Problems in the processing of biological samples for scanning electron microscopy observation include cell collapse, treatment of samples from wet microenvironments and cell destruction. Low-cost and relatively rapid protocols suited for preparing challenging samples such as floral meristems, oomycete cysts, and fungi (Agaricales) are compiled and detailed here.
Common problems in the processing of biological samples for observations with the scanning electron microscope (SEM) include cell collapse, treatment of samples from wet microenvironments and cell destruction. Using young floral tissues, oomycete cysts, and fungi spores (Agaricales) as examples, specific protocols to process delicate samples are described here that overcome some of the main challenges in sample treatment for image capture under the SEM.
Floral meristems fixed with FAA (Formalin-Acetic-Alcohol) and processed with the Critical Point Dryer (CPD) did not display collapsed cellular walls or distorted organs. These results are crucial for the reconstruction of floral development. A similar CPD-based treatment of samples from wet microenvironments, such as the glutaraldehyde-fixed oomycete cysts, is optimal to test the differential growth of diagnostic characteristics (e.g., the cyst spines) on different types of substrates. Destruction of nurse cells attached to fungi spores was avoided after rehydration, dehydration, and the CPD treatment, an important step for further functional studies of these cells.
The protocols detailed here represent low-cost and rapid alternatives for the acquisition of good-quality images to reconstruct growth processes and to study diagnostic characteristics.
In biology, the use of scanning electron microscopy (SEM) has been extended to studies of structural evolution, comparative morphology, organ development, and characterization of populations or species1. With its two-dimensional view of microscopic structures, areas such as micromorphology and systematics profited from SEM technique advances since the second half of the 20th century. For example, the introduction of the sputter coating methodology in the 1970s made possible observations of delicate materials such as shoot apices and flowers enhancing the imaging of non-conductive tissues2,3. SEM uses electrons ejected from the surface of the specimen to reproduce the topography in a high-vacuum environment4.
Studies involving SEM are focused in both the inference of structural characters and the reconstruction of growth processes. New structural characters relevant to the taxonomy and systematics of a wide range of organisms have been discovered from SEM observations. For example, plant traits used for species diagnosis or supraspecific classifications, such as the vestured pits of wood5, stigma diversity6, nectary and floral morphology7,8, trichome details9, and pollen grains10,11, cannot be properly visualized without SEM. Successful observations with conventional SEM have been also achieved for long-time formalin-fixed organisms12 and plant herbarium specimens13.
On the other hand, studies of reconstruction of growth processes using SEM involve a wide range of topics, such as organ development14, infections induced by bacteria15, plant root physiology16, parasite-host attachment mechanisms17,18, drug effects on parasites19, mycoparasitism and antibiosis20,21, growth malformation22, comparative development of wild and mutant individuals23, and entire life cycles24. Although environmental scanning electron microscopes (ESEM)25 may have important advantages for the observation of wet biological samples in growth processes, delicate material may still be compromised even in the low vacuum condition of the ESEM), and need to be processed adequately to avoid loss of valuable morphological observation.
In this paper, a review of specific protocols for SEM observation of three different types of samples is presented: floral meristems, oomycetes (Saprolegnia), and fungal material. These protocols compile the experience of our previous SEM-based studies26,27,28,29,30,31,32,33, where specific difficulties and alternative solutions have been found. In the case of plant comparative developmental and structural studies, the use of SEM started in the 1970s34,35, and since then, researchers discovered that certain floral features are more labile than previously thought36. Reconstruction of floral development involves the capture of all stages between young floral meristems and anthesis. To reach this aim, it is essential that the sample topography and the cell wall integrity are not compromised after the fixation and subsequent dehydration. Young floral meristems are particularly vulnerable to cell wall collapse (Figures 1a, 1b). Similarly, delicate structures such as nectaries, petals, stigmas and sporangia require effective and undamaging protocols. This review summarizes an optimal protocol to keep young and delicate tissues intact for SEM imaging.
In the case of the oomycetes (Stramenopiles)-one of the most diverse and widespread groups of parasites, with hosts ranging from microbes and plants to invertebrates and vertebrates37– there are spores that grow and develop in a wet environment. This condition represents a challenge for SEM observation because the spores need an adequate substrate not suitable for standard SEM protocols. Among the oomycetes, species of Saprolegnia are of particular interest because they can cause severe reductions in aquacultures, fisheries, and amphibian populations38. Micromorphological characteristics, such as the hooked spines of cysts, have been found to be useful to identify species of Saprolegnia, which is fundamental to establish infection controls and potential treatments39. Here, there is an experimental protocol to compare the patterns of the spine growth of cysts on different substrates and to manipulate the sample for critical point dryer (CPD) preparation and subsequent SEM observation.
In a third case, there are interesting findings that came up after an inspection of the spores of the fungi Phellorinia herculanea f. stellata f. nova (Agaricales)31. Together with the spores, a group of unexpected nursery cells was identified under the SEM. With previous traditional protocols and untreated material, the nurse cells came out completely collapsed (Figure 1c). Further inferences about particular tissues associated to the spores can be made with the simple but crucial modifications to the standard approaches described here (Figure 1d).
In this review, there are detailed SEM protocols that can be used to deal with different problems associated with SEM observation in angiosperms, oomycetes, and Agaricales, such as cell collapse and meristematic tissue shrinking, non-optimal growth of cyst spines, and destruction of ephemeral tissues, respectively.
Figure 1: Comparison of samples treated without (a, c) and with (b, d) the protocol FAA-ethanol-CPD. (a–b) Floral buds of Anacyclus clavatus, mid-development. Bud treated with osmium tetroxide46 (a) and bud treated with the FAA-CPD protocol (b). (c–d) Nurse cells with spores of Phellorinia herculanea f. stellata. Dried samples without any treatment (c) and with the protocol here described for Agaricales (d). Spores in orange. Scales: (a-b) 100 µm, (c-d) 50 µm. Photos were taken by Y. Ruiz-León. Please click here to view a larger version of this figure.
NOTE: This protocol includes six main sections, three devoted to specific organisms (sections 1-3), and three describing the procedures common to all (4-6). Asterisks (*) indicate steps modified by the experimenters.
1. Studies of Developing and Fully Formed Plant Structures
Figure 2: Tools for sample manipulation and processing before SEM observation. (a) Steel-made specimen container with holed walls for the ethanol/CO2 interchange in the CPD chamber. (b) Steel stubs within a plastic specimen holder. (c) Glass container used to keep the samples protected from humidity and dust. At the base, there is a compartment for silica gel. (d) Critical Point Dryer. In the front, there are (from left to right) the manometer, the power switch, the temperature control system, and the temperature display. Usual working pressure for CO2-ethanol interchange is 60 bars (800 psi). In the top, there are four valves (inlet, drain, ventilation, and exhaust controls) flanking the central sample chamber. Photos were taken by Y. Ruiz-León and M.A. Bello. Please click here to view a larger version of this figure.
2. Study of Cyst Behavior of Saprolegnia (Oomycetes) on Different Surfaces
3. Study of Herbarium Fungal Spores of Phellorinia herculanea under SEM
4. Drying of Material Using a Critical Point Dryer (CPD, Figure 2d)
5. Coating the Samples with Gold Using the Sputter Coater (Figure 3a)
Figure 3: Sputter coater (a) and scanning electron microscope (b). (a) Front view of the vacuum chamber (left), gas valve, timer, vacuum, and current controls. (b) Side view of the SEM main components (from left to right): the vacuum column with the sample chamber, the computer screen with the controls, and the chamber's monitor. Photos were taken by Y. Ruiz-León. Please click here to view a larger version of this figure.
6. Observation under the Scanning Electron Microscope (SEM, Figure 3b)
Floral Development and Fixation of Developing and Fully Formed Plant Structures
Using the FAA-CPD protocol described here, young and mature plant tissues are optimally fixed and dehydrated for SEM imaging. Processes such as floral development can be reconstructed because the topography and shape of the buds is not distorted by cell shrinking (Figures 1b, 1d, 4a-f). Structures with complex shapes can be successfully covered with a uniform layer of conductive material (the metal from the sputter coater), allowing the recovery of otherwise unreachable details (Figures 4g-I, 5e). Good quality images of samples coming from wet microenvironments, which used to be overcharged with the electron current if badly dehydrated and coated, can be achieved (Figures 4f, 5a, 5b). Important details such as the pollen wall surface (Figure 5b, 5c) and different types of indumenta (Figures 5d-g) can be studied in depth without artificial or undesirable particles or distorted shapes.
Figure 4: Early (a, b), mid (c-e), and late (f-i) floral development captured under the SEM. (a) Raceme of Caesalpinia spinosa (Molina) Kuntze with several floral meristems. (b) Top view of a young raceme Polygala violacea Aubl. (c) Floral bud of Krameria ixine Loefl. during gynoecium differentiation. (d–e) Buds of Erythrina sp. (f) Side view of a flower of Krameria ixine. The anthers and style protrude. (g–i) Hoya carnosa (L.) R. Brown. (g) Flower at anthesis (digital image taken with a Olympus SP-590UZ 26X). (h) Top view of the stamens and split carpels. (i) Side view of a pair of stamens flanking two carpels. Asterisks indicate stamens. g = gynoecium. Scales: (a,i) 1 mm, (b, d) 400 µm, (c) 200 µm, (e) 500 µm, (f, h) 2 mm, (g) 0.25 cm. Photos were taken by M.A. Bello. Please click here to view a larger version of this figure.
Figure 5: SEM micrographs of sporangia and pollen (a, b), detailed surfaces (c-e), and indumenta (f–g). (a) Sporangia of Dryopteris sp. (b) Pollen of Prunus dulcis D. A. Webb landing on stigma. (c) Pollen of Nepenthes alata Blanco. (d) Side view of an inflorescence of Erigeron karvinskianus DC. Image taken with BSE detector option. (e) Side view of the bryophyte Peristoma sp. (f) Glandular and no-glandular trichomes on the abaxial surface of a leaf of Rosmarinus officinalis L. (g) Top view of the leaf flat scales of Olea europaea L. Scales: (a) 400 µm, (b) 60 µm, (c) 5 µm, (d) 4 mm, (e) 600 µm, (f) 200 µm, (g) 600 µm. Photos were taken by Y. Ruiz-León. Please click here to view a larger version of this figure.
Effect of Different Substrates on the Spine Growth of Secondary Cysts Saprolegnia parasitica
The spine growth pattern was different on different substrates. On glass, the spines were elongated and showed loops at their tips (Table 1, Figure 6a). On the carbon and gold grids the spines are shorter, curled and grow more abundantly around the cysts without forming loops (Figures 6b, 6d). Although on copper grids, the spines tended to curl without looping, some of them elongated (Figure 6c). On fish scales, the spines were curly, abundant around the surface and sometimes formed looped ends (Figure 6e-f).
Figure 6: Differential growth patterns of the spines of Saprolegnia parasitica in cysts immersed in liquid media. (a) Glass. (b) Carbon. (c) Copper. (d) Gold. (e) Hake scale. (f) Salmon scale. Straight spines were developed on glass and copper, whereas curled spines were formed on carbon, gold, and fish scales. The hooked tips (white arrows) of the spines are observable in all spines growing on glass and in few spines on fish scales. The cyst walls are in yellow. Scale: 20 µm. Photos were taken by Y. Ruiz-León and S. Rezinciuc. Please click here to view a larger version of this figure.
Surface | Spine morphology | |
Elongation | Loop at the tip | |
Glass cover | Good elongation, spines easy to count | Present |
Fish scales | Spines with curly shape not easy to count | Present |
TEM grids | Short and curly spines not easy to count | Absent |
Table 1: Spine morphology using different types of substrate.
Unexpected Observations in Phellorinia herculanea f. stellata
Apart from the unexpected finding of laticiferous hyphae on the exoperidium of P. herculanea, Calonge et al.31 found globose and smooth nurse cells (8-13 µm) mixed with spores in the material dehydrated with CPD thanks to the rehydration step performed in the microwave. (Figure 1d). The structure and details of the walls of the nurse cells and the spores are well preserved despite their differential composition (Figures 1c-d).
With respect to standard SEM protocols, the procedures presented here include relatively rapid, easy to follow, and low-cost methodologies. Depending on the amount of samples and on the ease of processing, it takes four to five days to acquire good quality images. Including adequate safety precautions for the CPD and SEM operation, the procedures are easy to handle. Particular caution should be taken with formalin and the glutaraldehyde (see steps 1.1.1 to 1.1.3 and 2.1.5 of the protocol). There are certain steps where, if necessary, the process can be stopped for a long time without damaging the samples or ruining previous steps (e.g., steps 1.1.5, 1.2.3, and 1.3.5). In terms of cost, much of the equipment can be reused for several preparations (e.g., CPD aluminum containers and stub holders), and the reagents are non-expensive chemicals available from all commercial suppliers.
Disadvantages of these procedures are the need for proper chemical waste disposal for the aldehydes and the ethanol and the lack of key supplies and the limitations of the technique. Materials such as the gold disk for the sputter coater and the CO2 cylinder for the CPD should be checked well in advance. If they are in continuous use, the laboratory will require multiple stocks of them, which eventually elevates the costs. Because individual researchers often cannot justify the expenses derived from the maintenance of these types of supplies, or they simply do not need to use the SEM continuously, these procedures nowadays tend to be performed in laboratories with external electron microscopy services.
The observation technique of the SEM is limited to a high magnification study of surfaces. If internal tissues need to be observed, the samples should be cut in the proper way to explore the external appearance of the internal tissues. To explore internal aspects of the cells at high magnification, a transmission electron microscope (TEM) is required. Critical steps within the protocol are the proper fixation and dehydration of the samples before CPD treatment, where it is crucial to keep the tissues safe from shocking changes and direct contact with the air. Also, careful management of the pressure change in the CPD sample chamber and the amount of coating deposited on different types of samples is important.
Despite these limitations and special manipulations, the study of biological samples with SEM following the protocols described here allows for the resolution of some common problems, such as the cell wall and organ distortion (Figures 1, 4, 5), the restrictions on the observation and growth of structures coming from wet and liquid environments (Figures 5, 6), and the destruction of sensitive cells (Figures 1c, 1d).
The protocols presented here have allowed the reinterpretation and questioning of traditional taxonomic characteristics, such as the spine structure in cysts of Saprolegnia47. The differential growth pattern of the Saprolegnia spines on different surfaces demonstrates the lability of this feature and its limitations for species diagnosis. In addition to the capture of relevant characteristics for taxonomic studies, stages of organ development, and infectious diseases, functions of tissues never observed before have been explored thanks to these techniques. Now, this protocol can be extended to thousands of case studies waiting to be examined33. According to the peer-reviewed literature database Scopus, in the last the last five years there have been 7,425 publications of papers dealing with SEM imaging of plants (4,914), oomycetes (21) and fungi (2,490). This fact suggests that research in oomycetes using the SEM imaging is still very scarce in comparison with plants and fungi. With ESEM, the numbers are even lower. There are 588 manuscripts in the same time span: 337 in plants, 1 in oomycetes and 250 in fungi.
The authors have nothing to disclose.
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 634429. This publication reflects the views only of the author, and the European Commission cannot be held responsible for any use which may be made of the information contained therein. We also acknowledge the financial contribution made by the Real Jardín Botánico, CSIC. SR is grateful to the European Union [ITN-SAPRO-238550] for the support of her research in Saprolegnia. We also want to thank Francisco Calonge for kindly provide the Phellorinia herculanea images and B. Pueyo for processing samples (Figure 5). All images were taken by the SEM service at the Real Jardín Botánico-CSIC in Madrid.
Acetic acid | No specific supplier | Skin irritation, eye irritation | |
aluminium stubs | Ted Pella, Inc. | 16221 | www.tedpella.com |
Centrifuge tubes | No specific supplier | ||
Critical Point Dryer | Polaron Quatum Technologies | CPD7501 | |
D (+) Glucose | Merck | 1,083,421,000 | |
Double sided sellotape | No specific supplier | ||
Ethanol absolute | No specific supplier. | Flammable | |
European bacteriological agar | Conda | 1800.00 | www.condalab.com |
Filter paper | No specific supplier | ||
Forceps | No specific supplier | ||
Formalin 4% | No specific supplier. | Harmful, acute toxicity, skin sensitisation, carcinogenicity. Flammable | |
Glass cover slips | No specific supplier | ||
Glass hermetic container | No specific supplier | ||
Glutaraldehyde 25% DC 253857.1611 (L) | Dismadel S.L. | 3336 | www.dismadel.com |
Mycological peptone | Conda | 1922.00 | www.condalab.com |
needles | No specific supplier | ||
Petri dishes | No specific supplier | ||
Plastic containers | No specific supplier | ||
Sample holder with lid for the critical point dryer | Ted Pella, Inc. | 4591 | www.tedpella.com |
scalpels | No specific supplier | ||
Scanning Electron Microscope | Hitachi | S3000N | |
Software for SEM | |||
Solution A: NaH2PO4 | |||
Solution B: Na2HPO4 | |||
Specimen holders | No specific supplier | ||
Sputter coater | Balzers | SCD 004 | |
Stereomicroscope | No specific supplier | ||
Transmission Electron Microscope (TEM) grids | Electron Microscopy Sciences | G200 (Square Mesh) | www.emsdiassum.com |
Tweezers | No specific supplier |