Summary

一种组合单细胞法表征人茎和祖种群的分子和免疫表型异质性

Published: October 25, 2018
doi:

Summary

大体积基因表达测量在异构细胞种群中云个体细胞差异。在这里, 我们描述了一个关于如何通过花期活化细胞分类 (immunophenotypically) 的单细胞基因表达分析和指数排序的协议, 以描绘异质性和分子不同细胞种群的特征。

Abstract

免疫表型表征和分子分析长期以来被用来描绘异质性和定义不同的细胞种群。流式细胞法本质上是单细胞检测, 但在分子分析之前, 靶细胞通常是预先分离的, 从而失去单细胞分辨率。单细胞基因表达分析提供了一种方法来了解异质细胞种群中单个细胞之间的分子差异。在大容量细胞分析中, 不同细胞类型的过多会导致稀有细胞的信号偏倚和闭塞, 具有生物学重要性。利用流化指数分选与单细胞基因表达分析相结合, 可以在不损失单细胞分辨率的情况下研究种群, 同时捕获具有中间细胞表面标记表达的细胞, 从而使评估连续曲面标记表达式的相关性。在这里, 我们描述了一种方法, 结合单细胞逆转录定量 PCR (rt-pcr) 和流化酶指数排序, 同时表征细胞种群内的分子和免疫表型异质性。

与单细胞 RNA 测序方法不同的是, 使用具有特定靶向扩增的 qPCR, 可以对低丰度的转录物进行稳健的测量, 减少辍学量, 同时不混淆读深度。此外, 通过直接将单细胞分选成裂解缓冲液, 这种方法可以在一步内进行 cDNA 合成和特定靶向扩增, 以及随后的分子特征与细胞表面的相关性标记表达式。所描述的方法是研究造血单细胞, 但也被成功地用于其他细胞类型。

总之, 本文所述的方法允许对预先选择的基因组进行 mRNA 表达的敏感测量, 并有可能开发用于随后的分子不同亚群的未来分离的协议。

Introduction

每个单独的血细胞被认为驻留在细胞的层次结构中, 其中干细胞形成了一系列日益承诺的中间祖细胞顶部的顶点, 最终分化成具有特定的最终效应细胞生物功能1。许多关于干细胞系统是如何组织的知识是在造血系统中产生的, 这主要是因为能够前瞻性地隔离高浓度的干细胞或各种祖细胞的不同造血种群2的排序。这允许许多这些人口被分析功能或分子, 主要通过基因表达分析3,4。然而, 当分析大体积种群的基因表达时, 细胞间的个体差异平均为5, 损失较大。因此, 如果细胞的小子集占该种群6的推断生物学功能, 那么无法检测异质细胞分数内的细胞对细胞的变化可能会混淆我们对关键生物过程的理解, 7。相反, 在单细胞分辨率的基因表达特征的研究提供了一种可能性, 描绘异质性和规避遮蔽影响从8个以上的单元格子集。

迄今已开发出许多单细胞基因表达分析的协议;每种方法都有自己的注意事项。最早的方法是 rna 荧光原位杂交 (rna-鱼), 它一次测量有限数量的转录, 但它是唯一的, 它允许调查 RNA 本地化9,11。早期的方法使用 PCR 和 qPCR 检测单个或很少的转录, 也开发了12。然而, 这些最近被取代了基于微流体的方法, 可以同时分析数以百计的每细胞在数以百计的细胞通过 qPCR 的表达, 从而允许高维异质性分析使用预先确定的基因面板10,13。最近, 基于 RNA 测序技术已广泛用于单细胞分析, 因为这些理论可以测量细胞的整个转录组, 从而为异质性分析10添加探索维度, 14. 复用的 qPCR 分析和单细胞 RNA 测序具有不同的特征, 因此使用这两种方法的基本原理取决于所问的问题以及目标种群中的细胞数量。当未知细胞或大种群被调查时, 每个细胞的高通量和低成本以及无偏的、探索性的单细胞 RNA 测序特性是可取的。然而, 单细胞 RNA 测序也偏向于更频繁地测序高丰富的转录, 而低丰度的成绩单容易辍学。这可能导致相当复杂的数据, 使高要求的生物信息学分析, 以揭示重要的分子信号, 往往微妙或隐藏在技术噪声15。因此, 对于特征良好的组织, 使用预先确定的底漆面板选择用于功能重要基因或分子标记的单细胞 qPCR 分析可以作为一种敏感、直接的方法来确定人口。然而, 应该指出的是, 与单细胞 RNA 序列相比, 单细胞的 qPCR 方法的每个细胞的成本通常更高。在这里, 我们描述了一种结合单细胞 rt-pcr 的方法 (从 Teles J. 16), 将指数排序17和生物信息学分析18 , 以同时表征种群内的分子和免疫表型异质性。

在这种方法中, 细胞种群的兴趣被染色, 单细胞通过直接在96孔 PCR 板的裂解缓冲液中进行排序。同时, 在流式排序过程中, 为每个单个单元记录一组附加的单元表面标记的表达式级别, 该方法称为索引排序。随后用微流控平台对裂解细胞材料进行扩增, 并用 rt-pcr 分析了选定基因组的基因表达。该策略可对已排序的单细胞进行分子分析, 同时表征每个细胞的细胞表面标记表达。通过直接将分子不同的细胞子集映射到索引排序标记的表达式, 可以将亚群链接到可用于潜在隔离的特定免疫表型。图 1中逐步概述了该方法。预先确定的基因面板进一步有助于更高分辨率的靶向基因表达, 因为它绕过不相关的丰富的基因的测量, 否则可能咬合微妙的基因表达信号。此外, 具体的靶向放大、一步反转转录和扩增允许对低表达转录物 (如转录因子或非聚仍然 rna) 进行稳健测量。重要的是, qPCR 方法允许测量融合蛋白的 mRNA, 这在调查某些恶性疾病时非常重要19。最后, 被调查的基因的重点数量, 低辍学率, 和有限的技术差异的细胞使这种方法容易分析相比, 更高的维度方法, 如单细胞 RNA-通过遵循该协议, 可以在三天内完成整个实验, 从分拣细胞到分析结果, 使之成为敏感、高通量单细胞基因表达分析的一种简单而快速的方法。

Protocol

1. 裂解板的制备 使用 RNA/DNA 自由工作台, 准备足够的裂解缓冲液为96孔, 10% 额外, 通过混合390µL 核酸酶游离水, 17 µL 10% NP-40, 2.8 µL 10 毫米 dNTP, 10 µL 0.1 M DTT 和5.3 µL 核糖核酸酶抑制剂 (见材料表)。涡旋向下。 将4µL 裂解缓冲液分布到96孔 PCR 板的每个井中, 并用胶膜密封板。在盘子底部旋下管子以收集液体。保持板在冰上直到细胞分类 (最大24小时)。 <p class="jove_tit…

Representative Results

所描述的协议是快速、易于执行和高度可靠的。图 1给出了实验设置的概述。整个协议, 从单细胞的排序, 到特定的目标放大, 基因表达测量和初步分析可以在三天内进行。以热图的形式分析结果的一个例子, 它表示从单细胞基因表达分析中使用96引物和96个细胞从慢性髓性白血病 (CML) 患者或96细胞从老年匹配健康的初步分析数据控件如?…

Discussion

近年来, 单细胞基因表达分析已成为定义不同细胞种群23的异质性的重要补充。RNA 测序技术的出现在理论上提供了测量细胞的整个转录组的可能性, 然而这些方法由于细胞到细胞测序深度和辍学的变化而变得复杂。单细胞的 qPCR 提供了对数以百计的关键基因的表达的灵敏和稳健的分析, 其中所有细胞的处理类似, 减少技术噪音。有限数量的成绩单的集中分析还允许简化分析, 而不会…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了瑞典癌症协会、瑞典研究委员会、瑞典医学研究协会、瑞典儿童癌症基金会、拉格纳 Söderberg 基金会以及克努特和爱丽丝基金会的资助。

Materials

CD14 PECY5 eBioscience 15-0149-42 Clone: 61D3
CD16 PECY5 Biolegend 302010 Clone: 3G8
CD56 PECY5 Biolegend 304608 Clone: MEM-188
CD19 PECY5 Biolegend 302210 Clone: HIB19
CD2 PECY5 Biolegend 300210 Clone: RPA-2.10
CD3 PECY5 Biolegend 300310 Clone: HIT3a
CD123 PECY5 Biolegend 306008 Clone: 6H6
CD235A PECY5 BD Pharma 559944 Clone GAR2
CD34 FITC Biolegend 343604 Clone: 561
CD38 APC Biolegend 303510 Clone: Hit2
CD90 PE Biolegend 328110 Clone: 5E10
CD45RA BV421 BD bioscience 560362 Clone: HI100
CD49f Pecy7 eBioscience 25-0495-82 Clone: eBioGOH3
FBS HyClone SV30160.3
PBS HyClone SH30028.02
96-well u-bottom Plate VWR 10861-564
SFEM Stem cell technologies 9650
Penicillin streptomycin HyClone SV30010
TPO Peprotech 300-18
SCF Peprotech 300-07
FLT3L Peprotech 300-19
Falcon Tube 15 mL Sarstedt 62.554.502
Eppendorph tube Sarstedt 72.690.001
CST beads BD 642412
Accudrop Beads BD 345249 6-µm particles 
Adhesive film Clear Thermo scientific  AB-1170
Adhesive film Foil Thermo scientific  AB-0626
96 well PCR plate Axygen PCR-96M2-HS-C
PCR 1.5 mL tube Axygen MCT-150-L-C
T100 PCR cycler BioRad 186-1096
10% NP40 Thermo scientific  85124
10mM dNTP Takara 4030
0.1M DTT Invitrogen P2325
RNAsout Invitrogen 10777-019 RNAse inhibitor
CellsDirect One-Step qRT-PCR Kit Invitrogen 11753-100
Neuclease free water Invitrogen 11753-100 from CellsDirect kit
2X Reaction Mix Invitrogen 11753-100 from CellsDirect kit
SuperScript III RT/Platinum Taq Mix Invitrogen 11753-100 from CellsDirect kit
Platinum Taq DNA Polymerase Invitrogen 10966026
TaqMan Cells-to-CT Control Kit Invitrogen 4386995
Xeno RNA Control Invitrogen 4386995 From TaqMan Cells-to-CT Control Kit
20X Xeno RNA Control Taqman Gene Expression Assay Invitrogen 4386995 From TaqMan Cells-to-CT Control Kit
96.96 Sample/Loading Kit—10 IFCs Fluidigm BMK-M10-96.96
2X Assay Loading Reagent Fluidigm From 96.96 Sample/Loading Kit
20X GE Sample Loading Reagent Fluidigm From 96.96 Sample/Loading Kit
Control line fluid  Fluidigm From 96.96 Sample/Loading Kit
TaqMan Gene Expression Master Mix Applied Biosystems 4369016
BioMark HD Fluidigm BMKHD-BMKHD
96.96 Dynamic Array IFC Fluidigm BMK-M10-96.96GT
Excel Microsoft Microsoft
FlowJo V10 TreeStar TreeStar
Fluidigm real time PCR analysis Fluidigm Fluidigm
CD179a.VPREB1 Thermofisher scientific Hs00356766_g1
ACE Thermofisher scientific Hs00174179_m1
AHR Thermofisher scientific Hs00169233_m1
BCR_ABL.52 Thermofisher scientific Hs03043652_ft
BCR_ABL41 Thermofisher scientific Hs03024541_ft
BMI1 Thermofisher scientific Hs00995536_m1
CCNA2 Thermofisher scientific Hs00996788_m1
CCNB1 Thermofisher scientific Hs01030099_m1
CCNB2 Thermofisher scientific Hs01084593_g1
CCNC Thermofisher scientific Hs01029304_m1
CCNE1 Thermofisher scientific Hs01026535_g1
CCNF Thermofisher scientific Hs00171049_m1
CCR9 Thermofisher scientific Hs01890924_s1
CD10.MME Thermofisher scientific Hs00153510_m1
CD11a Thermofisher scientific Hs00158218_m1
CD11c.ITAX Thermofisher scientific Hs00174217_m1
CD123.IL3RA Thermofisher scientific Hs00608141_m1
CD133.PROM1 Thermofisher scientific Hs01009250_m1
CD151 Thermofisher scientific Hs00911635_g1
CD220.INSR Thermofisher scientific Hs00961554_m1
CD24.HSA Thermofisher scientific Hs03044178_g1
NCOR1 Thermofisher scientific Hs01094540_m1
CD26.DPP4 Thermofisher scientific Hs00175210_m1
CD274 Thermofisher scientific Hs01125301_m1
CD276 Thermofisher scientific Hs00987207_m1
CD32.FCGR2B Thermofisher scientific Hs01634996_s1
CD33 Thermofisher scientific Hs01076281_m1
CD34 Thermofisher scientific Hs00990732_m1
CD344.FZD4 Thermofisher scientific Hs00201853_m1
CD352.SLAMF6 Thermofisher scientific Hs01559920_m1
CD38 Thermofisher scientific Hs01120071_m1
CD4 Thermofisher scientific Hs01058407_m1
CD41.ITGA2B Thermofisher scientific Hs01116228_m1
CD49f.ITGA6 Thermofisher scientific Hs01041011_m1
CD56.NCAM1 Thermofisher scientific Hs00941830_m1
CD9 Thermofisher scientific Hs00233521_m1
CD97 Thermofisher scientific Hs00173542_m1
CD99 Thermofisher scientific Hs00908458_m1
CDK6 Thermofisher scientific Hs01026371_m1
CDKN1A Thermofisher scientific Hs00355782_m1
CDKN1B Thermofisher scientific Hs01597588_m1
CDKN1C Thermofisher scientific Hs00175938_m1
CEBPa Thermofisher scientific Hs00269972_s1
CSF1r Thermofisher scientific Hs00911250_m1
CSF2RA Thermofisher scientific Hs00531296_g1
CSF3RA Thermofisher scientific Hs01114427_m1
E2A.TCF3 Thermofisher scientific Hs00413032_m1
EBF1 Thermofisher scientific Hs01092694_m1
ENG Thermofisher scientific Hs00923996_m1
EPOR Thermofisher scientific Hs00959427_m1
ERG Thermofisher scientific Hs01554629_m1
FLI1 Thermofisher scientific Hs00956711_m1
FLT3 Thermofisher scientific Hs00174690_m1
FOXO1 Thermofisher scientific Hs01054576_m1
GAPDH Thermofisher scientific Hs02758991_g1
GATA1 Thermofisher scientific Hs00231112_m1
GATA2 Thermofisher scientific Hs00231119_m1
GATA3 Thermofisher scientific Hs00231122_m1
GFI1 Thermofisher scientific Hs00382207_m1
HES1 Thermofisher scientific Hs01118947_g1
HLF Thermofisher scientific Hs00171406_m1
HMGA2 Thermofisher scientific Hs00171569_m1
HOXA5 Thermofisher scientific Hs00430330_m1
HOXB4 Thermofisher scientific Hs00256884_m1
ID2 Thermofisher scientific Hs04187239_m1
IGF2BP1 Thermofisher scientific Hs00198023_m1
IGF2BP2 Thermofisher scientific Hs01118009_m1
IKZF1 Thermofisher scientific Hs00172991_m1
IL1RAP Thermofisher scientific Hs00895050_m1
IL2RG Thermofisher scientific Hs00953624_m1
IRF8 Thermofisher scientific Hs00175238_m1
ITGB7 Thermofisher scientific Hs01565750_m1
KIT Thermofisher scientific Hs00174029_m1
Lin28B Thermofisher scientific Hs01013729_m1
LMO2 Thermofisher scientific Hs00153473_m1
LYL1 Thermofisher scientific Hs01089802_g1
Meis1 Thermofisher scientific Hs01017441_m1
mKi67 Thermofisher scientific Hs01032443_m1
MPL Thermofisher scientific Hs00180489_m1
MPO Thermofisher scientific Hs00924296_m1
NFIB Thermofisher scientific Hs01029175_m1
Notch1 Thermofisher scientific Hs01062011_m1
Pten Thermofisher scientific Hs02621230_s1
RAG2 Thermofisher scientific Hs01851142_s1
RPS18 Thermofisher scientific Hs01375212_g1
RUNX1 Thermofisher scientific Hs00231079_m1
Shisa2 Thermofisher scientific Hs01590823_m1
Spi1 Thermofisher scientific Hs02786711_m1
Sterile.IgH Thermofisher scientific Hs00378435_m1
TAL1 Thermofisher scientific Hs01097987_m1
THY1 Thermofisher scientific Hs00264235_s1
Tim.3.HAVCR2 Thermofisher scientific Hs00958618_m1
VWF Thermofisher scientific Hs00169795_m1

References

  1. Seita, J., Weissman, I. L. Hematopoietic stem cell: Self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2 (6), 640-653 (2010).
  2. Orkin, S. H., Zon, L. I. Hematopoiesis: An evolving paradigm for stem cell biology. Cell. 132 (4), 631-644 (2008).
  3. Ye, F., Huang, W., Guo, G. Studying hematopoiesis using single-cell technologies. Journal of Hematology & Oncology. 10, 27 (2017).
  4. Hoppe, P. S., Coutu, D. L., Schroeder, T. Single-cell technologies sharpen up mammalian stem cell research. Nature Cell Biology. 16 (10), 919-927 (2014).
  5. Wills, Q. F., et al. Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nature Biotechnol. 31 (8), 748-752 (2013).
  6. Velten, L., et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol. 19 (4), 271-281 (2017).
  7. Wilson, N. K., Nicola, K., et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. 16 (6), 712-724 (2015).
  8. Saliba, A. E., Westermann, A. J., Gorski, S. A., Vogel, J. Single-cell RNA-seq: Advances and future challenges. Nucleic Acids Research. 42 (14), 8845-8860 (2014).
  9. Femino, A. M., Fay, F. S., Fogarty, K., Singer, R. H. Visualization of Single RNA Transcripts in Situ. Science. 280 (5363), 585-590 (1998).
  10. Kalisky, T., et al. A brief review of single-cell transcriptomic technologies. Briefings in Functional Genomics. , elx019 (2017).
  11. Crosetto, N., Bienko, M., van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nature Reviews Genetics. 16, 57 (2014).
  12. Bengtsson, M., Ståhlberg, A., Rorsman, P., Kubista, M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Research. 15 (10), 1388-1392 (2005).
  13. Bengtsson, M., Hemberg, M., Rorsman, P., Ståhlberg, A. Quantification of mRNA in single cells and modelling of RT-qPCR induced noise. BMC Molecular Biology. 9 (1), 63 (2008).
  14. Picelli, S., et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature Methods. 10, 1096 (2013).
  15. Tung, P. -. Y., et al. Batch effects and the effective design of single-cell gene expression studies. Scientific Reports. 7, 39921 (2017).
  16. Teles, J., Enver, T., Pina, C. Single-cell PCR profiling of gene expression in hematopoiesis. Methods in Molecular Biology. , 21-42 (2014).
  17. Hayashi, T., et al. Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its "index sorting" function for stem cell research. Development, Growth, & Differentiation. 52 (1), 131-144 (2010).
  18. Lang, S., et al. SCExV: A webtool for the analysis and visualisation of single cell qRT-PCR data. BMC Bioinformatics. 16 (1), 320 (2015).
  19. de Klein, A., et al. A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 300 (5894), 765-767 (1982).
  20. . indexed-sorting Available from: https://github.com/FlowJo-LLC/indexed-sorting (2016)
  21. Warfvinge, R., et al. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. Blood. 129 (17), 2384-2394 (2017).
  22. Nestorowa, S., et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood. 128 (8), e20-e31 (2016).
  23. Breton, G., et al. Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. The Journal of Experimental Medicine. 213 (13), 2861-2870 (2016).
  24. Alberti-Servera, L., et al. Single-cell RNA sequencing reveals developmental heterogeneity among early lymphoid progenitors. The EMBO Journal. 36 (24), 3619-3633 (2017).
  25. Giustacchini, A., et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nature Medicine. 23, 692 (2017).
  26. Hansmann, L., Han, A., Penter, L., Liedtke, M., Davis, M. M. Clonal expansion and interrelatedness of distinct B-lineage compartments in multiple myeloma bone marrow. Cancer Immunology Research. 5 (9), 744-754 (2017).
  27. Psaila, B., et al. Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biology. 17 (1), 83 (2016).
  28. Schulte, R., et al. Index sorting resolves heterogeneous murine hematopoietic stem cell populations. Experimental Hematology. 43 (9), 803-811 (2015).

Play Video

Cite This Article
Sommarin, M. N., Warfvinge, R., Safi, F., Karlsson, G. A Combinatorial Single-cell Approach to Characterize the Molecular and Immunophenotypic Heterogeneity of Human Stem and Progenitor Populations. J. Vis. Exp. (140), e57831, doi:10.3791/57831 (2018).

View Video