Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Immunology and Infection

Ticks में शाही सेना हस्तक्षेप

Published: January 20, 2011 doi: 10.3791/2474

Summary

DsRNA का भूखा ticks में इंजेक्शन द्वारा शाही सेना हस्तक्षेप (आरएनएआई) के लिए एक विधि का वर्णन है. आरएनएआई ticks जहां आनुवंशिक हेरफेर के अन्य तरीकों का उपयोग सीमित किया गया है में सबसे व्यापक रूप से इस्तेमाल तकनीक जीन मुंह बंद है.

Protocol

1. DsRNA की पीढ़ी.

  1. Oligonucleotide के लिए इन विट्रो प्रतिलेखन और dsRNA के संश्लेषण (उदाहरण के लिए, Dermacentor लिए variabilis subolesin oligonucleotide प्राइमरों उपयोग D8AAT75 में T7 प्रमोटर अनुक्रम युक्त प्राइमरों Synthesize :
    5'-TAATACGACTCACTATAGGGTACTGACTGGGATCCCCTGCACAGT 3 'और D8DVT73: 5'-TAATACGACTCACTATAGGGTACTCGAGCTTGGTGGAAAGGACG-3').
  2. RT-पीसीआर प्रत्येक oligonucleotide प्राइमर और टिकटिक कुल शाही सेना के 1-10 एनजी के 10 pmol का उपयोग करके लक्ष्य जीन बढ़ाना.
  3. पीसीआर उत्पाद शुद्ध.
  4. DsRNA Synthesize शुद्ध पीसीआर उत्पाद के 8 μL का उपयोग.
  5. यों dsRNA स्पेक्ट्रोमेट्री द्वारा.

2. DsRNA साथ Ticks इंजेक्शन.

2.1. इंजेक्शन के लिए ticks की तैयारी.

  1. सबसे पहले, उन्हें प्रत्येक समाधान में एक 50 एमएल डिस्पोजेबल अपकेंद्रित्र ट्यूब में मिलाते हुए ट्यूब शीर्ष पर एक ठीक जाल तार स्क्रीन करने के लिए ticks बनाए रखने के माध्यम से समाधान decanting समाधान की एक श्रृंखला में ticks धो लो. वाशिंग ticks के लिए समाधान के अनुक्रम के नल का पानी, 3% हाइड्रोजन पेरोक्साइड, आसुत जल, 70% इथेनॉल और आसुत जल के साथ दो और washes के दो washes है.
  2. कागजी तौलिए पर ticks ब्लाट सूखी.
  3. 20 से 50 के समूहों में ticks गणना, प्रयोग पर निर्भर करता है है, प्रत्येक समूह से एक कसकर फिट और प्रायोगिक समूह संख्या के साथ ढक्कन लेबल के साथ ticks एक 1.25 ऑउंस प्लास्टिक के कप में जगह.

2.2. इंजेक्शन टीम टिक.

आरएनएआई टीम तीन लोगों के होते हैं: (1) एक व्यक्ति जो लाल दंत मोम के एक पत्रक के लिए चिपका डबल चिपचिपा टेप पर प्रत्येक टिक पदों, (2) एक व्यक्ति जो ticks और (3) एक व्यक्ति जो बाद ticks पर नज़र रखता है है injects इंजेक्शन, ticks पर सीओ 2 साँस करने के लिए उन्हें सक्रिय करने और प्रायोगिक समूह संख्या के साथ लेबल कप में रहने ticks मायने रखता है. सभी टीम के सदस्यों डिस्पोज़ेबल दस्ताने पहनना चाहिए.

2.3. इंजेक्शन के लिए ticks की नियुक्ति.

  1. Dumont ठीक संदंश का उपयोग टिक कैप्चर और यह ventral पक्ष डबल चिपचिपा एक 3 "x 6" लाल दंत मोम की चादर चिपका टेप पर जगह. ticks बारीकी से 5 ticks के समूहों में एक साथ तैनात कर रहे हैं.
  2. सभी 5 ticks के क्रम में आगे उन्हें नियंत्रित mouthparts पर एक masking टेप की छोटी पट्टी प्लेस लेकिन, जबकि शरीर के सबसे इतना उजागर कि इंजेक्शन प्रक्रिया टिकटिक इंजेक्टर (चित्रा 1) द्वारा मनाया जा सकता है है छोड़ने.

2.4. Ticks के इंजेक्शन.

  1. ticks exoskeleton के उदर की सतह के निचले सही चक्र में अंतःक्षिप्त किया जाएगा.
  2. सबसे पहले, पियर्स Monoject इंसुलिन सिरिंज एक "आधा, 29 गेज सुई (2a चित्रा) के साथ फिट का उपयोग exoskeleton में एक छेद है.
  3. DsRNA समाधान के 0.2-0.5 μL (5 x 10 - 10 μL प्रति 5 x 10 11 अणुओं) के साथ एक 1 इंच, 33 गेज सुई के साथ 45 ° beveled एक बिंदु के साथ एक कस्टम निर्मित हैमिल्टन सिरिंज का उपयोग कर (चित्र 2b ticks तुरंत इंजेक्षन) . सुई टिक गुहा में अच्छी तरह से रखा जाना चाहिए dsRNA के स्थान प्रतिधारण बीमा. कुछ तरल पदार्थ इंजेक्शन साइट (चित्रा 2c) से बचने के लिए की संभावना है. केयर ticks, जो hemolymph की हानि का कारण होगा खत्म नहीं इंजेक्षन और टिकटिक के मौत का कारण बन सकता है लिया जाना चाहिए.
  4. प्रत्येक प्रयोगात्मक समूह में इंजेक्शन को पूरा करने के बाद हैमिल्टन सिरिंज साफ. एक और प्रायोगिक समूह का उपयोग करने के लिए से पहले. सिरिंज पहली बार एक 3% हाइड्रोजन पेरोक्साइड युक्त बीकर से भरें और फिर बर्बादी कंटेनर में निष्कासित, और 15 बार दोहराएँ. बाँझ पानी युक्त बीकर से सिरिंज भरें और फिर बर्बादी कंटेनर में निष्कासित, और 15 बार दोहराएँ. ध्यान रखना हैमिल्टन सिरिंज के सवार झुकना नहीं है क्योंकि, तुला अगर, सवार आसानी से नहीं चाल और ticks के इंजेक्शन के लिए आवश्यक कोमल स्पर्श करने के लिए जवाब होगा.

2.5. इंजेक्शन के बाद ticks के उपचार.

  1. डबल चिपचिपा टेप से तुरंत ठीक संदंश के साथ इंजेक्शन टिकटिक उठाओ और इसे एक प्लास्टिक की वसूली कंटेनर (लगभग 6 "x 6" और ticks के भागने को रोकने के मास्किंग टेप के साथ चक्राकार) में जगह. ticks संक्षेप में इंजेक्शन के बाद निष्क्रिय हो सकता है लेकिन जल्द ही पकवान आसपास क्रॉल करने के लिए शुरू करना चाहिए.
  2. सांस के तुरंत बाद उन्हें वसूली कंटेनर में रखने के लिए मदद ticks सक्रिय ticks पर सीओ 2. एक बार ticks रेंगने और सक्रिय हैं, इंजेक्शन घाव तेजी से चंगा और वे सबसे अधिक संभावना से बच जाएगा.
  3. प्रत्येक प्रयोगात्मक समूह में संख्या के हिसाब से गणना ticks और एक कसकर फिट ढक्कन के साथ एक लेबल प्लास्टिक के कप में उन्हें जगह. रिप्लेसमेंट ticks किसी भी है कि किसी भी अगले प्रायोगिक समूह इंजेक्शन लगाने से पहले मृत्यु हो गई की जगह इंजेक्शन होना चाहिए.

2.6. पकड़े टिक.

  1. आर्द्रता चैम्बर में ticks (12hr प्रकाश प्लेस: 22-25 में 12 घंटा अंधेरे photoperiod डिग्री सेल्सियस और 95% सापेक्ष घंटेumidity) और 1 दिन के लिए पकड़.
  2. प्लेस ticks, टिकटिक खिला कोशिकाओं में एक प्रायोगिक समूह के अनुसार, एक भेड़ के लिए सरेस से जोड़ा हुआ है और उन्हें uninjected पुरुष या महिला ticks (सेक्स जो भी नहीं इंजेक्ट किया गया था) की एक समान संख्या के साथ फ़ीड करने के लिए अनुमति देते हैं. स्त्री ticks कि भरा होना करने के लिए फ़ीड, उन है कि खिलाने के 10 दिन या जब नियंत्रण महिलाओं के बाद भेड़ से हटा रहे हैं की मेजबानी कर रहे हैं एकत्र और तौला गिरा दिया है.
  3. डिब्बों में ticks प्लेस, और oviposition के पूरा होने तक आर्द्रता चैम्बर में पकड़. अंडा समूह में सभी ticks द्वारा बड़े पैमाने पर उत्पादन के भार से oviposition मूल्यांकन.

2.7. टिकटिक phenotype के आरएनएआई के बाद विश्लेषण.

  1. मूल्यांकन खिलाने के बाद ticks कि बच गया, टिकटिक वजन, oviposition और अंडे की उर्वरता की संख्या का निर्धारण करके phenotype टिकटिक. हालांकि, अन्य विश्लेषण लक्षित और अध्ययन के जीन उद्देश्यों के आधार पर निष्पादित किया जा सकता है.

3. RT-पीसीआर द्वारा जीन मुंह बंद की पुष्टि विश्लेषण.

  1. खिलाने के बाद नियंत्रण इंजेक्शन और dsRNA इंजेक्शन समूहों से व्यक्तिगत ticks से लार की गिल्टी और हिम्मत काटना.
  2. व्यक्तिगत ऊतकों के नमूनों से कुल शाही सेना निकालें.
  3. अलग - अलग ऊतकों में लक्ष्य जीन टेप वास्तविक समय RT-पीसीआर द्वारा विश्लेषण और टिकटिक -16 के खिलाफ शाही सेना के स्तर मानक के अनुसार genNorm विधि (ddCT विधि जैव रेड iQ5 मानक संस्करण, संस्करण 2.0 द्वारा कार्यान्वित के रूप में) का उपयोग कर rRNA.
  4. प्रतिक्रिया के अंत करने के लिए सुनिश्चित करें कि केवल एक amplicon बनाई है और पृथक्करण घटता चलाने के हर नमूने के लिए एक ही तापमान रेंज में amplicons लगातार denature.
  5. MRNA स्तर (सामान्यीकृत सीटी मान) के बीच नियंत्रण इंजेक्शन और dsRNA इंजेक्शन ticks `छात्र के टी - परीक्षण (पी = 0.05) का उपयोग की तुलना करें.

4. प्रतिनिधि परिणाम:

प्रोटोकॉल वर्णित यहाँ आरएनएआई के लिए किया गया है, हमारी प्रयोगशाला में कई अलग अलग ixodid टिक प्रजातियों में (1 टेबल) का उपयोग किया. dsRNA ticks में इंजेक्शन की राशि टिकटिक के आकार के साथ बदलता रहता है, बड़ा टिक प्रजातियों एक बड़ी मात्रा को समायोजित कर सकते हैं. नकारात्मक नियंत्रण ticks एक असंबंधित dsRNA इंजेक्शन के साथ किया जाना चाहिए. 14-19,22-25,27-32,34 subolesin और बीटा - actin 20,21 जैसे कई dsRNAs सकारात्मक नियंत्रण के रूप में इस्तेमाल किया जा सकता है . ध्यान दें कि यह महत्वपूर्ण है के मिश्रण dsRNA समाधान से बचने के उपचार के बीच सिरिंज धोने है. यदि प्रोटोकॉल सही ढंग से किया है, कम से कम 5% मृत्यु दर 24 घंटे के बाद इंजेक्शन प्रक्रिया से प्राप्त किया जाना चाहिए. Ticks में जीन पछाड़ना के बाद एक ठेठ phenotype ticks क्रम में dsRNA के पूल के साथ सुरक्षात्मक प्रतिजनों टिकटिक के लिए स्क्रीन के लिए इंजेक्शन के एक पैनल के साथ चित्रा 3 में दिखाया गया है.

प्रजातियों टिक dsRNA इंजेक्शन सन्दर्भ
Ixodes scapularis सीडीएनए लाइब्रेरी, subolesin, actin, nucleotidase, NF-kB, akirin 21, 22, 29, 30
Dermacentor variabilis subolesin, जीएसटी, ubiquitin, vATPase, selenoproteins एम और W2a, hematopoietic स्टेम / पूर्वपुस्र्ष कोशिकाओं को प्रोटीन की तरह, एंटीबॉडी actin 26S सबयूनिट, ferritin1, varisin, akirin 15, 19, 22, 24, 26, 30-32
Dermacentor marginatus subolesin 22
Amblyomma americanum सीडीएनए लाइब्रेरी, subolesin, akirin 17, 22 30,
Amblyomma hebraeum subolesin, voraxin 28
Rhipicephalus sanguineus Rs86, subolesin 22 23,
Rhipicephalus microplus जीएसटी, ubiquitin, selenoprotein, Bm86, Bm91, subolesin, सैनिक, GIII, EF1a flagelliform सिल्क प्रोटीन, वॉन Willebrand
कारण
16, 18, 25, 27
Rhipicephalus annulatus ubiquitin, subolesin, EF1a, GIII 16

तालिका 1. प्रजातियों जिसमें आरएनएआई प्रोटोकॉल इस्तेमाल किया गया है टिक.

चित्रा 1
चित्रा 1 ticks की नियुक्ति, उदर ऊपर की ओर, लाल दंत मोम की एक चादर का पालन डबल चिपचिपा टेप पर. ticks का 5 समूहों में रखा जाता है, जिसके बाद मास्किंग टेप का एक छोटा सा पट्टी mouthparts पर रखा गया है, क्रम में करने के लिए आगे ticks सुरक्षित जबकि इंजेक्टर टिकटिक के इंजेक्शन के दौरान शरीर का निरीक्षण करने के लिए अनुमति है.

चित्रा 2
चित्रा 2 इंजेक्शन प्रक्रिया (क) भेदी कम एक इंसुलिन sy के साथ टिक exoskeleton का सही कोण नापने का यंत्र शामिल हैंringe एक 29 गेज सुई के साथ फिट क्रम में एक इंजेक्शन साइट बनाने, (ख) यह एक 33 गेज सुई है जो (ग) सबसे अधिक संभावना टिकटिक hemolymph के कुछ / रिसाव में परिणाम देगा के साथ एक हैमिल्टन सिरिंज का उपयोग कर साइट पर dsRNA के तत्काल इंजेक्शन तरल पदार्थ.

चित्रा 3
चित्रा 3. टिकटिक छह समूहों में जो आरएनएआई Amblyomma americanum में टिक सुरक्षात्मक प्रतिजनों के लिए स्क्रीन के लिए इस्तेमाल किया गया था का एक पैनल . ticks में प्ररूपी परिवर्तन जब सकारात्मक subolesin आरएनएआई नियंत्रण और नकारात्मक असंबंधित dsRNA नियंत्रण के साथ तुलना में देखा जा सकता है. इस प्रयोग में टिक मृत्यु दर, वजन, और प्रत्येक समूह के oviposition पर आरएनएआई के प्रभाव सांख्यिकीय विश्लेषण किया गया था.

Discussion

हालांकि अन्य तरीकों ticks, 14, 33 में आरएनएआई के लिए में वर्णित किया गया है, dsRNA के इंजेक्शन यहाँ वर्णित है सबसे व्यापक रूप से दोनों (तालिका 1) भूखा और खिलाया 16,25,34 ticks में इस्तेमाल किया है. आरएनएआई टिकटिक जीन समारोह के अध्ययन, इंटरफ़ेस टिक - रोगज़नक़ के लक्षण वर्णन और स्क्रीनिंग और टिकटिक सुरक्षात्मक 14,35 प्रतिजनों के लक्षण वर्णन के लिए एक महत्वपूर्ण उपकरण होना दिखाया गया है . विशेष रूप में, आरएनएआई ticks 35 में कार्यात्मक विश्लेषण के लिए सबसे महत्वपूर्ण उपकरण बन गया है .

Methodologically, आरएनएआई की संभावना अधिक कुशल तरीके है कि व्यक्तियों की एक बड़ी संख्या में जीन पछाड़ना अनुमति दे सकता है में विकसित होगा. ticks में dsRNA प्रेरित आरएनएआई के तंत्र के लिए एक बेहतर समझ और इस 35,36 प्रजातियों में इस आनुवंशिक दृष्टिकोण का उपयोग के लिए योगदान करने के लिए परिष्कृत किया जाना चाहिए. ticks में आरएनएआई के बंद लक्ष्य प्रभाव की हद तक भी एक महत्वपूर्ण सवाल है कि जरूरतों के लिए पूरी तरह से 14,27 संबोधित किया जाना है. अंत में, आरएनएआई सबसे अधिक संभावना टिकटिक जीन विनियमन और प्रणालियों जीव विज्ञान के अध्ययन के लिए व्यापक योगदान प्रदान करेगा और टिक रोगज़नक़ इंटरफेस और टीकों के विकास पर एक प्रभाव टिकटिक infestations और टिक जनित रोगज़नक़ों के संचरण को नियंत्रित करने के लिए हो सकता है.

Disclosures

ब्याज की कोई संघर्ष की घोषणा की.

Acknowledgments

हम उपयोगी विचार विमर्श और तकनीकी सहायता के लिए हमारे प्रयोगशालाओं के सदस्यों को धन्यवाद. यह वीडियो प्रस्तुति अनुसंधान और पशु चिकित्सा pathobiology विभाग के लिए एसोसिएट डीन, पशु चिकित्सा स्वास्थ्य विज्ञान के लिए केंद्र, ओकलाहोमा स्टेट यूनिवर्सिटी द्वारा समर्थित किया गया. अनुसंधान Ministerio डे Ciencia ई Innovación, स्पेन (परियोजना BFU2008-01244/BMC), CSIC JF अंदर PA1002451 परियोजना द्वारा वित्त पोषित किया गया था, वाल्टर आर Sitlington KMK, CVHS 2009 आरएसी अनुदान, OAES खाद्य पशु अनुसंधान के लिए अध्यक्ष संपन्न पशु स्वास्थ्य फंड और USDA, राष्ट्रीय अनुसंधान पहल प्रतियोगी अनुदान, 2007-04613 सं.

Materials

Name Company Catalog Number Comments
Access RT-PCR system Promega A1250
Purelink PCR purification kit Invitrogen K3100-02
Megascript RNAi kit Ambion AM1626M
Red dental wax Electron Microscopy Sciences 72674
Plastic cups, 1.25 oz and lids Solo Cup Company, Urbana Ill.
Fine forceps Electron Microscopy Sciences Various
Insulin syringe Monoject Fitted with a ½", 29 gauge needle
Hamilton syringe Hamilton 701SN,33/.375”/45DGR Custom made
TriReagent Sigma 93289
iScript One-Step RT-PCR Kit with SYBR Green Bio-Rad 170-8892
Real-time PCR detection system Bio-Rad Several Please refer to http://www.bio-rad.com/

DOWNLOAD MATERIALS LIST

References

  1. de la Fuente, J. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 13, 6938-6946 (2008).
  2. Peter, R. J. mosquito control-Lessons from the past, solutions for the future. Vet. Parasitol. 132, 205-215 (2005).
  3. Barker, S. C., Murrell, A. Systematics and evolution of ticks with a list of valid genus and species names. Parasitol. 129, S15-S36 (2004).
  4. Willadsen, P. Tick control: Thoughts on a research agenda. Vet. Parasitol. 138, 161-168 (2006).
  5. de la Fuente, J., Kocan, K. M. Strategies for development of vaccines for control of ixodid tick species. Parasite Immunol. 28, 275-283 (2006).
  6. Fire, A. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391, 806-811 (1998).
  7. Cerutti, H. RNA interference: traveling in the cell and gaining functions. Trends Genet. 19, 39-46 (2003).
  8. Kavi, H. H. RNA silencing in Drosophila. FEBS Lett. 579, 5940-5949 (2005).
  9. Mello, C. C., Conte, D. J. r Revealing the world of RNA interference. Nature. 431, 338-342 (2004).
  10. Zhou, D. RNA interference and potential applications. Curr. Top. Med. Chem. 6, 901-911 (2006).
  11. Ramakrishnan, V. G. Application of RNA interference in tick salivary gland research. J. Biomol. Tech. 16, 297-305 (2005).
  12. Aljamali, M. N. RNA interference: applicability in tick research. Exp. Appl. Acarol. 28, 89-96 (2002).
  13. Aljamali, M. N. RNA interference in ticks: a study using histamine binding protein dsRNA in the female tick Amblyomma americanum. Insect. Mol. Biol. 12, 299-305 (2003).
  14. de la Fuente, J. RNA interference for the study and genetic manipulation of ticks. Trends Parasitol. 23, 427-433 (2007).
  15. de la Fuente, J. Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale. Genomics. 90, 712-722 (2007).
  16. AlmazäN, C. Identification and characterization of Rhipicephalus (Boophilus) microplus candidate protective antigens for the control of cattle tick infestations. Parasitol. Res. 106, 471-479 (2010).
  17. de la Fuente, J. Identification of protective antigens by RNA interference for control of the lone star tick, Amblyomma americanum. Vaccine. 28, 1786-1795 (2010).
  18. Zivkovic, Z. Differential expression of genes in salivary glands of male Rhipicephalus (Boophilus) microplus in response to infection with Anaplasma marginale. BMC Genomics. 11, 186-186 (2010).
  19. de la Fuente, J. Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitol. Res. 100, 85-91 (2006).
  20. Narasimhan, S. Disruption of Ixodes scapularis anticoagulation by using RNA interference. Proc. Natl. Acad. Sci U.S.A. 101, 1141-1146 (2004).
  21. de la Fuente, J. RNA interference screening in ticks for identification of protective antigens. Parasitol. Res. 96, 137-141 (2005).
  22. de la Fuente, J. The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood ingestion and reproduction. Vaccine. 24, 4082-4095 (2006).
  23. de la Fuente, J. Synergistic effect of silencing the expression of tick protective antigens 4D8 and Rs86 in Rhipicephalus sanguineus by RNA interference. Parasitol. Res. 99, 108-113 (2006).
  24. de la Fuente, J. Autocidal control of ticks by silencing of a single gene by RNA interference. Biochem. Biophys. Res. Commun. 344, 332-338 (2006).
  25. Nijhof, A. M. Bm86, Bm91 and subolesin, in the silencing of the tick protective antigens. Int. J. Parasitol. 37, 653-662 (2007).
  26. Kocan, K. M. Silencing of the defensin, varisin, in male Dermacentor variabilis by RNA interference results in reduced Anaplasma marginale infections. Exp. Appl. Acarol. 46, 17-28 (2008).
  27. de la Fuente, J. Evidence of the role of tick subolesin in gene expression. BMC Genomics. 9, 372-372 (2008).
  28. Smith, A. The impact of RNA interference of the subolesin and voraxin genes in male Amblyomma hebraeum (Acari: Ixodidae) on female engorgement and oviposition. Exp. Appl. Acarol. 47, 71-86 (2009).
  29. Galindo, R. C. Tick subolesin is an ortholog of the akirins described in insects and vertebrates. Dev. Comp. Immunol. 33, 612-617 (2009).
  30. Canales, M. Conservation and immunogenicity of the mosquito ortholog of the tick protective antigen, subolesin. Parasitol. Res. 105, 97-111 (2009).
  31. Kocan, K. M. Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis. BMC Dev. Biol. 9, 42-42 (2009).
  32. Zivkovic, Z. Subolesin expression in response to pathogen infection in ticks. BMC Immunol. 11, 7-7 (2010).
  33. Karim, S. Functional genomics tool: gene silencing in Ixodes scapularis eggs and nymphs by electroporated dsRNA. BMC Biotechnol. 10, 1-1 (2010).
  34. Kocan, K. M. Transovarial silencing of the subolesin gene in three-host ixodid tick species after injection of replete females with subolesin dsRNA. Parasitol. Res. 100, 1411-1415 (2007).
  35. de la Fuente, J. Targeting the tick-pathogen interface for novel control strategies. Front. Biosci. 13, 6947-6956 (2008).
  36. Kurscheid, S. Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila. BMC Mol. Biol. 10, 26-26 (2009).

Tags

संक्रामक रोग 47 अंक Ticks शाही सेना हस्तक्षेप आनुवंशिकी funtional जीनोमिक्स जीन अभिव्यक्ति टिक जनित रोगज़नक़ों
Ticks में शाही सेना हस्तक्षेप
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Kocan, K. M., Blouin, E., de laMore

Kocan, K. M., Blouin, E., de la Fuente, J. RNA Interference in Ticks. J. Vis. Exp. (47), e2474, doi:10.3791/2474 (2011).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter