Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Mass Screening: Organized periodic procedures performed on large groups of people for the purpose of detecting disease.

Zebrafish Reproduction and Development

JoVE 5151

The zebrafish (Danio rerio) has become a popular model for studying genetics and developmental biology. The transparency of these animals at early developmental stages permits the direct visualization of tissue morphogenesis at the cellular level. Furthermore, zebrafish are amenable to genetic manipulation, allowing researchers to determine the effect of gene expression on the development of a vertebrate with a high degree of genetic similarity to humans. This video provides a brief overview of the major phases of zebrafish development, with particular focus on the first 24 hours post fertilization (hpf). The discussion begins with a zygote consisting of a single cell, or blastomere, atop a large ball of yolk. Cleavage of the blastomere is then shown to produce an embryo containing thousands of cells within a matter of hours. Next, the dramatic cellular movements known as epiboly and gastrulation are explained, revealing how they contribute to reshaping a mass of cells into a moving embryo with a beating heart in just 1 day. The presentation follows embryo development through the hatching phase, when they become swimming, feeding larvae. Important considerations for caring for larvae are incorporated, including a brief review of how fish are raised to adulthood in a dedicated facility known as the nursery. Finally, the video concludes with some commo


 Biology II

Development and Reproduction of the Laboratory Mouse

JoVE 5159

Successful breeding of the laboratory mouse (Mus musculus) is critical to the establishment and maintenance of a productive animal colony. Additionally, mouse embryos are frequently studied to answer questions about developmental processes. A wide variety of genetic tools now exist for regulating gene expression during mouse embryonic and postnatal development, which can help scientists to understand more about heritable diseases affecting human development. This video provides an introduction to the reproduction and development of mice. In addition to clarifying the terminology used to describe developmental progression, the presentation reviews key stages of the mouse life cycle. First, major development events that take place in utero are described, with special attention given to the unique layout of early rodent embryos. Next, husbandry protocols are provided for postnatal mice, or pups, including the process of weaning, or removal of pups from their mother's cage. Since males and females must be separated at this stage to prevent unscheduled mating, the demonstration also reveals how to determine mouse sex. Subsequently, instructions are given for carrying out controlled mouse breeding, including screening for the copulatory plug, which is useful for precisely timed embryonic development. Finally, the video highlights strategies used to in


 Biology II

Candidate Gene Testing in Clinical Cohort Studies with Multiplexed Genotyping and Mass Spectrometry

1Molecular Genetics of Chronic Inflammation and Allergic Disease, Max-Delbrück Center for Molecular Medicine, 2Murdoch Childrens Research Institute, 3Department of Paediatrics, University of Melbourne, 4Centre for Social and Early Emotional Development, Faculty of Health, Deakin University, 5Department of Paediatrics, University of Western Australia

JoVE 57601


 Genetics

Molecular Orbital (MO) Theory

JoVE 10447

Source: Tamara M. Powers, Department of Chemistry, Texas A&M University

This protocol serves as a guide in the synthesis of two metal complexes featuring the ligand 1,1'-bis(diphenylphosphino)ferrocene (dppf): M(dppf)Cl2, where M = Ni or Pd. While both of these transition metal complexes are 4-coordinate, they exhibit different geometries at the metal center. Using molecular orbital (MO) theory in conjunction with 1H NMR and Evans method, we will determine the geometry of these two compounds.


 Inorganic Chemistry

Polymer Microarrays for High Throughput Discovery of Biomaterials

1Laboratory of Biophysics and Surface Analysis, University of Nottingham, 2School of Molecular Medical Sciences, University of Nottingham, 3David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology

JoVE 3636


 Bioengineering

Column Chromatography

JoVE 10217

Source: Laboratory of Dr. Jimmy Franco - Merrimack College

Column chromatography is one of the most useful techniques for purifying compounds. This technique utilizes a stationary phase, which is packed in a column, and a mobile phase that passes through the column. This technique exploits the differences in polarity between compounds, allowing the molecules to be facilely separated.1 The two most common stationary phases for column chromatography are silica gel (SiO2) and alumina (Al2O3), with the most commonly used mobile phases being organic solvents.2 The solvent(s) chosen for the mobile phase are dependent on the polarity of the molecules being purified. Typically more polar compounds require more polar solvents in order to facilitate the passage of the molecules through the stationary phase. Once the purification process has been completed the solvent can be removed from the collected fractions using a rotary evaporator to yield the isolated material.


 Organic Chemistry

Label-Free Identification of Lymphocyte Subtypes Using Three-Dimensional Phase Imaging and Machine Learning

1Department of Physics, University of Cambridge, 2Department of Physics, Korea Advanced Institute of Science and Technology, 3KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, 4Tomocube, Inc., 5Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 6Department of Biological Sciences, Korea Advanced Institute of Science and Technology

Video Coming Soon

JoVE 58305


 JoVE In-Press

The Crystal Structure of the N-Terminal Domain of the Ryanodine Receptor from Plutella Xylostella

1Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, 2State Key Laboratory of Ecological Pest Control for Fujian/Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, 3Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 4Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University

Video Coming Soon

JoVE 58568


 JoVE In-Press

123459
More Results...