Summary

全口义齿的2-甲基丙烯酰磷酰胆碱聚合物处理,以抑制义齿斑块沉积

Published: December 26, 2016
doi:

Summary

Removable poly(methyl methacrylate) (PMMA) dentures are prone to bacterial adherence and plaque formation. Denture plaque-associated infection is a source of serious dental and medical complications in the elderly. This paper introduces a novel protocol to treat PMMA dentures with 2-methacryloyloxyethyl phosphorylcholine polymer, poly(MPC-co-BMA-co-MPAz), to suppress plaque deposition on PMMA dentures.

Abstract

Removable dentures made of poly (methyl methacrylate) (PMMA) are prone to bacterial adherence and dental plaque formation, which is called denture plaque. Denture plaque-associated infection is a source of serious dental and medical complications in the elderly. 2-Methacryloyloxyethyl phosphorylcholine (MPC) is a well-known biomedical material that exhibits marked antithrombogenicity and tissue compatibility because of its high resistance to protein adsorption and cell adhesion. Therefore, MPC polymer coatings are suggested to have the potential to inhibit plaque deposition on the surface of PMMA dentures. However, coating MPC polymer on the surface of a PMMA denture is a complex procedure that requires specialized equipment, which is regarded as a major barrier to its clinical application.

Here, we introduce a new MPC polymer treatment procedure that uses poly (MPC-co-BMA-co-MPAz) (PMBPAz) to prevent denture plaque deposition on removable dentures. This procedure enables the MPC coating of PMMA denture surfaces in a simple and stable manner that is resistant to various chemical and mechanical stresses due to the MPC layer of PMBPAz that is covalently bound to the PMMA surface by ultraviolet light irradiation. In addition, the procedure does not require any specialized equipment and can be completed by clinicians within 2 min. We applied this procedure in a clinical setting and demonstrated its clinical utility and efficacy in inhibiting plaque deposition on removable dentures.

Introduction

口腔护理对预防在体弱的老人机会性感染和吸入性肺炎的重要作用。口腔护理,包括每餐后刷牙,清洗假牙,和接收专业口腔保健,在减少此类疾病1-3的发病率的一个重要的角色。尤其是口腔卫生不良强烈吸入性肺炎在体弱的老人有关。因此,更应重视对口腔健康护理老年病人,谁都有自己4清洁假牙自己的能力有限。

即使在发达国家,采用亚克力,树脂类义齿的仍然是无牙老年患者5最常见的治疗选择。鉴于它们的高吸水能力,微孔表面,和疏水性质,丙烯酸义齿基托从聚甲基丙烯酸甲酯构成(PMMA)容易积聚在其表面,这就是所谓的假牙牌匾上牙菌斑。

2-甲基丙烯酰磷酸胆碱(MPC)聚合物是公知的生物聚合物材料6具有因为它们对蛋白质的吸附和细胞粘附7-11高电阻的显着的抗血栓和组织相容性。 MPC聚合物涂层已经在各种医疗设备被应用,以防止感染12和已建议有防止对聚甲基丙烯酸甲酯义齿表面13义齿菌斑积累的潜力。在临床应用中的MPC聚合物的聚甲基丙烯酸甲酯假牙的挑战是要可靠地将它们绑定到聚甲基丙烯酸甲酯以简单和稳定的方式面。先前,报道的MPC聚合物通过接枝技术可以稳定地结合到聚甲基丙烯酸甲酯的表面和具有抑制牙斑积聚的可能性。然而,接枝技术并不简单,需要专门的设备,WHICH使得其临床应用的挑战。这里,我们描述了利用光反应性磷脂的聚合物,具体地说,就是光反应性甲基丙烯酸酯衍生物,2-甲基丙烯酰-4- azidobenzoate(MPAz)-synthesized完成各种不同类型的材料的表面修饰的一个新的MPC涂层过程。 MPAz是共聚合与MPC聚合物和甲基丙烯酸正丁酯(BMA),得到聚(MPC- 共同 -BMA- -MPAz)(PMBPAz)。 PMBPAz可通过紫外(UV)光照射14下MPAz所述叠氮基团的活化共价结合到聚甲基丙烯酸甲酯假牙的表面上。该过程不需要任何专门的设备,并且可以通过临床医生2分钟内完成。我们还在临床应用这个过程,并展示了其临床效用和功效在义齿抑制斑块沉积。

Protocol

1. PMBPAz溶液的制备(图1) 合成MPC继先前报告的工业过程15。 使用在乙醇MPC,BMA,和MPAz的常规自由基聚合合成光反应的MPC聚合物PMBPAz,如前所述14。 注:PMBPAz应含有上述单体单元的60%,30%和10%(摩尔%),分别为。冷藏PMBPAz溶解在乙醇中以制备在使用前用0.5%(重量)溶液。 处理的PMMA表面之前,允许PMBPAz乙醇溶液放置在室温下30分钟。 <…

Representative Results

PMBPAz处理使PMMA的MPC涂层表面通过简单的和短期的方法并维持MPC聚合物的菌斑抑制作用。此过程不需要任何专门的设备,并且可以通过临床医生2分钟内进行椅侧。以下协议步骤2中,PMBPAz治疗11例无牙颌可拆卸全口义齿在临床上成功地进行,没有任何实质性的问题。控制假牙的粘膜和抛光的表面上的平均百分比菌斑指数分别为40.7%±19.9%和28.0%±16.8%,而那些PMBPAz处理的?…

Discussion

在PMBPAz涂料机制

它是具有挑战性的结合的MPC聚合物为聚甲基丙烯酸甲酯表面以简单和稳定的方式。这里,我们使用一个新的光反应性单体轴承phenylazide基,MPAz,它通过常规的自由基聚合过程与其它单体聚合,得到具有phenylazide侧链的聚合物。的phenylazide组由紫外线照射分解形成氮宾基团,其是可以共价结合到烷基高度反应性的自由基团。因此,含有MPAz单元基于MPC-聚合物可结合于…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者要感谢所有的参与者,牙医和助手为他们参与这项研究。我们衷心感谢广隆桑田教授和助理伊藤博文森崎教授,口腔微生物学系和免疫学,牙科昭和大学,他们的支持。

Materials

Ultrasonic Cleaner Aiwa Medical Engineering AU-12C Clean in distilled water before stain the denture
UVP UV Crosslinker DL-1000 Funakoshi 95-0174-03 UV light irradiation for 2min before use
Lightbox S Suntec 6542 capturing in this box after stain the denture
Adobe Photoshop CS6 Extended Adobe Calucurate and quantify

References

  1. Watando, A., et al. Daily oral care and cough reflex sensitivity in elderly nursing home patients. Chest. 126, 1066-1070 (2004).
  2. Bassim, C. W., Gibson, G., Ward, T., Paphides, B. M., DeNucci, D. J. Modification of the risk of mortality from pneumonia with oral hygiene care. J. Am. Geriatr. Soc. 56, 1601-1607 (2008).
  3. Ishikawa, A., Yoneyama, T., Hirota, K., Miyake, Y., Miyatake, K. Professional oral health care reduces the number of oropharyngeal bacteria. J. Dent. Res. 87, 594-598 (2008).
  4. Hosokawa, R. Prosthodontic interventions for special-needs patients. J Prosthodont Res. 58, 69-70 (2014).
  5. Parvizi, A., Lindquist, T., Schneider, R., Williamson, D., Boyer, D., Dawson, D. V. Comparison of the dimensional accuracy of injection-molded denture base materials to that of conventional pressure-pack acrylic resin. J. Prosthodont. 13, 83-89 (2004).
  6. Ishihara, K., Ueda, T., Nakabayashi, N. Preparation of phospholipid polylmers and their properties as polymer hydrogel membranes. Polym. J. 22, 355-360 (1990).
  7. Ishihara, K., Aragaki, R., Ueda, T., Watenabe, A., Nakabayashi, N. Reduced thrombogenicity of polymers having phospholipid polar groups. J. Biomed. Mater. Res. 24 (8), 1069-1077 (1990).
  8. Ishihara, K., Ziats, N. P., Tierney, B. P., Nakabayashi, N., Anderson, J. M. Protein adsorption from human plasma is reduced on phospholipid polymers. J. Biomed. Mater. Res. 25 (11), 1397-1407 (1991).
  9. Ishihara, K., Nomura, H., Mihara, T., Kurita, K., Iwasaki, Y., Nakabayashi, N. Why do phospholipid polymers reduce protein adsorption?. J. Biomed. Mater. Res. 39 (2), 323-330 (1998).
  10. Ishihara, K. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. Sci. Technol. Adv. Mater. 1 (3), 131-138 (2000).
  11. Iwasaki, Y., Ishihara, K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci. Technol. Adv. Mater. 13 (6), 064101 (10pp) (2012).
  12. Zhang, N., Chen, C., Melo, M. A., et al. A novel protein-repellent dental composite containing 2-methacryloyloxyethyl phosphorylcholine. Int J Oral Sci. 7, 103-109 (2015).
  13. Hirota, K., Yumoto, H., Miyamoto, K., et al. MPC-polymer reduces adherence and biofilm formation by oral bacteria. J Dent Res. 90, 900-905 (2011).
  14. Fukazawa, K., Ishihara, K. Synthesis of photoreactive phospholipid polymers for use in versatile surface modification of various materials to obtain extreme wettability. ACS Appl. Mater. Interfaces. 5 (15), 6832-6836 (2013).
  15. Ishihara, K., Ueda, T., Nakabayashi, N. Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym. J. 22 (5), 355-360 (1990).
  16. Coulthwaite, L., Verran, J. Evaluation of in vivo denture plaque assessment methods. Br Dent J. 207 (E12), 282-283 (2009).
  17. He, D., Susanto, H., Ulbricht, M. Photo-irradiation for preparation, modification and stimulation of polymeric membranes. Prog Polym Sci. 34, 62-98 (2009).
  18. Nakayama, Y. Surface macromolecular architectural designs using photo-graft copolymerization based on photochemistry of benzyl N,N-diethyldithiocarbamate. Macromolecules. 29, 8622-8630 (1996).
  19. Takahashi, N., Iwasa, F., Inoue, Y., Morisaki, H., Ishihara, K., Baba, K. Evaluation of the durability and antiadhesive action of 2-methacryloyloxyethyl phosphorylcholine grafting on an acrylic resin denture base. J. Prosthet. Dent. 112 (2), 194-203 (2014).

Play Video

Cite This Article
Ikeya, K., Fukunishi, M., Iwasa, F., Inoue, Y., Ishihara, K., Baba, K. 2-Methacryloyloxyethyl Phosphorylcholine Polymer Treatment of Complete Dentures to Inhibit Denture Plaque Deposition. J. Vis. Exp. (118), e54965, doi:10.3791/54965 (2016).

View Video