Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Engineering

无约束和封闭表面活性剂中球形粒子沉降速度的实验测量 剪切变薄粘性流体

Published: January 3, 2014 doi: 10.3791/50749

Summary

本文演示了测量表面活性切变粘液中球形粒子终端沉降速度的实验过程。准备了各种风湿特性的流体,并测量了平行壁之间无边界流体和流体中一系列粒子大小的沉降速度。

Abstract

进行了一项实验性研究,以测量基于表面活性剂的剪切变薄粘性 (VES) 流体中球形粒子的终端沉降速度。测量是针对在平行墙体和平行墙之间的无边界流体和流体中沉淀的粒子进行测量的。VES 流体具有广泛的风湿特性,具有风湿学特征。风湿特征包括稳定的剪切粘度和动态振荡切变测量,分别量化粘度和弹性特性。在无限制条件下的沉降速度以直径至少是颗粒直径25倍的烧嘴来测量。为了测量平行墙之间的沉降速度,构建了两个具有不同墙间距的实验单元。不同大小的球形粒子被轻轻地掉入流体中,并允许沉降。该过程使用高分辨率摄像机进行记录,粒子轨迹使用图像分析软件进行记录。终端沉降速度是根据数据计算的。

通过比较实验沉降速度与 Renaud 等人的无弹性阻力预测计算的沉降速度,可以量化弹性对无边界流体沉降速度的影响1结果表明,流体的弹性可以增加或降低沉降速度。减少/增加的幅度是流体的流变特性和粒子特性的函数。观察到封闭壁对沉降造成延缓效应,并根据墙体因素测量阻滞。

Introduction

在药物制造、废水处理、空间推进剂再注入、半导体加工和液体洗涤剂制造等应用中,液体颗粒的悬浮。在石油工业中,粘性压裂液用于在液压断裂中运输质子(通常是砂)。停止抽水后,前体保持断裂打开,并为碳氢化合物回流提供导电途径。

粒子的沉降受流体的流变学和密度、颗粒的大小、形状和密度以及密闭壁的影响的制约。对于在蠕变流系中沉淀在牛顿流体中的球形粒子,沉降速度由斯托克斯方程给出,斯托克斯于 1851 年得出。在随后的研究人员2-6中提出了计算高雷诺兹数字阻力的表达方式。封闭壁通过对粒子施加阻滞作用来降低沉降速度。墙体因子 ,Fw,被定义为在无限制条件下将墙限制在沉降速度的终端沉降速度比率。墙系数量化了密闭墙的阻滞效应。文献7-13提供了许多理论和实验研究,以确定在不同断面管中以不同断面管中沉淀的球体的壁因子。总之,有大量的信息可用于确定牛顿流体中球体的阻力。

过去关于确定非内托输液中颗粒的沉降速度的工作,特别是粘性流体,并不完整。各种数值预测14-18和实验研究19-24可用于文献,以确定在无弹性功率定律流体的球体上的阻力。使用特里帕蒂等人的理论预测15和特里帕蒂和查布拉17日,雷纳德等人。1开发以下表达式以计算无弹性功率定律流体中的阻力系数(CD)。

对于重新pl<0.1 (爬行流系统)

Equation 1
其中 X(n) 是拖动校正因子13。RePL是属于权力法液体中的球体的雷诺兹数字,定义为:

Equation 2
其中ρ f是液体的密度。拖动校正因子安装下列方程1:

Equation 3
使用拖动系数的定义,将沉降速度计算为:

Equation 4
对于 0.1PL<100

Equation 5
其中 X是表面积与粒子预测面积的比率,球体等于 4。CD0方程 1给出的斯托克斯区域(rePL < 0.1)的阻力系数,C D∞是牛顿区域的拖动系数值(rePL > 5 x 102),等于 0.44。参数β,b,k表示为:

Equations 6-8
αo = 3 和 α 是与 X(n) 相关的平均剪切率的修正如下:

Equation 9
要计算沉降速度,使用无维组Nd 25:

Equation 10
Nd 独立于沉降速度,可以明确计算。使用这个值和 方程5中的阻力系数表达,可以反复解决RePL。 然后,可以使用:

Equation 11
方程1-9中的表达基于对值1≥n≥0.4的理论预测。 查布拉13日将上述表述的预测与沙阿26-27(n变化为0.281-0.762)和福特等人的实验结果进行了比较 28 (n变化从 0.06-0.29).这些表达式被证明能够准确预测阻力系数。基于这些分析,上述配方可用于计算无弹性功率定律流体中球形粒子的沉降速度为 1 ≥ n ≥ 0.06。将无弹性功率定律流体的沉降速度与功率定粘液中的实验速度进行比较,以确定流体弹性对沉降速度的影响。下一节中提到了详细的步骤。

测定粘胶液中颗粒的沉降速度也是不同研究人员不同观测的课题:(一) 在爬行流系中,剪切变薄效应完全掩盖粘性效应和沉降速度与纯粘性理论29-32非常一致,(ii) 粒子在爬行流系内外经历阻力减少,由于弹性30,33,34而沉降速度增加,(iii) 沉降速度因流体弹性35而降低。沃尔特斯和坦纳36 总结说,对于博格流体(恒定粘度弹性流体)弹性导致低威森博格数字的阻力减少,其次是在较高的魏森博格数字的阻力增强。麦金利37 强调,球体后的延伸效应导致威森伯格数字的阻力增加。Chhabra13 在对先前在无限制和密闭粘性流体中沉降粒子的工作进行了全面回顾后,强调了在理论发展中结合切变率依赖粘度和流体弹性的现实描述的挑战。在过去几年中,对球形粒子沉降的壁效应的研究也是研究的一个领域。然而,所有的工作都完成了球形粒子在圆柱形管中的沉降。没有关于球形粒子在平行墙体之间沉淀在粘性流体中的数据。

这项工作试图实验研究球体在剪切稀释粘性液体中的沉降。这项实验研究的目的是了解流体弹性、剪切变薄和墙体密闭对剪切稀释粘液中球形粒子沉降速度的影响。本文重点介绍了本研究的实验方法以及一些具有代表性的结果。详细的结果,连同分析,可以在较早的出版物43中找到。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 液体的准备

本实验研究采用无聚合物、粘胶、双成分、表面活性剂为基础的流体系统。这种流体系统已用于许多生产领域的油气井,用于水力压裂处理44,45。此流体系统用于此研究,因为它具有光学透明度,流变学可以通过系统地改变两个组件的浓度和比例来控制。流体系统由一种离子表面活性剂(如硫化钠)作为组件A和一种离子表面活性剂(如N、N、N-三甲基-1-氯化钙)作为组件B。

  1. 在蒸馏水中加入A组件的给定浓度,然后使用架空搅拌机在高转速下混合,以确保正确混合。允许它混合2-3分钟。
  2. 在此混合物中加入给定浓度的组件 B,并允许其混合 2-3 分钟。
  3. 将混合物休息2-6小时,以排出气泡。注意:最终的液体混合物是光学透明的。在这项研究中,使用了七种不同浓度的液体混合物。选择浓度是为了获得各种粘度的液体混合物。

2. 测量未绑定流体中的沉降速度

使用直径为 1-5 毫米的玻璃球体。

  1. 使用高分辨率显微镜测量玻璃球体的直径。确保球体表面光滑,球体近乎完美。
  2. 将液体存放在直径至少是颗粒直径 25 倍的玻璃容器中,以确保密闭壁不会对颗粒的沉降速度产生影响。
  3. 使用实验室温度计记录室温和流体温度。温度测量很重要,因为流体的风湿测量应在进行沉降实验的温度下进行。
  4. 将一根米棒放在容器旁边。
  5. 轻轻地将玻璃颗粒浸入液体中,使其沉淀。用高分辨率摄像机记录沉降过程。
  6. 使用图像分析应用程序从录制的视频中跟踪粒子在不同时间步骤的位置。注意:在这项工作中,使用了名为"跟踪器"的软件应用程序(http://www.cabrillo.edu/~dbrown/tracker/)。
  7. 绘制粒子与时间的垂直位置,并计算从线的斜坡的终端沉降速度。
  8. 在特殊条件下重复实验至少 3 倍,以确保可重复性。执行不同测量的图像分析,并使用错误条报告特定流体中给定粒子直径的沉降速度。
  9. 重复上述步骤以处理不同直径的颗粒,并记录沉降速度。绘制沉降速度与粒子直径。注: 图1 显示一个流体中五个不同大小粒子的沉降速度。

3. 平行墙体间流体沉降速度测量

为了测量平行墙面下的沉降速度,使用了两个由Plexiglas制成的实验细胞。

  1. 在设计和建造单元时,确保墙壁平滑且完全平行。保持低细胞的纵横比,以确保墙壁正交对平行壁没有影响。注意:本研究中两个细胞的壁间隙分别为3.6毫米和8毫米。 图2 显示了一个实验单元的示意图。
  2. 将细胞填充液体,并通过入口/出口端口轻轻释放细胞中的颗粒。用橡胶塞密封入口/出口端口,让颗粒沉淀,直到到达细胞中间。
  3. 此时,小心地垂直定位细胞,让粒子沉淀。
  4. 将一米棒放在细胞旁边,然后使用高分辨率摄像机记录沉降。
  5. 使用实验室温度计记录室温和流体温度。这一点很重要,因为流体的风湿测量应在此温度下进行。
  6. 与无限制的沉降速度测量一样,测量软件应用程序"跟踪器"中的沉降速度。重复测量至少三次,以确保可重复性,并获取每个测量的误差条。

4. 流体的流体特征

  1. 执行稳定的剪切粘度测量,以测量流体的粘度作为剪切率的函数。注意: 在本作品中,由TA仪器采用的 ARES 流湿计采用双壁同心圆柱夹具(内杯直径:27.95 毫米,内鲍勃直径:29.50 毫米,外鲍勃直径:32.00 毫米,外侧杯径:34.00 毫米,鲍勃长度:32.00 毫米)。
  2. 将剪切速率从 0.1-800 秒 -1 变为10 点/十点测量。确保杯子的温度与在同一液体中进行沉降实验的温度相同。 图 3 显示日志绘图上一个流体样本的粘度与剪切率。
  3. 对于同一流体,计算沉降实验中粒子遇到的剪切速率范围。使用表面平均粒子剪切速率定义为2V/dp 20,23,其中V是粒子的沉降速度,dp是粒子直径。
  4. 在粘度与剪切率图的这一系列剪切率中 ,μ=Kγn-1适合功率定律曲线。在日志日志绘图上,此拟合将是一条直线。确定参数 K( 流一致性索引)和 n( 流行为索引)。
    Kn 量化流体的粘度。 图3 显示了权力法适合同一情节。
  5. 在 0.1-100 rad/秒的频率范围内执行动态振荡剪切测量,并测量弹性模数 、G'和粘性模组 、G'。以 10 点/十点进行测量。
    图4显示了流体样本的G'G'。
  6. 从此数据中计算两个模组(G'/G)的比例。使用回归分析将莫杜利与麦克斯韦模型的比例调整,并计算流体的放松时间(λ)。麦克斯韦模型的两个模组比率等式为46,47

Equation 12
液体的放松时间量化了液体的弹性。放松时间越大,液体的弹性就越大。图5显示了流体样本的G'/G'以及麦克斯韦适合。 安装通过最大限度地减少频率范围内方差测量的总和来执行。
Equation 13

5. 确定弹性对无限沉降速度的影响

  1. 表示V∞VE)无界流体中粒子的实验沉降速度,其中'∞VE'是指未受约束的粘性流体。将此实验沉降速度与基于功率定律参数的明显粘度数据计算的沉降速度(V∞INEL)进行比较。使用雷纳德等人开发的表达式1计算V∞伊内尔。导言部分提到了这些表达式。"∞INEL"是指未受约束的无弹性液体。
  2. 计算V∞EL/V∞INEL的比例,并将该比率称为速度比。
    速度比的价值说明了弹性对沉降速度的影响。速度比大于 1 表示由于流体弹性,速度增加/阻力减少。速度比小于 1 表示由于流体弹性,速度降低/拖动增强。
  3. 绘制速度比作为不同流体粒子直径的函数,以观察弹性对不同流变流体中不同直径粒子沉降速度的影响。 图6 显示速度比作为其中一个流体中粒子直径的函数。

6. 量化平行墙对沉降速度的延迟效应

  1. 计算壁系数,Fw为给定直径粒子,通过在平行墙体存在的情况下划分沉降速度,V∞VE到无边界流体中的沉降速度,V∞VE。
  2. 对于给定的流体,将墙体因子绘制为粒子直径与墙体间距比 的函数, r . 图7 显示了在其中一个流体中沉降粒子的壁因子。该图有助于量化密闭墙对沉降速度的阻滞效应。降低墙体因子,提高墙体阻滞效果。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

实验对七种不同流体混合物中的五种不同直径粒子进行了实验,这些混合物具有独特的K、nλ值。 图1显示沉降速度作为一个流体中粒子直径的函数。错误栏显示三个测量中的变异性。实验期间测量的室温为23°C。可以观察到,沉降速度随着粒子直径的增加而增加。图 3显示了在 23 °C 的温度下执行的相同流体的稳定剪切粘度测量。 图显示了流体的粘度作为剪切率的函数。液体表现出剪切变薄行为。从图1中的沉降速度,所有粒子的剪切速率计算为2V/dp。在这个剪切速率范围内,功率定律(K, n)模型是适合如图 3所示。K的拟合值为 0.666 Pa.snn = 0.31。

图4显示弹性模块化和粘度模块化与同一流体在23°C的角频率。图5显示G'/G'作为角频率函数的比例。它与方程12给出的麦克斯韦模型相配。适合也显示在同一个情节。放松时间的价值是0.175秒。

图6 显示速度比作为其中一个流体中粒子直径的函数。观察到,速度比大于两个较小球体的一个,三个较大的球体的速率小于一个。换句话说,较小的球体体验减阻力,较大的球体体验阻力增强。这表明流体弹性可以增加或降低球体的沉降速度。 表2 显示使用 方程2计算的粒子的雷诺兹数字。结果表明,颗粒在小雷诺兹数字下会经历减阻力/增加。在其他流体中也进行了类似的实验,观察到速度比不仅仅是粒子直径的函数,而是球形粒子流体的流体特性和密度。详细的结果可以在马尔霍特拉和夏尔马43找到。读者应该看到德拉格-魏森伯格数字地图 图8 在马尔霍特拉和夏尔马43。数据显示,在低魏森博格数字下,阻力减少,随后过渡到高威森博格数字的阻力增强,即使对于在爬行流系统中沉淀的粒子(RePL < 0.1)。

图7显示墙体因子(Fw) 作为粒子直径与墙面间距比(r)的函数,用于在 3.6 mm 和 8 mm 的平行隔间距墙壁之间沉降的球体。数据点在 0-1 的r完整范围内均匀间隔。可以观察到,壁因子随着r值的增加而减少,这表明随着粒子直径与墙体间距的可比性,墙体阻滞效应也会增加。还观察到,在r,Fw 不是唯一的(不像牛顿流体),并依赖于墙间距。

Figure 1
图1。在 VES 流体中稳定不同直径颗粒的速度。

Figure 2
图2。用于在平行壁前测量沉降速度的实验单元的示意图。 细胞由丛球制成,墙壁之间的间距为8毫米。

Figure 3
图3。粘度作为 VES 流体样品剪切率的函数(稳定剪切粘度测量)。 粘度随着剪切率的降低而降低,说明剪切变薄行为。在粒子剪切率的实验范围内安装的功率定律(K, n)也显示在绘图上。

Figure 4
图4。弹性模块化(G')和粘性模块化(G'')作为 VES 流体样本(动态振荡-剪切测量)的角频率函数函数。

Figure 5
图5。粘度与弹性模块化的比例作为角频率的函数。 情节上显示了麦克斯韦适合。适合的放松时间为 0.183 秒。

Figure 6
图6。VES 流体样本中不同大小颗粒的速度比。 结果表明,较小的球体会减少阻力,而较大的颗粒会经历阻力增强。

Figure 7
图7。墙体因子作为 VES 流体样品中粒子直径与壁间距比的函数。 封闭符号是指在有 8 毫米间距的墙壁之间沉降的粒子的数据点,而打开的符号是指在 3.66 mm 间距的墙壁之间沉降的粒子。

粒子直径
(毫米)
雷诺兹号码
(使用 方程2计算)
1.74 0.3
2.03 0.44
2.94 1.42
3.63 2.09
4.17 2.63

表2。使用方程 2 计算的粒子的雷诺兹数字 

Subscription Required. Please recommend JoVE to your librarian.

Discussion

实验研究的重点是在未受约束和封闭的条件下,测量剪切稀释粘性流体中球形粒子的沉降速度。介绍了详细的实验程序,以获得可重复测量的沉降速度。结果表明,流体弹性可以增加或降低沉降速度。墙体对沉降产生延缓效应,这种效应是用墙体因素来衡量的。

在实验之前,应确保粒子接近表面光滑的完美球体。球体的直径应准确测量。实验过程,包括图像分析,应该通过在无限牛顿流体( 甘油溶液)中进行一些初步实验,并将实验沉降速度与斯托克斯分析解决方案进行比较来验证。

实验至少应重复三次,以确保可重复性。应注意在实验时测量液体温度,并在相同的温度下测量流变学。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者想指出,本出版物的目标是直观地演示测量粒子沉降的实验程序。有关详细结果及分析,读者应参考较早的刊物43。

Acknowledgments

作者感谢美国能源部和RPSEA的财政支持,以及赞助德克萨斯大学奥斯汀分校水力压裂和防沙的JIP的公司(液体空气、空气产品、阿纳达科、阿帕奇、贝克休斯、必和必拓、英国石油公司美国公司、雪佛龙公司、康菲石油公司、埃克森美孚公司、费鲁斯公司、哈里伯顿公司、赫斯公司、林德集团公司、佩梅克斯公司、先锋自然资源公司),普拉克斯尔,沙特阿美,斯伦贝谢,壳牌,西南能源,挪威国家石油公司,韦瑟福德和YPF)。

Materials

Name Company Catalog Number Comments
Glass Microspheres Whitehouse Scientific #GP1750 Available in different sieve fractions.
Rheometer TA Instruments ARES Any standard rheometer capable of taking dynamic and static measurements
Anionic Surfactant (Component A) Proprietary fluid Used in oil field services for hydraulic fracturing. Sodium Xylene Sulfonate can be used as a substitute.
Cationic Surfactant (Component B) Proprietary fluid Used in oil field services for hydraulic fractuing. N,N,N-Trimethyl-1-Octadecamonium Chloride can be used as a substitute.

DOWNLOAD MATERIALS LIST

References

  1. Renaud, M., Mauret, E., Chhabra, R. P. Power-law fluid flow over a sphere: average shear rate and drag. 82, 1066-1070 (2004).
  2. Clift, R., Grace, J. R., Weber, M. E. Bubbles, Drops and Particles. , Academic Press. New York. (1978).
  3. Khan, A. R., Richardson, J. F. The resistance to motion of a solid sphere in a fluid. Chem. Eng. Sci. 62, 135-150 (1987).
  4. Zapryanov, Z., Tabakova, S. Dynamics of Bubbles, Drops and Rigid Particles. , Kluwer Academic Publishers. Dordrecht, The Netherlands. (1999).
  5. Michaelides, E. E. Chapter 2. Analytical expressions for the motion of particles. Transport Processes in Bubbles Drops and Particles. DeKee, D., Chhabra, R. P. , 2nd edition, Taylor & Francis. New York. (2002).
  6. Michaelides, E. E. Hydrodynamic force and heat/mass transfer from particles, bubbles and drops - the Freeman Scholar Lecture. Journal of Fluids Engineering (AMSE. 125, 209-238 (2003).
  7. Der Faxen, H. Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist). Annalen der Physics. 68, 89-119 (1922).
  8. Bohlin, T. On the drag on a sphere moving in a viscous fluid inside a cylindrical tube. Trans Royal Insitute of Technology Stockholm. 155, (1960).
  9. Miyamura, A., Iwasaki, S., Ishii, T. Experimental wall correction factors of single solid spheres in triangular and square cylinders, and parallel plates. International Journal of Multiphase Flow. 7, 41-46 (1981).
  10. Tullock, D. L., Phan-Thien, N., Graham, A. L. Boundary element simulations of spheres settling in circular, square and triangular ducts. Rheol. Acta. 31, 139-150 (1992).
  11. Chhabra, R. P. Wall effects on terminal velocity of non-spherical particles in non-Newtonian polymer solutions. Powder Technology. 88, 39-44 (1996).
  12. Chhabra, R. P. Chapter 2. Wall effects on spheres falling axially in cylindrical tubes. Transport Processes in Bubbles Drops and Particles. Dekes, D., Chhabra, R. P. , 2nd edition, Taylor & Francis. New York. (2002).
  13. Chhabra, R. P. Bubbles, Drops, and Particles in Non-Newtonian Fluids. Francis, S. econded.,T. aylor& , Florida. (2007).
  14. Dazhi, G., Tanner, R. I. The drag on a sphere in a power law fluid. Journal of Non-Newtonian Fluid Mechanics. 17, 1-12 (1984).
  15. Tripathi, A., Chhabra, R. P., Sundararajan, T. Power-law fluid over spheroidal particles. Industrial & Engineering Chemistry Research. 33, 403-410 (1994).
  16. Graham, D. I., Jones, T. E. R. Settling and transport of spherical particles in power-law fluids at finite Reynolds number. Journal of Non-Newtonian Fluid Mechanics. 54, 465-488 (1994).
  17. Tripathi, A., Chhabra, R. P. Drag on spheroidal particles in dilatant fluids. AIChE. 41 (3), 728-731 (1995).
  18. Missirlis, K. A., Assimacopoulos, D., Mitsoulis, E., Chhabra, R. P. Wall effects for motion of spheres in power-law fluids. Journal of Non-Newtonian Fluid Mechanics. 96 (3), 459-471 (2001).
  19. Dallon, D. S. A drag coefficient correlation for spheres settling in Ellis fluids [Ph.D. Dissertation]. , University of Utah. Salt Lake City, Utah. (1967).
  20. Uhlherr, P. H. T., Le, T. N., Tiu, C. Characterization of inelastic power-law fluids using falling sphere data. Canadian Journal of Chemical Engineering. 54, 497-502 (1976).
  21. Machac, I., Lecjaks, Z. Wall Effect for a Sphere Falling Through a Non-Newtonian Fluid in a Rectangular Duct. Chemical Engineering Science. 50 (1), 143-148 (1995).
  22. Kelessidis, V. C., Mpandelis, G. Measurements and prediction of terminal velocity of solid particles falling through stagnant pseudoplastic liquids. Powder Technology. 147, 117-125 (2004).
  23. Shah, S. N., Fadili, Y. E., Chhabra, R. P. New model for single spherical particle settling velocity in power law (visco-inelastic) fluids. International Journal of Multiphase Flow. 33, 51-66 (2007).
  24. Rodrigue, D., DeKee, D., Chan Man Fong, C. F. The slow motion of a spherical particle in a Carreau fluid. Chemical Engineering Communications. 154, 203-215 (1996).
  25. Darby, R. Chemical Engineering Fluid Mechanics. , 2nd edition, Marcel dekker. New York. (2001).
  26. Shah, S. N. Proppant settling correlations for non-Newtonian fluids. Society of Petroleum Engineers Journal. 22 (2), 164-170 (1982).
  27. Shah, S. N. Proppant-settling correlations for non-Newtonian Fluids. Society of Petroleum Engineers Production Engineering Journal. 1 (6), 446-448 (1986).
  28. The formulation of milling fluids for efficient hole cleaning: an experimental investigation. Paper SPE 38819. Ford, J. T., Oyeneyin, M. B., et al. European Petroleum Conference, 1994 Oct 25-27, London, U.K, , (1994).
  29. Acharya, A., Mashelkar, R. A., Ulbrecht, J. Flow of inelastic and viscoelastic fluids past a sphere, Part II: Anomalous separation in the viscoelastic fluid flow. Rheological Acta. 15, 471-478 (1976).
  30. Acharya, A. R. Viscoelasticity of crosslinked fracturing fluids and proppant transport. SPE Production Engineering. 3, 483-488 (1988).
  31. Chhabra, R. P., Uhlherr, P. H. T. Creeping motion of spheres through shear-thinning elastic fluids described by the Carreau viscosity equation. Rheological Acta. 19 (2), 187-195 (1980).
  32. Bush, M. B., Phan-Thien, N. Drag force on a sphere in creeping motion through a Carreau model fluid. Journal of Non-Newtonian Fluid Mechanics. 16 (3), 303-313 (1984).
  33. Broadbent, J. M., Mena, B. Slow flow of an elastico-viscous fluid past cylinders and spheres. Chemical Engineering Journal. 8, 11-19 (1974).
  34. Sigli, D., Coutanceau, M. Effect of finite boundaries on the slow laminar isothermal flow of a viscoelastic fluid around a spherical obstacle. Journal of Non-Newtonian Fluid Mechanics. 2, 1-21 (1977).
  35. Brule, B. H. A. A. V. D., Gheissary, G. Effects of fluid elasticity on the static and dynamic settling of a spherical particle. Journal of Non-Newtonian Fluid Mechanics. 49, 123-132 (1993).
  36. Walters, K., Tanner, R. I. Chapter 3. The Motion of a Sphere through an Elastic Fluid.. Transport Processes in Bubbles, Drops and Particles. Chhabra, R. P. D. eK. ee,D. .,, DeKee, D. , Hemisphere. New York. (1992).
  37. McKinley, G. H. Chapter 14. Steady and transient motion of spherical particles in viscoelastic liquids. Transport Processes in Bubbles, Drops and Particles. DeKee, D., Chhabra, R. P. , 2nd edition, Taylor & Francis. New York. (2002).
  38. Chhabra, R. P., Tiu, C., Uhlherr, P. H. T. A study of wall effects on the motion of a sphere in viscoelastic fluids. Canadian Journal of Chemical Engineering. 59, 771-775 (1981).
  39. Jones, W. M., Price, A. H., Walters, K. The motion of a sphere falling under gravity in a constant viscosity elastic liquid. Journal of Non-Newtonian Fluid Mechanics. 53, 175-196 (1994).
  40. Navez, V., Walters, K. A note on settling in shear-thinning polymer solutions. Journal of Non-Newtonian Fluid Mechanics. 67, 325-334 (1996).
  41. Huang, P. Y., Wall Feng, J. effects on the flow of viscoelastic fluids around a circular cylinder. Journal of Non-Newtonian Fluid Mechanics. 60, 179-198 (1995).
  42. Sugeng, F., Tanner, R. I. The drag on spheres in viscoelastic fluids with significant wall effects. Journal of Non-Newtonian Fluid Mechanics. 20, 281-292 (1986).
  43. Malhotra, S., Sharma, M. M. Settling of Spherical Particles in Unbounded and Confined Surfactant-Based Shear Thinning Viscoelastic Fluids: An Experimental Study. Chemical Engineering Science. 84, 646-655 (2012).
  44. Zhang, K. Fluids for Fracturing Subterranean Formations.U.S. US patent. , 6,468,945 (2002).
  45. Gupta, D. V. S., Leshchyshyn, T. T., Hlidek, B. T. Surfactant gel foam/emulsions: History and field application in the western Canadian sedimentary basin. SPE Annual Technology Conference and Exhibition, 2005 Oct 9-12, Dallas, , Dallas. (2005).
  46. Ferry, J. D. Viscoelastic Properties of Polymers. , 2nd edition, John Wiley & Sons, Inc.. USA. (1970).
  47. Yesilata, B., Clasen, C., McKinley, G. H. Nonlinear shear and extensional Flow dynamics of wormlike surfactant solutions. Journal of Non-Newtonian Fluid Mechanics. 133, 73-90 (2006).

Tags

物理, 第 83 期, 化学工程, 沉降速度, 雷诺兹数, 剪切变薄, 壁阻滞
无约束和封闭表面活性剂中球形粒子沉降速度的实验测量 剪切变薄粘性流体
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Malhotra, S., Sharma, M. M.More

Malhotra, S., Sharma, M. M. Experimental Measurement of Settling Velocity of Spherical Particles in Unconfined and Confined Surfactant-based Shear Thinning Viscoelastic Fluids. J. Vis. Exp. (83), e50749, doi:10.3791/50749 (2014).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter