Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Neuroscience

神経回路基盤記憶形成を解剖するための新生児ラットの左右で非対称匂い学習モデル

Published: August 18, 2014 doi: 10.3791/51808
* These authors contributed equally

Introduction

嗅覚は、彼らが正常に移動したり、その環境の中で生き残ることができないであろうことなく、げっ歯類における一次感覚モダリティである。これは、1を養うために母親を見つけるために嗅覚を使用するために、最初の出生後の週の間に見ることも聞くこともできない新生児の仔、特に重要である。その結果、新生仔ラットの仔は、簡単な実験操作で臭いを好むように調整することができる。さまざまな刺激は、ネスティング環境2,3を含む新生児、ミルク授乳4-6、なでたり触覚刺激7で(条件刺激、CS)小説臭いに調整応答を誘導することが無条件刺激(UCS)として使用されている12、テールピンチ13、母性唾液13、穏やかなフットショック14-18、および頭蓋脳刺激19。本研究は、私は、この場合はペパーミントに、十分に確立された初期の匂いの嗜好パラダイム請求臭気を採用ペパーミント24時間後10,11,20に対する選好を生成するために、触覚刺激と組み合わせることよ。これらの悪臭メモリは、主に嗅球(OB)21〜23と前梨状皮質(APC)24,25を含め、無傷の嗅覚回路に依存している。

初期の匂いの嗜好学習の実験的研究は、深めおよび哺乳類メモリの分子および生理学的基盤の理解を広げてきた。この哺乳動物モデルは、メモリメカニズムを研究するいくつかの利点を有する。まず、UCS信号の神経源が同定されている。前述のようにさまざまな刺激が順番に22,27,28の学習サポート細胞および生理学的効果を引き起こし、OBおよびAPCで複数のアドレナリン受容体を活性化させる軌跡青斑のノルエピネフリン放出26を刺激する。次に、メモリ支持機構は明確に定義された層状の神経構造に起こる。ザ·新生ラットにおける嗅覚回路のシンプルさがシナプス可塑性に関連する複雑なプロセスを明らかにした理想的なフレームワークを研究者に提供します。他の構造29の中で、OBと同側外側嗅索(LOT) を介して梨状皮質(PC)へのターンプロジェクトでこれらの僧帽/房状細胞での僧帽/房状細胞への嗅上皮プロジェクト内の嗅覚感覚ニューロン(OSN)、。 OB中OSNシナプスの両方が30,31およびAPCにおけるLOTシナプス24,25学習および記憶をサポートするシナプスの変化に重要な遺伝子座として同定されている。第三に、ラットでの初期の時代に、嗅覚の入力が容易に左​​右で非対称にすることができます。この白質が完全に生後12日目(PD12)32が形成されると、各APCは前交連を介した二国間の匂い情報へのアクセスを持っています。 PD 12の前に、臭気の入力は、<単一鼻孔閉塞24,25,31,33,34を通じてOBとAPCをipisilateralする単離することができる/ SUP>。シングル鼻孔閉塞はオープン鼻孔から臭気記憶形成を可能にし、前に、PD 12〜33に閉塞鼻孔から同じメモリを防ぐことができます。臭気メモリはOBおよびAPCの両方を含む同側半球に分離されている。したがって、各ラットの仔は生理学を学び、支えるためにそれ自体の制御することができます。

本研究では、左右で非対称に早期臭気嗜好学習プロトコルが導入される。この方法は、それによって必要な動物の数と一般バリエーションの両方を削減、内動物管理24,25,31を提供することにより、臭気の学習を支える神経機構を研究するための強力なツールとして機能します。鼻孔の閉塞は、グリースまたは鼻栓を適用し、最小限のストレス又は動物への損傷を除去することができるという点で可逆的である。ここでは、まず、初期の臭気の好みのトレーニングとテストの詳細な手順は、第持つ単一の鼻孔閉塞を使用して左右で非対称プロトコルを中心に記載されているEプラグ。その後、結果は、臭気入力を単離し、左右で非対称臭気メモリを製造する際に、単一の鼻孔の閉塞の有効性を実証するために提示される。最後に、両方の学習とサポートメモリ表現を生成する嗅覚系における生理学的変化を研究するために、この左右で非対称に学習モデルを使用しての電位が議論されている。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

