Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

18.20: Residual Stresses

TABLE OF
CONTENTS
JoVE Core
Mechanical Engineering

A subscription to JoVE is required to view this content.

Education
Residual Stresses
 
TRANSCRIPT

18.20: Residual Stresses

Residual stresses reside in a structure even after removing the original stress inducer. This phenomenon often arises from varied plastic deformations across different parts of a structure. Consider a rod stretched beyond its yield point. It will not regain its original length due to permanent deformation. Even after load removal, the rod does not entirely lose stress because of uneven plastic deformations, resulting in residual stresses. The computation of these stresses in structures is intricate. Factors like temperature changes during welding can cause plastic deformations, leading to a reduction in elasticity and the generation of residual stresses.

For instance, a plug welded to a plate heats significantly during the process, reducing its stress. As it cools post-welding, its elasticity increases, causing yielding at a constant stress level. This results in residual stress close to the steel's yield strength. Residual stresses also occur during the cooling of metals after casting or hot rolling. The outer layers cool faster than the inner core, regaining stiffness quicker and leading to tensile residual stresses in the core and compressive in the outer layers. These stresses can be significant, sometimes requiring removal through specimen reheating and slow cooling. Understanding and managing residual stresses is crucial in engineering design and manufacturing processes, ensuring the reliability and durability of structures and components.

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter