溶解TDF,从而提高其口服生物利用度。因此,使用高营养食品悬浮液来递送cART药物,以模拟HIV-1感染者目前使用的cART药物的经口递送。

小鼠具有比人类更高的代谢,因此,不同化合物的剂量被转换并通过参考文献59中描述的式使用。根据校正因子(Km,通过将物种的平均体重(kg)除以其体表面积(m 2)估计)来转换人剂量0.4mg(总剂量)RAL,0.1mg(总剂量)FTC和2.14mg(总剂量)TDF,以估计人类和小鼠的小鼠等效剂量值37(Km)和3(Km)59, 分别。考虑到TDF、RAL和ELV在水中的溶解度相对较低,DMSO被用作cART药物的溶剂。口服cART食品中所含DMSO的最终浓度为0.0059%(v / v)。DMSO浓度非常低,作为药物溶剂60,616263相对安全。重要的是,在这些研究中没有观察到小鼠的皮毛脱落或任何行为变化。

上述程序是一种高度稳健且可重复的cART递送方法,用于治疗HIV-1感染的人源化小鼠。可以轻松遵循此协议。方案中的关键步骤是1)考虑到人源化小鼠的免疫缺陷,保持与DietGel食品相关的方案中涉及的任何材料的整个过程无菌,以及2)避免多次解冻/冷冻cART储备溶液,并根据小鼠数量和组适当地等分cART药物。数据表明,在食物杯内预先混合的三种药物cART的口服给药(TDF,FTC和RAL或ELV)可有效抑制HIV-1复制,并在治疗后4周内将血浆中的病毒载量降低到检测不到的水平。口服cART食品给药不仅防止了CD4 T细胞的进一步下降,而且还导致外周血中CD4 T细胞百分比增加。此外,口服cART给药方法比每日注射更快地恢复小鼠体重并改善整体健康状况。

重要的是,这种方法消除了研究人员在每天将cART药物注射到HIV-1感染的人源化小鼠中时暴露于锐器的风险。所提出的成功抑制人源化小鼠HIV-1 RNA复制的方法对于临床前概念验证研究非常有价值,以开发与cART治疗的慢性HIV-1感染个体的药物递送密切相关的新型治疗方法。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

SK是CDR3 Inc.的创始人。其余作者声明,该研究是在没有任何商业或财务关系的情况下进行的,这些关系可以解释为潜在的利益冲突。

Acknowledgments

我们要感谢Romas Geleziunas博士和Jeff Murry博士以及吉利德的人们提供本研究中使用的抗逆转录病毒药物。这项工作由NCI 1R01CA239261-01(到厨房),NIH资助P30AI28697(加州大学洛杉矶分校CFAR病毒学核心,基因和细胞治疗核心,以及人源化小鼠核心),U19AI149504(PIs:Kitchen&Chen),CIRM DISC2-10748,NIDA R01DA-52841(到Zhen),NIAID R2120200174(PIs:Xie&Zhen),IRACDA K12 GM106996(Carrillo)。这项工作还得到了加州大学洛杉矶分校艾滋病研究所,詹姆斯·B·彭德尔顿慈善信托基金和麦卡锡家庭基金会的支持。

Materials

Name Company Catalog Number Comments
60 mm petri dish Thermo Scientific Nunc 150288 For aliquoting ART food
APC anti-human CD8 Antibody Biolegend 344722 For flow cytometry
BD LSRFortessa BD biosciences For flow data collection
CD34 microbeads Miltenyi Biotec 130-046-702 For NSG-BLT mice generation
Centrifuge tubes Falcon 14-432-22 For dissolving ART
DietGel Boost ClearH2O 72-04-5022 For making ART food
Elvitegravir Gilead Gifted from Gilead
Emtricitabine Gilead Gifted from Gilead
FITC anti-human CD3 Antibody Biolegend 317306 For flow cytometry
Flowjo software FlowJo For flow cytometry data analysis
HIV-1 forward primer: 5′-CAATGGCAGCAATTTCACCA-3′; IDT Customized For viral load RT-PCR
HIV-1 probe: 5′-[6-FAM]CCCACCAACAGGCGGCCT
TAACTG [Tamra-Q]-3′;
IDT Customized For viral load RT-PCR
HIV-1 reverse primer: 5′-GAATGCCAAATTCCTGCTTGA-3′; IDT Customized For viral load RT-PCR
Human fetal tissue Advanced Bioscience Resources, Inc
Mice, strain NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ The Jackson Laboratory 5557 For constructing the humanized mice
Pacific Blue anti-human CD45 Biolegend 304022 For flow cytometry
PerCP anti-human CD4 Antibody Biolegend 300528 For flow cytometry
QIAamp Viral RNA Kits Qiagen  52904 For measuring viral load
Raltegravir Merck Gifted from Merck
Sterile cell scrapers Thermo Scientific 179693 For aliquoting ART food
TaqMan RNA-To-Ct 1-Step Kit Applied Biosystems 4392653 For plasma viral load detection
Tenofovir disoproxil fumarate Gilead Gifted from Gilead
Trimethoprim-Sulfamethoxazole Pharmaceutical Associates NDC 0121-0854-16 For keeping ART food sterile. Each 5mL teaspoon contains
200 mg Sulfamethoxazole, USP
40 mg Trimethoprim, USP
NMT 0.5% Alcohol

DOWNLOAD MATERIALS LIST

References

  1. Antiretroviral Therapy Cohort Collaboration. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet. 372 (9635), 293-299 (2008).
  2. May, M. T., et al. Impact on life expectancy of HIV-1 positive individuals of CD4+ cell count and viral load response to antiretroviral therapy. AIDS. 28 (8), 1193-1202 (2014).
  3. Autran, B., et al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science. 277 (5322), 112-116 (1997).
  4. Palella, F. J., et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. The New England Journal of Medicine. 338 (13), 853-860 (1998).
  5. Finzi, D., et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 278 (5341), 1295-1300 (1997).
  6. Ananworanich, J., Dube, K., Chomont, N. How does the timing of antiretroviral therapy initiation in acute infection affect HIV reservoirs. Current Opinion in HIV and AIDS. 10 (1), 18-28 (2015).
  7. Whitney, J. B., et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature. 512 (7512), 74-77 (2014).
  8. Siliciano, J. D., et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4 T cells. Nature Medicine. 9 (6), 727-728 (2003).
  9. Chun, T. W., Moir, S., Fauci, A. S. HIV reservoirs as obstacles and opportunities for an HIV cure. Nature Immunology. 16 (6), 584-589 (2015).
  10. Brothers, T. D., et al. Frailty in people aging with human immunodeficiency virus (HIV) infection. Journal of Infectious Disease. 210 (8), 1170-1179 (2014).
  11. D. A. D. Study Group. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration. Lancet. 371 (9622), 1417-1426 (2008).
  12. Schouten, J., et al. Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between HIV-infected and uninfected individuals: the AGEhIV cohort study. Clinical Infectious Diseases. 59 (12), 1787-1797 (2014).
  13. Policicchio, B. B., Pandrea, I., Apetrei, C. Animal models for HIV cure research. Frontiers in Immunology. 7, 12 (2016).
  14. Hessell, A. J., Haigwood, N. L. Animal models in HIV-1 protection and therapy. Current Opinion in HIV and AIDS. 10 (3), 170-176 (2015).
  15. Ambrose, Z., KewalRamani, V. N., Bieniasz, P. D., Hatziioannou, T. HIV/AIDS: in search of an animal model. Trends in Biotechnology. 25 (8), 333-337 (2007).
  16. Melkus, M. W., et al. Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1. Nature Medicine. 12 (11), 1316 (2006).
  17. Lan, P., Tonomura, N., Shimizu, A., Wang, S., Yang, Y. G. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 108 (2), 487-492 (2006).
  18. Wege, A. K., Melkus, M. W., Denton, P. W., Estes, J. D., Garcia, J. V. Functional and phenotypic characterization of the humanized BLT mouse model. Current Topics in Microbiology and Immunology. 324, 149-165 (2008).
  19. Garcia, J. V. In vivo platforms for analysis of HIV persistence and eradication. The Journal of Clinical Investigation. 126 (2), 424-431 (2016).
  20. Carrillo, M. A., Zhen, A., Kitchen, S. G. The use of the humanized mouse model in gene therapy and immunotherapy for HIV and cancer. Frontiers in Immunology. 9, 746 (2018).
  21. Abeynaike, S., Paust, S. Humanized mice for the evaluation of novel HIV-1 therapies. Frontiers in Immunology. 12, 636775 (2021).
  22. Marsden, M. D., Zack, J. A. Humanized mouse models for human immunodeficiency virus infection. Annual Review of Virology. 4 (1), 393-412 (2017).
  23. Brainard, D. M., et al. Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. Journal of Virology. 83 (14), 7305-7321 (2009).
  24. Nischang, M., et al. Humanized mice recapitulate key features of HIV-1 infection: a novel concept using long-acting anti-retroviral drugs for treating HIV-1. PLoS One. 7 (6), 38853 (2012).
  25. Garcia-Beltran, W. F., et al. Innate immune reconstitution in humanized bone marrow-liver-thymus (HuBLT) mice governs adaptive cellular immune function and responses to HIV-1 infection. Frontiers in Immunology. 12, 667393 (2021).
  26. Cheng, L., et al. Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs. The Journal of Clinical Investigation. 127 (1), 269-279 (2017).
  27. Zhen, A., et al. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. The Journal of Clinical Investigation. 127 (1), 260-268 (2017).
  28. Khamaikawin, W., et al. Modeling anti-HIV-1 HSPC-based gene therapy in humanized mice previously infected with HIV-1. Molecular Therapy Methods & Clinical Development. 9, 23-32 (2018).
  29. Kitchen, S. G., et al. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice. PLoS One. 4 (12), 8208 (2009).
  30. Zhen, A., et al. Robust CAR-T memory formation and function via hematopoietic stem cell delivery. PLoS Pathogens. 17 (4), 1009404 (2021).
  31. Zhen, A., et al. HIV-specific immunity derived from chimeric antigen receptor-engineered stem cells. Molecular Therapy. 23 (8), 1358-1367 (2015).
  32. Zhen, A., Kitchen, S. Stem-cell-based gene therapy for HIV infection. Viruses. 6 (1), 1-12 (2013).
  33. Mu, W., Carrillo, M. A., Kitchen, S. G. Engineering CAR T cells to target the hiv reservoir. Frontiers in Celluar and Infection Microbiology. 10, 410 (2020).
  34. Arts, E. J., Hazuda, D. J. HIV-1 antiretroviral drug therapy. Cold Spring Harbour Perspectives in Medicine. 2 (4), 007161 (2012).
  35. Denton, P. W., et al. Generation of HIV latency in humanized BLT mice. Journal of Virology. 86 (1), 630-634 (2012).
  36. Kovarova, M., et al. A long-acting formulation of the integrase inhibitor raltegravir protects humanized BLT mice from repeated high-dose vaginal HIV challenges. Journal of Antimicrobial Chemotherapy. 71 (6), 1586-1596 (2016).
  37. Lavender, K. J., et al. An advanced BLT-humanized mouse model for extended HIV-1 cure studies. AIDS. 32 (1), 1-10 (2018).
  38. Denton, P. W., et al. Targeted cytotoxic therapy kills persisting HIV infected cells during ART. PLoS Pathogens. 10 (1), 1003872 (2014).
  39. Marsden, M. D., et al. In vivo activation of latent HIV with a synthetic bryostatin analog effects both latent cell "kick" and "kill" in strategy for virus eradication. PLoS Pathogens. 13 (9), 1006575 (2017).
  40. Stuart, S. A., Robinson, E. S. Reducing the stress of drug administration: implications for the 3Rs. Science Report. 5, 14288 (2015).
  41. Halper-Stromberg, A., et al. Broadly neutralizing antibodies and viral inducers decrease rebound from HIV-1 latent reservoirs in humanized mice. Cell. 158 (5), 989-999 (2014).
  42. Daskou, M., et al. ApoA-I mimetics reduce systemic and gut inflammation in chronic treated HIV. PLoS Pathogens. 18 (1), 1010160 (2022).
  43. Mu, W., et al. Apolipoprotein A-I mimetics attenuate macrophage activation in chronic treated HIV. AIDS. 35 (4), 543-553 (2021).
  44. Daskou, M., et al. ApoA-I mimetics favorably impact cyclooxygenase 2 and bioactive lipids that may contribute to cardiometabolic syndrome in chronic treated HIV. Metabolism. 124, 154888 (2021).
  45. Satheesan, S., et al. HIV replication and latency in a humanized NSG mouse model during suppressive oral combinational antiretroviral therapy. Journal of Virology. 92 (7), 02118 (2018).
  46. Llewellyn, G. N., et al. Humanized mouse model of HIV-1 latency with enrichment of latent virus in PD-1(+) and TIGIT(+) CD4 T cells. Journal of Virology. 93 (10), 02086 (2019).
  47. Kearney, B. P., Flaherty, J. F., Shah, J. Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. Clinical Pharmacokinetics. 43 (9), 595-612 (2004).
  48. Speakman, J. R. Use of high-fat diets to study rodent obesity as a model of human obesity. International Journal of Obesity (Lond). 43 (8), 1491-1492 (2019).
  49. Zhen, A., et al. Stem-cell based engineered immunity against HIV infection in the humanized mouse model. Journal of Visualized Experiments. (113), e54048 (2016).
  50. Mopin, A., Driss, V., Brinster, C. A detailed protocol for characterizing the murine C1498 cell line and its associated leukemia mouse model. Journal of Visualized Experiments. (116), e54270 (2016).
  51. Steel, C. D., Stephens, A. L., Hahto, S. M., Singletary, S. J., Ciavarra, R. P. Comparison of the lateral tail vein and the retro-orbital venous sinus as routes of intravenous drug delivery in a transgenic mouse model. Lab Animal (NY). 37 (1), 26-32 (2008).
  52. Yardeni, T., Eckhaus, M., Morris, H. D., Huizing, M., Hoogstraten-Miller, S. Retro-orbital injections in mice. Lab Animal (NY). 40 (5), 155-160 (2011).
  53. Shimizu, S., et al. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood. 115 (8), 1534-1544 (2010).
  54. Ladinsky, M. S., et al. Mechanisms of virus dissemination in bone marrow of HIV-1-infected humanized BLT mice. Elife. 8, 46916 (2019).
  55. Turner, P. V., Brabb, T., Pekow, C., Vasbinder, M. A. Administration of substances to laboratory animals: routes of administration and factors to consider. Journal of the American Association for Laboratory Animal Science. 50 (5), 600-613 (2011).
  56. Lamorde, M., et al. Effect of food on the steady-state pharmacokinetics of tenofovir and emtricitabine plus efavirenz in Ugandan adults. AIDS Research and Treatment. 2012, 105980 (2012).
  57. Watkins, M. E., et al. Development of a novel formulation that improves preclinical bioavailability of tenofovir disoproxil fumarate. Journal of Pharmaceutical Sciences. 106 (3), 906-919 (2017).
  58. Moccia, K. D., Olsen, C. H., Mitchell, J. M., Landauer, M. R. Evaluation of hydration and nutritional gels as supportive care after total-body irradiation in mice (Mus musculus). Journal of the American Association for Laboratory Animal Science. 49 (3), 323-328 (2010).
  59. Nair, A. B., Jacob, S. A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy. 7 (2), 27-31 (2016).
  60. Santos, N. C., Figueira-Coelho, J., Martins-Silva, J., Saldanha, C. Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochemical Pharmacology. 65 (7), 1035-1041 (2003).
  61. Kolb, K. H., Jaenicke, G., Kramer, M., Schulze, P. E. Absorption, distribution and elimination of labeled dimethyl sulfoxide in man and animals. Annals of the New York Academy of Sciences. 141 (1), 85-95 (1967).
  62. Yellowlees, P., Greenfield, C., McIntyre, N. Dimethylsulphoxide-incuded toxicity. Lancet. 2 (8202), 1004-1006 (1980).
  63. Swanson, B. N. Medical use of dimethyl sulfoxide (DMSO). Reviews in Clinical & Basic Pharmacology. 5 (1-2), 1-33 (1985).

Tags

免疫学与感染,第188期,
口服联合抗逆转录病毒治疗HIV-1感染人源化小鼠
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Mu, W., Zhen, A., Carrillo, M. A.,More

Mu, W., Zhen, A., Carrillo, M. A., Rezek, V., Martin, H., Lizarraga, M., Kitchen, S. Oral Combinational Antiretroviral Treatment in HIV-1 Infected Humanized Mice. J. Vis. Exp. (188), e63696, doi:10.3791/63696 (2022).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter