Back to chapter

11.9:

siRNA - Small Interfering RNAs

JoVE Core
Molecular Biology
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Core Molecular Biology
siRNA – Small Interfering RNAs

Languages

Share

Piccoli RNAs interferenti o siRNAs, sono RNAs non codificanti, lunghi circa 22 nucleotidi che regolano la sintesi e la stabilità di mRNA. Il siRNA può provenire dall’interno della cellula mediante trascrizione del DNA, può essere processato dall’RNA virale, oppure può essere aggiunto dagli scienziati per scopi sperimentali. I siRNA vengono processati da un lungo RNA a doppio filamento.Questo RNA è scisso in siRNA corti multipli con l’aiuto di un’endonucleasi, Dicer. Ciascun siRNA si lega quindi all’argonauta lungo con altre proteine che portano alla formazione del complesso di silenziamento indotto dell’RNA-o RISC. In RISC, il filamento di guida di RNA è separato dal suo filamento complementare e rimane nel complesso in modo da potersi quindi accoppiare con l’mRNA bersaglio.Allora l’mRNA bersaglio viene scisso con l’aiuto di argonauta e successivamente degradato nel citoplasma. Durante il loro ciclo di vita, gli RNA-virus, entrano in una cellula ospite e producono RNA a doppio filamento. Questo RNA è riconosciuto da Dicer e trasformato in siRNA.I siRNA aiutano a combattere le infezioni virali, promuovendo la degradazione dell’mRNA virale. Nel nucleo, il DNA associato al centromero ripete codici di trascrizioni che sono che sono processate da Dicer per produrre tipi specifici di siRNA. A differenza del siRNA citoplasmatico, inibiscono la sintesi di mRNA e promuovono la formazione di eterocromatina, capace di regolare la trascrizione.Questi siRNA si legano a proteine multiple, compreso l’argonauta, per formare il complesso di silenziamento trascrizionale indotto da RNA o RITS. Il siRNA dirige la RITS verso un sito di trascrizione attiva, dove si lega all’mRNA nascente. Questo legame conduce quindi al reclutamento di proteine aggiuntive che modificano le proteine istoniche vicine e promuovono la formazione di eterocromatina.Ciò rende i geni specifici inaccessibili, inibendo l’inizio della trascrizione nella regione bersaglio, e silenziando i transposoni.

11.9:

siRNA - Small Interfering RNAs

Small interfering RNAs, or siRNAs, are short regulatory RNA molecules that can silence genes post-transcriptionally, as well as the transcriptional level in some cases. siRNAs are important for protecting cells against viral infections and silencing transposable genetic elements.

In the cytoplasm, siRNA is processed from a double-stranded RNA, which comes from either endogenous DNA transcription or exogenous sources like a virus. This double-stranded RNA is then cleaved by the ATP-dependent riboendonuclease, Dicer, into 21-23 nucleotide long fragments with two nucleotide overhangs at both ends. This siRNA is then loaded onto another protein, Argonaute. Argonaute has four different domains – N-terminal, PAZ, Mid, and PIWI. Its PIWI domain has an RNase activity that enables Argonaute to cleave target mRNA. The Argonaute-siRNA complex then binds with a helicase and other proteins to form the RNA induced silencing complex (RISC). In RISC, the sense strand is separated from the antisense, or guide strand, which is thought to be catalyzed by the helicase. The sense strand is degraded in the cytoplasm, and the guide strand directs RISC towards a complementary target mRNA.

The fate of the target mRNA is determined by whether the guide mRNA shows optimal or suboptimal base-pairing with the target mRNA. If the guide strand shows optimal base-pairing with the target mRNA, then the target mRNA is cleaved by Argonaute. The RISC complex then is reused again to target another mRNA. In contrast, if the guide strand shows suboptimal base-pairing with the target mRNA strand, Argonaute will not cleave the mRNA. Instead, it will lead to translational arrest since the RISC complex will obstruct the ribosome binding and translocation. These mRNAs are then directed to the processing bodies (P-bodies) where they are gradually degraded. In the nucleus, siRNA can silence transposable DNA elements and thereby prevent their unwanted and dangerous random insertions in the genome.

siRNA Applications

As siRNA silences specific genes, it has important applications in both molecular biology research and therapeutic applications. In research, they can be used to study specific gene functions in vivo and in vitro by silencing that gene. They can also be used to silence genes from deadly viruses and can be employed as an effective anti-viral agent. siRNAs are being explored as a potential treatment for several diseases including neurological disorders such as Alzheimer’s and cancers by targeting respective disease-causing genes. The siRNAs can be used in personalized gene therapy as they are highly specific and can be easily designed for different target genes. Also, therapeutic siRNAs are programmed to target mRNA rather than DNA and therefore there is a significantly reduced risk of permanent DNA modification. 

Suggested Reading

  1. Dana, Hassan, Ghanbar Mahmoodi Chalbatani, Habibollah Mahmoodzadeh, Rezvan Karimloo, Omid Rezaiean, Amirreza Moradzadeh, Narges Mehmandoost et al. "Molecular mechanisms and biological functions of siRNA." International Journal of Biomedical Science: IJBS 13, no. 2 (2017): 48.
  2. Claycomb, Julie M. "Ancient endo-siRNA pathways reveal new tricks." Current Biology 24, no. 15 (2014): R703-R715.
  3. Kurreck, Jens. "siRNA efficiency: structure or sequence—that is the question." BioMed Research International 2006 (2006).
  4. Ryther, R. C. C., A. S. Flynt, JA 3rd Phillips, and J. G. Patton. "siRNA therapeutics: big potential from small RNAs." Gene Therapy 12, no. 1 (2005): 5-11.
  5. Dykxhoorn, Derek M., and Judy Lieberman. "Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs." Annu. Rev. Biomed. Eng. 8 (2006): 377-402.