男女のスプラーグドーリーラット(チャールズリバー)の仔が使用されている。同腹仔は、PD1(誕生PD0である)で12に淘汰されている。ダムは食料と水は自由摂取させ 、12時間の明/暗サイクルで維持されている。実験手順は、メモリアル大学の動物実験委員会によって承認されている。

1鼻プラグ建設

この手順では、適応とカミングスから変更されました(1997年)35。

  1. AQUIREポリエチレン-20チューブと3-0絹縫合糸。
  2. 約0.8mmとポリエチレン20チューブの小片をカット。
  3. チューブの部分の両側のスレッドが存在するように準備されたチューブを介して糸絹縫合。
  4. プラグの外側糸の一端には、スレッド内で結び目を作る。
  5. スレッド内の結び目の上にダウンチューブの部分を引き出します。結び目は、管の内側に申し立てる必要があります。
  6. 糸の約2 mmはチューブの一端から突出するように糸の両端をトリミング( 図1Aを参照)。

トレーニングの前に2。ナリスオクルージョン

  1. 定期的な布団で覆われた安全な皿にダムや場所から子犬を削除します。
  2. 閉塞されるべき鼻孔に、局所麻酔薬ゼリー、2%キシロカインを軽くするために綿棒アプリケーションを使用します。
  3. 子犬〜3分間皿に休息できるようにします。
  4. 非利き手で穏やかに、しかし確実に子犬を持ってください。
  5. 利き手を使用して、鼻栓をピックアップし、スレッドが突出していないから、先端の周りに同じ局所麻酔薬ゼリーを軽くたたく。これはプラグ挿入に関連するすべてのマイナー痛みのための麻酔薬の両方として機能し、鼻孔の内部潤滑剤として機能します。注:キシロカインの効果は数分以内に開始し、20〜30分続きます。キシロカインゼリー適用後のプラグ挿入のための一般的なショーの良い耐性の子犬(Minimum苦労と発声)。
  6. 優しくしっかりと子犬を保持し、プラグが完全に挿入され、わずか2ミリのスレッドが鼻孔から突出するまで、ゆっくりと非常に穏やかなプッシュで、プラグを回転させることにより、鼻のプラグを差し込みます( 図1B参照 )。このプロセスの間のいずれかの鼻孔からの出血があってはなりません。鼻プラグ挿入時の出血の仔は除外され、ダムに戻される
  7. 動物はプラグに慣らすために、5分間この料理で休むようにします。
  8. 慣れ皿から子犬を外し、コンディショニングパラダイム24を始める。

図1
鼻プラグの図1の構築。 A)は回路図、鼻プラグを製造するステップを示す。スレッドは、ポリエチレン管を通して引っ張られている。結び目が作られ、PULさそれを遮断するチューブの途中に導か;両端は、管のうちの一方の端に2ミリメートル残基で切断されています。B)フロントと1鼻孔鼻栓ラットの側面図を。

3香り​​寝具の準備

  1. 、臭気汚染を防ぐためビニール袋に木材チップの寝具の500ミリリットルを配置するために、新しい手袋を着用し、ドラフト中。
  2. 0.3ミリリットルペパーミントエキスを策定するために、注射器を使用し、ビニール袋に布団の上にこれをスプレー。
  3. 袋を閉じて接続し、積極的に袋を振ると、寝具は5分間の袋で休むことができます。
  4. 使用前に5分間ヒュームフードで明らかになった明確な、浅い、アクリル研修箱(20×20×5cm 3の、 図2A)で香りのベッドを配置します。寝具が準備されると、これらの手袋を破棄し、これらの手袋は、動物に触れないようにしてください。
  5. 同一の透明なプラスチックの箱に無香料のベッドを配置し、専用それは香りの寝具類、または使用済みの手袋と接触しないことを確認してください。

4。臭気コンディショニングパラダイム(図2(a)の画像を参照してください)

