Refine your search:

Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
Physics: The study of those aspects of energy and matter in terms of elementary principles and laws. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
 JoVE Engineering

Sputter Growth and Characterization of Metamagnetic B2-ordered FeRh Epilayers

1School of Physics and Astronomy, University of Leeds, 2Institute of Materials Research, University of Leeds, 3School of Chemistry, University of Edinburgh, 4Department of Chemical Engineering, Northeastern University, 5Department of Physics, Northeastern University

JoVE 50603

 JoVE Behavior

Assessing the Multiple Dimensions of Engagement to Characterize Learning: A Neurophysiological Perspective

1Department of Didactics, Université du Québec à Montréal, 2Department of IT and Tech3Lab, HEC Montreal, 3Department of Marketing and Tech3Lab, HEC Montreal, 4Department of Specialized Education, Université du Québec à Montréal

JoVE 52627

 JoVE Engineering

Angle-resolved Photoemission Spectroscopy At Ultra-low Temperatures

1Institute for Solid State Research, IFW-Dresden, 2Institute of Metal Physics of National Academy of Sciences of Ukraine, 3Diamond Light Source LTD, 4Department of Physics, University of Johannesburg, 5CNR-SPIN, and Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, 6Institute of Physics of Complex Matter, École Polytechnique Fédérale de Lausanne

JoVE 50129

 JoVE Engineering

Writing Bragg Gratings in Multicore Fibers

1Sydney Institute for Astronomy, School of Physics, University of Sydney, 2Institute of Photonics and Optical Science, School of Physics, University of Sydney, 3Center for Ultrahigh Bandwidth Devices for Optical Systems, School of Physics, University of Sydney, 4Australian Astronomical Observatory

JoVE 53326

 JoVE Engineering

Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities

1Department of Physics, University of California at Berkeley, 2Department of Chemistry, University of California at Berkeley, 3Department of Chemical and Biomolecular Engineering, University of California at Berkeley, 4National Institute for Materials Science (Japan), 5Materials Sciences Division, Lawrence Berkeley National Laboratory, 6Kavli Energy NanoSciences Institute, University of California at Berkeley and Lawrence Berkeley National Laboratory

JoVE 52711

 Science Education:

Vectors in Multiple Directions

JoVE Science Education

Source: Asantha Cooray, PhD, Department of Physics & Astronomy, School of Physical Sciences, University of California, Irvine, CA

This experiment demonstrates how vectors add and subtract in multiple directions. The goal will be to analytically calculate the addition or subtraction of multiple vectors and then to experimentally confirm the calculations. A vector is an object with both magnitude and direction. The magnitude of a vector is simply denoted as the length, while the direction is typically defined by the angle it makes with the x-axis. Because forces are vectors, they can be used as a physical representation of vectors. By setting up a system of forces and finding which additional force will create an equilibrium between the forces, a system of vectors can be experimentally verified.

 JoVE Engineering

Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition

1Department of Mechanical Engineering, Massachusetts Institute of Technology, 2Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, 3School of Engineering and Applied Sciences, Harvard University, 4Department of Materials Science and Engineering, Massachusetts Institute of Technology, 5Department of Chemistry & Chemical Biology, Harvard University

JoVE 52705

 JoVE In-Press

High-resolution Thermal Micro-imaging Using Europium Chelate Luminescent Coatings

1Materials Science Division, Argonne National Laboratory, 2Department of Physics, University of Illinois at Chicago, 3Department of Physics, CUNY Queens College, 4Center for Nanoscale Materials, Argonne National Laboratory, 5Department of Physics, University of Northern Iowa, 6Institute for Materials Science, University of Tsukuba

Video Coming Soon

JoVE 53948

 JoVE Engineering

In Situ Time-dependent Dielectric Breakdown in the Transmission Electron Microscope: A Possibility to Understand the Failure Mechanism in Microelectronic Devices

1Fraunhofer Institute for Ceramic Technologies and Systems, 2Dresden Center for Nanoanalysis, Technische Universität Dresden, 3Globalfoundries Fab 8, 4Globalfoundries Fab 1

JoVE 52447

More Results...
simple hit counter