子犬は、PD 6、または複数のトライアルセッション(一日一セッション、PD 3-6)で、いずれか一つの条件付けセッションを受ける。

  1. 香りの寝具に慣れ子犬を置きます。制御臭の場合のみ(O / S - )仔、4.5に進み、その後、10分間のベッド上でこれらの子犬を残す。実験的な臭気+ストローク(O / S +)の仔については、このセクションの次の手順に進みます。
  2. ストロークの小さな絵筆を用いて30秒間の子犬。主に子犬の後ろ足領域の周囲に急速な円運動を使用してください。
  3. 子犬30秒間休ませるようにします。
  4. 繰り返します(+臭いをなでるすなわち 10ペア)を10分間で合計4.2&4.3を繰り返します。
  5. 空調ボックスから子犬を外し、鼻栓を取り外し、ダムに子犬を返します。
<Pクラス= "jove_title"> 5。左右で非対称臭気選好テスト(図2Bの図を参照)

テストは、最終的なトレーニングセッション、次 ​​のさまざまな時点( 例えば 、24または48時間)で行われます。試験は2センチメートルニュートラルゾーンによって分離された2つのトレーニングボックス(トレーニングボックスは3.4に記載されている)の上に配置されるステンレス鋼の試験チャンバー(30×20×18 cm 3程度)で行われる。他のボックスがきれいで、無香料寝具が含まれていながら、一つのトレーニングボックスはペパーミントの香りの寝具が含まれています。試験室の床は、次にプラスチックメッシュ( 図2B)の取り外し可能なシートによって覆われた金属格子である。

  1. 第3節に従って1ペパーミントと1無臭のベッドを用意し、2センチメートル離れて、検査室の反対側の下にそれぞれのボックスを配置します。検査室の金属グリッド床にプラスチック製のメッシュを配置します。
  2. ダムから子犬を外し、鼻孔に無臭シリコーングリースをしっかりDABを置くそのは、トレーニング中に吸蔵される。必要に応じて最初の試験手順全体を通してグリースを再適用します。注:ランダム鼻孔閉塞訓練および試験中はバイアスを回避するために考えることができる。
  3. 検査室の中立ゾーンに子犬を置きます。
  4. 子犬室の両側以上を費やしどのくらい記録、子犬1分間チャンバーを探求することを許可する( つまり、ペパーミントまたは中立の香りの寝具の上)。
  5. 子犬覆われたプラスチック製の保持チャンバーに1分間休息できるようにします。
  6. 繰り返しますが、10分間、合計5.2&5.3ステップ( すなわち 、5残りの試行で区切っ5テストトライアル)方向の好みのために制御するために、チャンバー内の子犬の初期の向きを切り替える。
  7. 直ちに試験後、鼻孔からのグリースを拭き取ってください。
  8. セクション2に従って反対鼻孔にポリエチレンnoseplugを挿入し、動物を10分間休ませることができます。
  9. のように、再び子犬をテスト 5.3 -5.6、プラグを取り外し、ダムに子犬を返します。取り外し、95%エタノールで試験チャンバーのプラスチックメッシュをきれいにし、液体を蒸発させる。次の子犬をテストする前に戻ってメッシュを配置します。
    注:テスト中に最初の鼻孔閉塞にシリコーングリースを適用すると、出血や鼻プラグ挿入に関連したストレスの可能性を防止します。

図2
図2。初期の臭気の好みのトレーニングとテスト。パラダイムをなでる臭+。B)片側のペパーミント寝具を備えた2つの選択肢の匂いの嗜好性テストを使用して、A)初期の臭気の好みのトレーニング、反対側に無香料寝具を制御します。 2センチメートルニュートラルゾーンがその間に配置されている。

6。シングルナリスオクルージョンの有効性をテストする

">この実験は、単一の鼻孔閉塞が嗅覚系の左右で非対称に活性化をもたらすか否かが判定されるヌクレオチド。

  1. セクション2で説明したように、PD 6または7匹に一方的な鼻孔閉塞を実行します。
  2. 〜5分間の馴化後、蓋付きプラスチック容器に子犬を配置し、10分間組織片に浸し30μlの純粋なペパーミントオイルに公開。
  3. すぐにペパーミント臭暴露後、全身麻酔薬、またはペントバルビタール、(150mgの/ kg)のように抱水クロラール(400 mgの/ kg)を腹腔内(IP)を子犬を注入
  4. 完全に(尾または足のピンチに応答を示さない)を麻酔したら、経心0.1 Mリン酸緩衝液、PBSに溶解したパラホルムアルデヒド(4%、続いて約1分間、生理食塩水(0.9%)の氷冷溶液との子犬を、灌流)。
  5. パラホルムアルデヒド灌流の10分後、脳を収集し、4℃で一晩パラホルムアルデヒド中に入れ、その後、トランスさらに24時間、スクロース溶液(PBS中20%)に脳FER。
  6. クライオスタットで30μmの厚さで冠状脳スライスをカット。 OBとPCのスライスを収集し、pCREB抗体21,25,30のための標準的な免疫組織化学染色を行ったゼラチンコートしたスライド上にマウントします。

7シングルナリス閉塞の可逆性をテストする

ブロッキング効果は鼻栓を除去した後の24時間後に可逆的であるかどうかをこの実験をテストします。

  1. セクション2で説明したように、PD 6または7匹に一方的な鼻孔閉塞を実行します。
  2. (トレーニング中鼻孔閉塞の期間に相当する - 5分馴化+ 10分のトレーニング)15分後、鼻栓を取り外し、ダムに子犬を返します。
  3. 6.2で説明したように24時間後、10分間の蓋付きプラスチック容器にペパーミント臭に子犬を公開します。
  4. 宗派の同じ手順に従ってくださいイオンは6.3から6.6。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

ここでは、臭気入力を分離して一方の半球に学ぶことに鼻孔閉塞の有効性、およびこの方法の可逆性を実証するために以前に確立された結果24の一部を確認します。

初期の匂いの嗜好トレーニング中のシングル鼻孔閉塞は左右で非対称臭気メモリ24につながる。メモリは免れ鼻孔( 図3)に限定されている。子犬を訓練中のように閉塞同じ鼻孔と匂いの嗜好について試験するとき、彼らはエアコン臭( 例えば 、ペパーミント)に対する選好を示している。子犬が閉塞反対鼻孔でテストしているとき、彼らはエアコンの臭いのための好みを示さない。総合すると、これらの結果は、臭気嗜好メモリにのみ形成され、連想コンディショニングをなでる臭気+を受けた免れる鼻孔を通して表現さ​​れていることを示唆している。

図3 図3単一鼻孔閉塞は左右で非対称臭気学習を誘導する。行動のプロトコルは上のパネルに示されている。臭気(O / S +)をなでる+または臭気のみ(O / S - )は、単一の鼻孔を持つ動物が訓練中に吸蔵され、反対の鼻孔を閉塞し、次いで閉塞し、同じ鼻孔を最初臭気嗜好試験を行った。下のパネルは、2つの選択肢の臭気テストで異なるグループ間のペパーミントの香りの寝具の上に費やした時間の割合を示しています。 * はp <0.05。エラーバーは、平均±SEM。フォンテーヌから再生。J.許可を得て、 神経科学 (2013)。

臭気露光中嗅覚系の左右で非対称に活性化( 4)24における左右で非対称臭気トレーニング結果。シングル鼻孔閉塞は、OBの活性化​​と同側半球ドゥリのPCを防止臭気の露出をngの。これは、CREBのOB中のリン酸化、およびPCを監視することによって実証される。免疫組織化学を使用して、 図4に示すように、リン酸化されたCREB(pCREB)は対側免れる半球に比べて、ペパーミント臭暴露後の閉塞した半球で有意に少ない。ニッスル染色( 図4A)は OBの僧帽細胞層に匹敵する細胞体を示し、両半球のPCの錐体細胞層である。しかし、pCREBは閉塞した鼻孔( 図4B)に半球同側の両方の細胞層で有意に少ない。

図4
臭気露光中嗅覚系の左右で非対称に活性化において、図4のシングル鼻孔閉塞結果を。嗅球のA)のニッスル染色(OB)と前梨状皮質(APC)。B)PCREB式に閉塞において、単一の鼻孔閉塞した仔におけるペパーミント暴露後の半球を惜しま。矢印は、APCにおいて、OBと錐体細胞層における僧帽細胞層を示している。スケールバー、500μmで。フォンテーヌから再生許可を得て、J·ニューロサイエンス (2013)。

単一の試験(15〜20分)鼻孔閉塞の効果は一過性で可逆的であり、24のテスト中に、匂いに対する変更された臭気知覚と減少し、ニューロンの活性化につながる可能性が見える長期的な神経損傷を生じない。露出を臭気OBやPC内のpCREB染色( 図5)、OBの僧帽細胞内のpCREB式、およびPCでの錐体細胞によってインデックスとしては、閉塞したと惜しま半球の間で同程度であるの除去後24時間鼻プラグ - 嗜好テスト臭気同じ時点初期の臭気嗜好トレーニング以下で行われる。

図5
図5の可逆鼻孔閉塞後のニューロンの反応性の評価。OBのPCREB染色およびAPC、1仔鼻栓を除去した後、24時間。矢印は、APCにおいて、OBと錐体細胞層における僧帽細胞層を示している。 MCL、僧帽細胞層。 PCL、錐体細胞層。スケールバー、低倍率と高倍率のためには100μm、500以下である。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

重要な時間ウィンドウ内仔ラットにおける左右で非対称匂い学習と記憶モデルは、第1のホールらによって設立されました。研究33,34,36のシリーズでは、それらは、臭気嗜好メモリは仔ラットにおけるPD 6に一つの鼻孔に臭気+ミルクペアによって左右で非対称にできることを示した。優先メモリは同じ鼻孔がトレーニングやテスト中に開いていた際に堅調に推移しましたが、閉塞した鼻孔がブロックされていないし、試験した場合に観察されていません。それはもはやだったのでしかし、前嗅覚皮質から前方交連の接続が機能して32になり、PD 12、で、訓練を受けていない鼻孔だけでは前交連の6病変が左右で非対称のメモリを復元し、PDで取得された臭気の好みの発現を支持できなかった訓練されていない鼻孔33からアクセス可能。この左右で非対称学習モデルが正常パラダイム24,25,31をなでる臭気+で複製されている。臭気+シングル鼻孔OCCとの訓練をなでるPDにlusionは、PD上の左右で非対称メモリへの6リード7 31。PD 3-6繰り返しの単一鼻孔閉塞は、少なくとも48〜24時間続く ​​長い左右で非対称メモリにつながる。

個別の動物での「スプリットブレイン」の左右で非対称匂い学習プロトコル結果。このモデルは、行動や基礎生物生理学的変化を研究するための優れた利点を有している。例えば、被験者内モデルを使用して、行動出力を比較することは十分に間に動物のデザインの変化を低減します。この早い年齢で子犬は彼らの活動と応答性がかなり異なる。イントラ動物管理、パフォーマンスと応答性に固有の個体差だけでなく、分子的及び生理的変化の評価から生物学の本質的な違いが削除されます。また、左右で非対称な学習のこの強力な乳児用モデルは、私たち個人の生理機能に個別のメモリ性能を関連付けるする機会を貸す、と目を評価するために異なる期間24,25,31の思い出の電子の基盤。同じ動物内の二つの半球の生理機能を比較するex vivoでの実験と組み合わせて、この左右で非対称に学習モデルを使用して、最近では、初期の臭気学習は、OB 31の両方においてシナプスでの増加したAMPA受容体応答としてシナプス可塑性を誘導することが実証されている、およびaPCの24,25。強化されたシナプス伝達後の初期臭気学習は24を表現嗅覚ネットワークで強調された出力に変換されます。

今後の研究は、この左右で非対称に学習モデルを用いた匂いメモリの分子基盤を探る必要があります。これは機能獲得及び機能喪失型のタンパク質および特定の目的の遺伝子の影響を見て相関するタンパク質を調べる研究や、次の学習を活性化される遺伝子、および因果的研究が含まれています。もう一つのエキサイティングで重要な可能性ができるtとすることですO行動メモリの強さに生理学的および分子変化を関連付ける。各子犬のためには、まず開いて、閉塞し鼻孔の優先メモリ尺度を導出することができる。対応する訓練を受け、訓練を受けていない皮質上でその後のex vivoでの実験は、相関生理的変化を提供するであろう。ことが可能であるが、それ自体を試験嗜好中にその臭気再暴露は、シナプス強度を変化させるか、または他の脳領域は、メモリの発現に大きく寄与する。私たちの現在の研究では、生理学や行動は、独​​立したコホートで実施している。これは、関心のある非常にパラメータに影響を与える行動試験についての懸念を取り除きます。

鼻のプラグを使用して、一つの注意点は、プラグの挿入と取り外しに関連している潜在的な神経組織の損傷である。このため、ケア挿入中に出血鼻栓及び仔の挿入で撮影されたはずの潜在的な長期エフを回避するために、除外されるべき炎症のような出血に関連付けられているfects。長期の閉塞は(時間は、月日)鼻孔または嗅上皮の永久的なアブレーションのは、これらの効果のいくつかは長期化のためにもかかわらず、長期的な嗅覚剥奪、神経損傷、およびOBにおける減少し、神経細胞の活動とPC 37-41につながる鼻孔閉塞39,40完全に可逆的である。急性鼻孔閉塞(〜15分)後の組織の整合性がpCREB、5日間の鼻孔閉塞39を以下の若い成体マウスのPCで減少することが示されている活性依存ニューロンマーカーの免疫組織化学染色によって検証されています。閉塞した鼻孔の同側OBやPC内のpCREBレベルは、鼻孔閉塞時の仔ラットで嗅覚スループットが正常に定位を確認、ペパーミント臭露光中に有意に少なかった。しかし、匂いの嗜好性試験時の鼻プラグの除去は、次の24時間、pCREBレベルは、iが同等であるnは両半球では、急性の閉塞の影響を示唆して24に完全に可逆的である。そのため、以前に閉塞鼻孔でテストペパーミントに優先性の欠如は、メモリが不足しているため、しかし変質または試験中に組織損傷に関連臭気知覚の欠如によるものではない。さらに、制御、O / Sの電気生理学的記録- (鼻孔がなでることなく、臭気露光中に閉塞1付き)動物はfEPSPsやカルシウムイメージングで見られる活性化された錐体細胞の数に差は認められなかった-また、梨状皮質には機能的な変化がない確認した原因これらの短期的な可逆鼻孔閉塞24,25へ。

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
Polythylene 20 tubing Intramedic 427406 Non-radiopaque, Non-toxic
3-0 Silk suture thread Syneture Sofsilk Non-absorbent
Silicone grease Warner Instrument 64-0378 Odorless
2% Xylocaine gel AstraZeneca Prod. No 061 Lidocaine hydrochloride jelly, purchased at local pharmacy
Paint brush Dynasty 206R Similar size/other brands work too
Peppermint extract Sigma-Aldrich W284807 Other brands should be okay too
Training box Custom-made N/A Acrylic box (20 x 20 x 5 cm3), see Figure 2A. Parameters and material for the box are not critical and can be modified. Material used should be odorless and does not absorb odors
Testing chamber Custom-made N/A Stainless steel (30 x 20 x 18 cm3), see Figure 2B. Parameters and material for the chamber are not critical and can be modified. For example, an acrylic chamber instead of a stainless steel one can be used
pCREB antibody Cell Signaling 9198 Ser 133 (87G3) Rabbit mAb
Chloral hydrate Sigma-Aldrich C8383 N/A
Paraformaldehype Sigma-Aldrich P6148 N/A
Sucrose Sigma-Aldrich S9378 N/A

DOWNLOAD MATERIALS LIST

References

  1. Gregory, E. H., Pfaff, D. W. Development of olfactory-guided behavior in infant rats. Physiol Behav. 6, 573-576 (1971).
  2. Alberts, J. R., May, B. Nonnutritive, thermotactile induction of filial huddling in rat pups. Dev Psychobiol. 17, 161-181 (1984).
  3. Galef, B. G., Kaner, H. C. Establishment and maintenance of preference for natural and artificial olfactory stimuli in juvenile rats. J Comp Physiol Psychol. 94, 588-595 (1980).
  4. Johanson, I. B., Hall, W. G. Appetitive learning in 1-day-old rat pups. Science. 205, 419-421 (1979).
  5. Johanson, I. B., Hall, W. G. Appetitive conditioning in neonatal rats: conditioned orientation to a novel odor. Dev Psychobiol. 15, 379-397 (1982).
  6. Johanson, I. B., Teicher, M. H. Classical conditioning of an odor preference in 3-day-old rats. Behav Neural Biol. 29, 132-136 (1980).
  7. McLean, J. H., Darby-King, A., Sullivan, R. M., King, S. R. Serotonergic influence on olfactory learning in the neonate rat. Behav Neural Biol. 60, 152-162 (1993).
  8. Moore, C. L., Power, K. L. Variation in maternal care and individual differences in play, exploration, and grooming of juvenile Norway rat offspring. Dev Psychobiol. 25, 165-182 (1992).
  9. Pedersen, P. E., Williams, C. L., Blass, E. M. Activation and odor conditioning of suckling behavior in 3-day-old albino rats. J Exp Psychol Anim Behav Process. 8, 329-341 (1982).
  10. Sullivan, R. M., Hall, W. G. Reinforcers in infancy: classical conditioning using stroking or intra-oral infusions of milk as UCS. Dev Psychobiol. 21, 215-223 (1988).
  11. Sullivan, R. M., Leon, M. Early olfactory learning induces an enhanced olfactory bulb response in young rats. Brain Res. 392, 278-282 (1986).
  12. Weldon, D. A., Travis, M. L., Kennedy, D. A. Posttraining D1 receptor blockade impairs odor conditioning in neonatal rats. Behav Neurosci. 105, 450-458 (1991).
  13. Sullivan, R. M., Hofer, M. A., Brake, S. C. Olfactory-guided orientation in neonatal rats is enhanced by a conditioned change in behavioral state. Dev Psychobiol. 19, 615-623 (1986).
  14. Camp, L. L., Rudy, J. W. Changes in the categorization of appetitive and aversive events during postnatal development of the rat. Dev Psychobiol. 21, 25-42 (1988).
  15. Moriceau, S., Wilson, D. A., Levine, S., Sullivan, R. M. Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala. J Neurosci. 26, 6737-6748 (2006).
  16. Roth, T. L., Sullivan, R. M. Endogenous opioids and their role in odor preference acquisition and consolidation following odor-shock conditioning in infant rats. Dev Psychobiol. 39, 188-198 (2001).
  17. Roth, T. L., Sullivan, R. M. Consolidation and expression of a shock-induced odor preference in rat pups is facilitated by opioids. Physiol Behav. 78, 135-142 (2003).
  18. Sullivan, R. M. Developing a sense of safety: the neurobiology of neonatal attachment. Ann N Y Acad Sci. 1008, 122-131 (2003).
  19. Wilson, D. A., Sullivan, R. M. Olfactory associative conditioning in infant rats with brain stimulation as reward. I. Neurobehavioral consequences. Brain Res Dev Brain Res. 53, 215-221 (1990).
  20. Sullivan, R. M., Wilson, D. A., Leon, M. Associative Processes in Early Olfactory Preference Acquisition: Neural and Behavioral Consequences. Psychobiology. , 29-33 (1989).
  21. McLean, J. H., Harley, C. W., Darby-King, A., Yuan, Q. pCREB in the neonate rat olfactory bulb is selectively and transiently increased by odor preference-conditioned training. Learn Mem. 6, 608-618 (1999).
  22. Sullivan, R. M., Stackenwalt, G., Nasr, F., Lemon, C., Wilson, D. A. Association of an odor with activation of olfactory bulb noradrenergic beta-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats. Behav Neurosci. 114, 957-962 (2000).
  23. Yuan, Q., Harley, C. W., McLean, J. H. Mitral cell beta1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem. 10, 5-15 (2003).
  24. Fontaine, C. J., Harley, C. W., Yuan, Q. Lateralized odor preference training in rat pups reveals an enhanced network response in anterior piriform cortex to olfactory input that parallels extended memory. J Neurosci. 33, 15126-15131 (2013).
  25. Morrison, G. L., Fontaine, C. J., Harley, C. W., Yuan, Q. A role for the anterior piriform cortex in early odor preference learning: evidence for multiple olfactory learning structures in the rat pup. J Neurophysiol. 110, 141-152 (2013).
  26. Nakamura, S., Kimura, F., Sakaguchi, T. Postnatal development of electrical activity in the locus ceruleus. J Neurophysiol. 58, 510-524 (1987).
  27. Harley, C. W., Darby-King, A., McCann, J., McLean, J. H. Beta1-adrenoceptor or alpha1-adrenoceptor activation initiates early odor preference learning in rat pups: support for the mitral cell/cAMP model of odor preference learning. Learn Mem. 13, 8-13 (2006).
  28. Shakhawat, A. M., Harley, C. W., Yuan, Q. Olfactory bulb alpha2-adrenoceptor activation promotes rat pup odor-preference learning via a cAMP-independent mechanism. Learn Mem. 19, 499-502 (2012).
  29. Isaacson, J. S. Odor representations in mammalian cortical circuits. Curr Opin Neurobiol. 20, 328-331 (2010).
  30. Lethbridge, R., Hou, Q., Harley, C. W., Yuan, Q. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat. PLoS One. 7, e35024 (2012).
  31. Yuan, Q., Harley, C. W. What a nostril knows: olfactory nerve-evoked AMPA responses increase while NMDA responses decrease at 24-h post-training for lateralized odor preference memory in neonate rat. Learn Mem. 19, 50-53 (2012).
  32. Schwob, J. E., Price, J. L. The development of axonal connections in the central olfactory system of rats. J Comp Neurol. 223, 177-202 (1984).
  33. Kucharski, D., Hall, W. G. New routes to early memories. Science. 238, 786-788 (1987).
  34. Kucharski, D., Johanson, I. B., Hall, W. G. Unilateral olfactory conditioning in 6-day-old rat pups. Behav Neural Biol. 46, 472-490 (1986).
  35. Cummings, D. M., Henning, H. E., Brunjes, P. C. Olfactory bulb recovery after early sensory deprivation. J Neurosci. 17, 7433-7440 (1997).
  36. Kucharski, D., Hall, W. G. Developmental change in the access to olfactory memories. Behav Neurosci. 102, 340-348 (1988).
  37. Brunjes, P. C. Unilateral odor deprivation: time course of changes in laminar volume. Brain Res Bull. 14, 233-237 (1985).
  38. Kass, M. D., Pottackal, J., Turkel, D. J., McGann, J. P. Changes in the neural representation of odorants after olfactory deprivation in the adult mouse olfactory bulb. Chem Senses. 38, 77-89 (2013).
  39. Kim, H. H., Puche, A. C., Margolis, F. L. Odorant deprivation reversibly modulates transsynaptic changes in the NR2B-mediated CREB pathway in mouse piriform cortex. J Neurosci. 26, 9548-9559 (2006).
  40. Korol, D. L., Brunjes, P. C. Rapid changes in 2-deoxyglucose uptake and amino acid incorporation following unilateral odor deprivation: a laminar analysis. Brain Res Dev Brain Res. 52, 75-84 (1990).
  41. Leung, C. H., Wilson, D. A. Trans-neuronal regulation of cortical apoptosis in the adult rat olfactory system. Brain Res. 984, 182-188 (2003).

Tags

神経科学、問題90、左右で非対称匂い学習、ラット、メモリ、鼻栓、嗅球、梨状皮質、リン酸化されたCREB
神経回路基盤記憶形成を解剖するための新生児ラットの左右で非対称匂い学習モデル
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Fontaine, C. J., Mukherjee, B.,More

Fontaine, C. J., Mukherjee, B., Morrison, G. L., Yuan, Q. A Lateralized Odor Learning Model in Neonatal Rats for Dissecting Neural Circuitry Underpinning Memory Formation. J. Vis. Exp. (90), e51808, doi:10.3791/51808 (2014).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter