Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Developmental Biology

精巣上体のタンパク質合成と分泌の解析

Published: August 25, 2018 doi: 10.3791/58308

Summary

パラフィン埋め込まれたマウス精巣のセクションで蛋白質の検出と精巣細胞の不死化線 (mECap18) のためのプロトコルを説明するダイナミンの蛍光抗体法により局在を報告する.また精巣上体液やエアコン携帯メディアから分泌蛋白質の隔離のためのプロトコルについて述べる。

Abstract

哺乳類の精巣上体は後精巣の成熟と精子のストレージをサポートするためにすべての内分泌腺の最も複雑な管腔内流体のいずれかを生成します。このような複雑さは、粘膜上皮細胞の結合分泌・吸収活動のため発生します。ここでは、ダイナミン (そこ) mechanoenzymes; のモデル蛋白質家族に焦点を当てた精巣上体のタンパク質合成と分泌の解析手法について述べる大規模な低分子量 g 蛋白質双方向膜人身売買イベントを規制する可能性があります。精巣組織の蛋白質の表現の検討, 蛍光ラベリング パラフィン埋め込まれたセクションの標的タンパク質とを介してこれらのタンパク質の分布の後続の検出のための堅牢な方法論について説明します。蛍光顕微鏡検査。分離と小胞、成熟精子細胞と細胞間のコミュニケーションに参加する精巣の内腔に分泌する epididymosomes として知られているようなエキソソームの特性の最適化手法についても述べる。補完的なアプローチとして SV40 不死化マウス頭精巣上皮 (mECap18) の細胞ラインのターゲット蛋白質の蛍光検出について述べる。さらに、精巣の分泌活性の調節を探索するために適した体外モデルとして mECap18 細胞株の有用性について論じる。この目的のため培養 mECap18 細胞株およびその分泌タンパク質プロファイルに影響を与えることができる選択的薬理学的阻害療法の使用メンテナンス要件をについて説明します。後者は、SDS-PAGE および免疫ブロット経由で彼らの後の分析、トリクロロ酢酸/アセトンの沈殿物によって分泌された蛋白質の濃度条件培の収穫を使って容易に評価。我々 は、これらの結合方法が精子成熟および/またはストレージの機能的役割の決定へのプレリュードとして代わりとなる精巣上体蛋白質ターゲットの分析に適していると主張します。

Introduction

すべての哺乳類の種の精子を取得前方の進歩的な運動を表示して精巣上体、可能性があります男性の精巣余分なダクト システムの専門性の高い領域での長期にわたる降下中に卵子を受精する可能性7-14 日 (種) によって移動するを取る1。父系クロマチンの極端な凝縮と精巣内精子の分化に伴う細胞質の多数の放出のための後続の機能的成熟はの相互作用によってのみ駆動します。精巣微小環境。この環境は、ライニング精巣上体相馬の分泌・吸収活動によって作成され、ターンでは、セグメント バリエーション1の例外的なレベルが表示されます。したがって、タンパク質の合成と分泌の面で最もアクティブなセグメント、精巣上体 (すなわち、頭とコーパス)2の近位部にあります。このアクティビティ ミラー機能の能力の特徴を表示する最初の細胞と精子の機能のプロファイル (すなわち、進歩的な運動とするソーナの酸可溶性糖タンパク質に結合する機能) 次の。3頭精巣上体を通過。これらの機能的な属性は精子射精のための準備で静止状態で格納される前記遠位精巣上体セグメント (バーニャカウダ) に到達、最適なレベルに達する前に開発し続けます。形成とこの精子の貯蔵貯蔵所の維持は、馬尾の強い吸収活動4,5によって支配される粘膜上皮とも密接に結びついて。このような地域ごとの分業が哺乳類の種の大半の間で共有される精巣上体の特徴的な表示されます解剖学的違いは、報告された6,78をされていますが、私たち自身の9,10を含む日付を検討した.確かに、それ臨床的観点からは、精巣機能障害男性因子不妊11、こうしてこの専門組織の規制を理解することの重要性を強調の病因に重要な貢献を作ることが知られています。

したがって、精巣上体の生理学の私達の理解と精子の成熟とこの組織内のストレージの連続相を調節するメカニズムが完全に解決するに残っているは残念です。貢献の要因の間で精巣上体の研究の進歩に制限は、この組織の全体的な複雑さとその内腔の微小環境を規制制御メカニズムの知識です。解剖学的, 我々 は知っている、頭、コーパスと馬尾のセグメントの区別を超えて精巣上体 (図 1 a) いくつかのゾーンに細分されることができます、各隔壁12で区切られた、遺伝子/タンパク質の離散分布によって特徴付けられる式13,14,15,16,17,18。確かに、詳細な精巣上体における分節遺伝子発現の転写プロファイリング、に基づいてできるだけ多く 6 と 9 の精巣上体ゾーンはマウスおよびラットのモデルは、それぞれ19,20で報告されています。このような複雑さはおそらく精巣上体の相馬、偽重層上皮を構成する多数の異なったセルタイプ。 の組成を反映しています。管の長さに沿って豊富、配布および分泌・吸収活動に関してはそれぞれ異なります。したがって、主細胞は、これまでで、最も豊富な精巣細胞型を構成するすべての上皮細胞の 80% 以上。したがって、主細胞、精巣上体のタンパク質生合成と分泌5の大半を担当。対照的に、精巣上体の相馬内で 2 番目の最も豊富なセル型としてランク付けする、明細胞の人口主に内腔のコンポーネントの選択的吸収と5本の微小環境の酸性化に関与しています。男性ホルモンおよび精巣の起源の他の lumicrine の要因を出す管に沿って自分の位置によってこれらの精巣細胞型の差動制御の複雑さの別の層を追加するには。

このような複雑さの制限にもかかわらず重要な侵害は精巣機能のメカニズムの基礎を解決するのに行われ続けます。これらの研究のキーは、これらの初期調査の中から選択した個々 のタンパク質の詳細な分析とタンデムで精巣上体のプロテオームの幅広く在庫を確立する高度な質量分析戦略のアプリケーションをされています。このアプローチの例が、そこマウス モデル21で mechanoenzymes 族の私たちの最近の評価。そこで我々 の初期の関心は、エキソおよびエンドサイトーシス プロセスのカップリングにそのデュアル アクションによって支えられていた。そこ (DNM1 - DNM3) の 3 つの標準的なアイソ フォームがマウス精巣上体で高発現し、タンパク質の分泌と吸収21 における調節的役割を果たすために適切に配置されていることを示すことができたこれらの観察結果を踏まえ、.また、できた明確に各細胞と細胞内局在、に基づいてそこにアイソ フォームを区別するために示唆精巣上皮21内の冗長、アクティビティではなく、相補的な所有しています。

ここでは、採用希望この情報が精巣上体、代替タンパク質の特性でより広いアプリケーションを見つけるに貢献するためにマウスの精巣上体におけるそこ発現の研究のため実験方法について述べる、男性の生殖管のこの重要な要素の機能を理解します。具体的には、堅牢な蛍光ラベリング パラフィン精巣切片の標的タンパク質と蛍光抗体法によってこれらの蛋白質の分布の後続の検出手法の開発について述べる顕微鏡検査。我々 はさらに私たち最近最適化されたプロトコルの22の単離と解析 epididymosomes; を文書化します。小さなエキソソームのような小胞精巣の分泌プロファイルの重要な要素を構成する、精子成熟23を促進する上で重要な役割を保持するために表示されます。補完的なアプローチとしても述べる不死化マウス頭精巣上皮 (mECap18) の細胞ラインのターゲット蛋白質の蛍光検出および精巣上体の規制を探索するためのモデルとしてこのリソースの使用分泌活動体外

Subscription Required. Please recommend JoVE to your librarian.

Protocol

動物組織のコレクションを含むすべての実験手順は、ニューカッスル大学の動物のケアと倫理委員会によって承認されました。

1. 蛍光染色パラフィン埋め込まれた精巣上体セクション (図 1 および 2)

  1. CO2吸入 (スイス マウス、8 週間以上古い) 経由で成体の安楽死、直後に慎重に解剖 (外科はさみとピンセットを使用して) 精巣上体覆う結合組織や脂肪の無料、Bouin の定着剤に浸すソリューション (> 10 倍ボリューム/組織重量) 一晩固定用。
  2. 2 日間 2 × 変更 70% エタノールをティッシュを毎日洗うし、浸潤およびパラフィン ブロックを埋め込むのための準備として傾斜エタノール (70%、95%、100%) を脱水します。
  3. 4-6 μ m との免疫蛍光染色の準備のスライド マウントの厚さでパラフィン ブロックをセクションします。
  4. ヒューム フードの組織切片 (3 × 5 分たびに) を完全に没頭するスライドの瓶にキシレンの十分な量を追加することで精巣上体のパラフィン切片を dewax します。
  5. ティッシュ セクションを精製 H2O で希釈した傾斜のエタノール溶液に浸漬して水分補給 (100% エタノール 100% エタノール 90% エタノール エタノール 80%、70% のエタノールの 1 分 1 分 5 分 5 分 1 分、50% エタノール 1 分)。
  6. 十分なリン酸緩衝生理食塩水 (PBS) 全体の組織切片を完全に没頭すると 5 分のために一度スライド jar ファイル内のセクションを洗う (すべての後続洗浄手順に従う)。
  7. 適切な抗原検索ソリューションをデカント (すなわち。, 10 モル/L のクエン酸ナトリウム、50 ミリ モル/L トリス pH 10.5 または検出する抗原によって、代替抗原検索の解決法) スライド ラック、沸騰するまで電子レンジに。このソリューションにスライドの組織切片を対象 (表 1参照) 個々 の抗体のために最適化された熱による抗原検索条件。
    注意: は、スライド、抗原検索プロセス中に抗原検索ソリューションに完全に浸すことを確認します。
  8. 部屋の温度、電子レンジ、クールからスライド コンテナーを削除します。
  9. PBS でスライドをすすぎ、ティッシュ セクションまわりトレースする液体撥スライド マーカー ペンを使用します。
  10. (コンテナーの基地で湿らせたティッシュによって作成された)、加湿コンテナーにスライドを配置し、ブロック ソリューションを適用 (3 %bsa/PBS、以前フィルター 0.45 μ m のフィルターを通して) 37 ° C で 1 時間
  11. PBS で一度スライドをすすいでください。
  12. セクションをフィルター処理された 1% で実験的に最適化された濃度に希釈して適切な一次抗体とインキュベート BSA/PBS 一晩の 4 ° C で (アンチ DNM1、DNM2 と DNM3 の 1: 60 抗体; 抗 ATP6V1B1 抗体の 1: 100材料の表を参照してください抗体の詳細について)。
    注: を区別する特定非特異抗体の結合からそれ含める必要は厳しい負 (すなわち。、二次抗体のみ、一次抗体ペプチドを免疫に対して preabsorbed) とポジティブ コントロール24
  13. 30 分間室温で配置することによって、スライドを rewarm します。
  14. 10 分間振動プラットホーム (60 rpm) の PBS でスライド 3 × を洗ってください。
  15. セクションを 1% で希釈した適切な二次抗体とインキュベート BSA/PBS (0.45 μ m フィルターで濾過) 1 h 37 ° C で (1: 400 すべての二次抗体の希釈は、抗体については、材料の表を参照)。
    注意: この手順以降から暗闇の中スライド コンテナーを保持します。デュアル ラベルは、二次抗体の互換性のある組み合わせを選択 (すなわち。、二次抗体が異なる種で提起されている必要があります)。
  16. 10 分間振動プラットホーム (60 rpm) の PBS でスライド 3 × を洗ってください。
  17. Propidium ヨウ化 (PI、7.48 μmol/L) または 4΄、6-diamidino-2-phenylindole (DAPI、4.37 μmol/L) 細胞核をラベルするために室温で 2 分間でセクションを counterstain します。
  18. 5 分間振動プラットホーム (60 rpm) のスライドを PBS で 2 回洗います。
  19. 10% Mowiol 4-88 は 0.2 mol/L トリス (pH 8.5) の 30% のグリセロールの解決の準備セクションをマウントおよび 2.5 %1, 4 - diazabicyclo-(2.2.2)-オクタン。
  20. 爪ニス coverslip をシールし、将来の観測のための 4 ° C でスライドを保存します。
    注意: 画像スライドのできるだけ早く実用的な蛍光の過剰な損失を避けるために準備の後を実行することをお勧めします。

2 分離、マウス精巣上体頭 (図 3) から Epididymosomes の

  1. CO2吸入 (スイス マウス生後 8 週間以上) 経由で成体の安楽死、直後に加温した PBS (37 ° c) 精巣組織の血液汚染を最小限に抑えることで、血管を灌流します。
    注意: 血漿には epididymosomes25に同じようなサイズであるエクソソームの多様な集団が含まれています。精巣組織から血中滞留性をアクセスことができます、最初のセグメントの検査を介して高度に血管精巣上体セグメント位置頭セグメントに近位 (すなわち、ゾーン図 1Aの 1)。
  2. 慎重に表面の任意の可能性を減らすために変更された結びつけること、ウィッテン、ウィッティンガムの媒体 (BWW; pH 7.4 では、300 ミリ モル/kg 水26,27の浸透圧) を覆う脂肪・結合組織、リンスの無料の精巣上体を解剖します。血液汚染。
  3. しみの余分なメディアを削除、精巣上体頭を解剖する精巣の組織 (すなわち。、ゾーン 2-5、図 1 a) と BWW 媒体を含んでいる新鮮なペトリ皿 (35 × 10 mm) に移転。培地の量が最終的な回復のために十分であることを確認します。
    注: 6 頭 epididymides のお勧めは、均等に分割し (手順 2.9 参照) 2 の事前に用意されたグラデーションの上に適用される ~ 900 μ L の回復を可能に 1.1 mL の培地を使用します。
  4. かみそりの刃で頭組織に小切開の数を作る。組織をミンチし、過度のゾル性細胞質の内容とサンプルの汚染を避けるためにしません。内容をリリースする 30 分の 37 ° C で軽度の動揺と組織を含むプレートを孵化させなさい。
  5. 細胞の残骸を削除する 70 μ m の膜を通して得られた懸濁液をフィルター処理します。
  6. 濾液を収集し、これを対象細胞残屑を除去するために速度を増加すると 4 ° C で連続遠心分離手順 (すなわち。、500 × g、2,000 × g、4,000 × g、8,000 × g、5 分ごと。17,000 × g 20 分と最後に 17,000 × gさらに 10 分間、または遠心分離後ペレットが形成されない)。
    警告: 最小限の血液汚染があることを確認する最初の 500 × g遠心分離のステップ後ペレットの色を評価するために重要です。このペレットにピンクの着色が表示されます任意のサンプルを破棄します。
  7. 0.25 mol/L ショ糖と 10 ミリ モル/L トリス (pH 7.5) の溶液で希釈 (60% (w/v) 水溶液 iodixanol から成る) 密度勾配媒体によって不連続 iodixanol の勾配 (層を構成する 40%、20%、10%、5%) を準備します。
  8. 450 μ L (図 3) の各分画の超遠心機チューブ (11 × 35 mm)、グラデーションを準備します。精巣上体液サンプルをロードする前にそれぞれの層の間のインターフェイスが正常に形成されることを確保するため、各分画のアプリケーション後、グラデーションを目視で確認します。ただし、利用日に各グラデーションの新鮮なを準備、精巣上体管腔液サンプルを読み込み前に 2 h まで 4 ° C で保存できます。
  9. 精巣上体管腔流体サスペンション (3 epididymides の頭からの材料を収集に対応する) の上に単一勾配の 450 μ L を慎重に追加します。
  10. 超遠心機 4 ° C、18 h で 160,000 × gでグラデーション。
    注意: この遠心分離が行われるので非常に高速で、すべての超遠心機チューブ ペア、正確にバランスの取れた。チューブの整合性を損なう可能性がある目に見える傷がないことを確認するを確認します。
  11. 12 の等しい分数 (それぞれ 185 μ L から成る) を慎重に取り外します最上部層から始まって、グラデーションの下の方へ進んでいます。該当する場合、各グラデーションから回復した同等の端数 (最大 2 つのグラデーション) をプールします。
    Epididymosomes 最も高い分数 9 1122で濃縮されマウスの注意:図 4との議論を参照してください。
  12. 回復および 9-11 の分数のプール後 100,000 × gで 3 h の 4 ° C (13 × 56 mm チューブ) ペレット、epididymosomes へのサンプルを 2 mL の PBS の超遠心機に希釈します。
    注意: epididymosome ペレットを参照してくださいすることは困難にすることができます、のでとローターに配置されます epididymosome ペレットの妊娠中の位置を示す管をマーク指摘チューブの向きを確認します。各管に十分な量が含まれていることを確認 (すなわち。、その総容量の 50% を超える) 管の崩壊のリスクを排除します。
  13. 慎重に吸引、epididymosome ペレットを乱すことがなく上澄みを廃棄します。
  14. Epididymosome 純度 (図 4) を評価します。
  15. 下流のアプリケーションに応じて必要な媒体に epididymosome ペレットを再懸濁します。例えば、BWW 媒体は通常精子あるいは SDS ページ経由で精巣上体のプロテオームの解像度のための準備の適切な換散バッファーと共同の孵化にかかわる実験使用されます。

3. 蛍光 mECap18 細胞の染色

  1. (セル文化フードで行われる) に滅菌 coverslips の準備
    1. 10 分の 70% エタノールに coverslips (12 × 12 mm) を浸漬し、エタノールのランプの上の高温乾燥で消毒します。
    2. 10 の coverslip のクールな s 12 ウェル プレートに転送する前に。
    3. 滅菌したポリ-L-リジン溶液、coverslip をカバーし、室温で 10 分間のために解決を適用します。
    4. ポリ-L-リジン液を捨て、洗浄滅菌 H2O coverslip または適切な媒体。
  2. 準備 mECap18 セル
    1. 2 × 105 mECap18 細胞、coverslips を含む 12 ウェル プレートの各ウェルの因数を通路します。
    2. MECap18 セル中程度 (1 %l-グルタミン、ピルビン酸ナトリウム 1%、1% ペニシリン/ストレプトマイシンと 50 μmol/L 5α-androstan-17β-ol-3-oneC-IIIN DMEM) 含む 10% ウシ胎仔血清 (FBS 雰囲気 5% の下で 37 ° C の定温器で) の細胞を培養します。CO2一晩。
    3. セルは、coverslip に従う、培地を除去、PBS で 2 回細胞をすすいでください。
    4. 全体 coverslip を浸し、15 分間室温でセルを修正する PBS で希釈した 4% パラホルムアルデヒド (PFA) の十分な量を追加します。
    5. PFA 液を捨て、PBS で 2 回、coverslips をすすいでください。
  3. 免疫蛍光染色
    1. 0.1% 浸漬によって mECap18 セルを permeabilize トリトン X-100 10 分 PBS で。
    2. PBS で coverslips をすすいでください。
    3. 3 %bsa を用いた mECap18 細胞をブロックし、精巣組織のセクションで説明したのと同じプロトコルを利用した細胞の反応を続行します。

4. エアコン細胞培養液からのタンパク質の単離

  1. 調節された細胞培養培地のコレクション
    1. 6 の 4 × 105 mECap18 細胞の通路因数も 10% を添加した mECap18 細胞用培地板 24 h の FBS。
    2. 残留 FBS および関連を削除する (FBS を使わず) mECap18 細胞用培地と mECap18 細胞を 3 回洗浄蛋白質の汚染物。
    3. 各ウェルに mECap18 細胞用培地 (FBS を使わず) 1.5 mL を追加し、37 ° C の定温器 5% 未満で 12 h の mECap18 細胞と孵化 CO2
      注: このステップで mECap18 細胞は、実験デザインによると別のターゲット抗原を評価できます。
    4. 12 時間培養後細胞培地とすべての細胞の破片を削除する 10 分間 2,000 × gで遠心分離を収集します。
      注: 孵化の持続期間は実験デザイン/エンドポイント評価に従ってと応用治療細胞の耐性を考慮して変更することができます。最適な結果を達成していることを確認する特定の実験的レジメンに基づいて孵化のタイミングを調整することをお勧めします。
    5. 標準トリパン ブルー色素排除試験28のアプリケーションを介して mECap18 セル実行可能性を評価します。細胞生存率が減った死亡または瀕死の細胞から放出されたタンパク質によって導入されたバイアスを除去するために 90% 以下すべての材料を破棄します。
    6. 細胞用培地からの蛋白質を次のように分離または-80 ° C で媒体を維持
  2. (発煙のフードで行われる) に蛋白質の隔離
    1. 80% ボリューム調節細胞用培地培養 mECap18 細胞から放出されたタンパク質を沈殿させるに冷蔵 100% トリクロロ酢酸量の 20% を追加します。一晩で定数混合 4 ° C で孵化させなさい。
    2. 培養後、遠心分離によって沈殿したタンパク質をペレット (17, 000 × g, 10 min. の 4 ° C)。
      注意: 蛋白質中に分泌され、期待の限定数量により、ペレットがないは遠心分離後も容易に視覚化することが可能は。したがって、遠心分離前にチューブをオリエンテーションし、上澄みの削除中に妊娠中のペレットの場所を邪魔しないように世話を正しくすることが不可欠です。
    3. 上澄みを廃棄し、再遠心分離前に冷やしたアセトンで 2 回餌を洗浄 (17, 000 × g, 10 min. の 4 ° C)。
    4. 慎重に取り外し、ヒューム フード内の任意の残留アセトンを乾燥する前に上澄みを廃棄します。
    5. 完全な分泌タンパク質プロファイルおよび/または個々 のターゲット蛋白質を検出するエンドポイント分析に備えて適切な抽出バッファーで蛋白ペレットを再懸濁します (e.g。、SDS-PAGE、イムノブロット)。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

図 1図 2は、マウスの精巣上体頭にそこの局在を蛍光抗体法の代表的な結果を示します。3 そこアイソ フォームの各表示異なるローカライズ プロファイルを検討した.したがって、DNM1 は、(図 2 a) 初期セグメントと頭の精巣上体全体で精巣の細胞の比較的控えめなびまん性ラベルが特徴です。対照的に、DNM2 のアイソ フォームが最初に見つかった最初のセグメント内のセルの反対の基底部および根尖部の国境付近隣接する下流頭セグメント内のセルの核上性ドメインに再配置されている前に (すなわち、。ゾーン 2-5) (図 1B、C)。特に、しかし、徐々 にラベル DNM2 の強度は本質的にこれらの精巣上体セグメント21 (図 1B、C) の分泌の活動を反映した結果、精巣上体頭のゾーン 2 に 5 間減少しました。したがって、DNM2 の核上性ラベリング後が示された21頭主細胞内のゴルジ体の分布に対応します。同じ精巣上体地域から分離した精子を示した DNM2 の強烈な先ラベル (図 1)。注意して、しかし、相当 DNM2 ラベル検出されませんでした日常的に私たちの組織切片内の内腔の精子に。この現象は、1 つの我々 はいくつかの発生した抗体が異なる精巣・精子抗原をターゲットの範囲を適用するときの機会し、おそらく抗原提示に関連付けられたおよび/またはのマスキングの問題のために発生しますパラフィン埋め込まれたティッシュ セクション。いずれの場合も、このような違いは分離精子精巣組織自体のそれの横の平行蛍光ラベリングを行うことの重要性を強調します。DNM1 と DNM2 の両方とは異なる、DNM3 アイソ フォームは主に頭の上皮細胞 (図 2B、緑の矢印)、共同のラベル化による明細胞サブ人口に対応する示されていた少数の頂ドメインで検出されました。認識された明細胞マーカー、ATP6V1B1 (図 2 b, 赤い矢印)。 229,30,31に同様の方法で異なる精巣上体の上皮細胞の種類を区別する適切な証明されている代表的なマーカーをまとめます,32,33,34

精巣上体の上皮内に存在するタンパク質の細胞内局在するためのテクニックの説明に加えてまた報告する分泌蛋白質内にカプセル化の研究のための私達の最近最適化されたプロトコルepididymosomes、精子成熟・貯蔵のための22のサポートを担当の内腔の環境の重要なコンポーネントを表す小さな細胞小胞。組み合わせることで、ステップ 2 および図 3マウス頭精巣組織から epididymosomes の高濃縮集団の分離に使用される手法の詳細なステップバイ ステップ アカウントを提供します。特に、ただし、これらのメソッドは epididymosomes より遠位の精巣上体のセグメントからの代替個体群の分離のための適用が容易です。おかげでこれらのサンプルの汚染の可能性、また各 epididymosome 準備のため日常的に用いる厳格な性格描写のプロトコルを説明します。サイズの評価および高分解能電子顕微鏡観察と動的光散乱技術を使用して epididymosome 集団の不均一性が挙げられます。タンデムでも認められた細胞小胞マーカーの濃縮と対応する潜在的な汚染物質の特性である蛋白質の不在を評価するイムノブロット戦略利用 (すなわち、反ヘモグロビン (HBB) として、。マーカー血液汚染と対策アラキドン酸-15-リポキシゲナーゼ (ALOX15) および細胞質液滴と精子の汚染の指標として反 IZUMO1 抗体それぞれ)22。我々 は、汚染物質がまれな場合は、彼らが発生したことを発見した我々 はすぐに epididymosome 準備を破棄します。

精巣上体頭にそこのアイソ フォームの非重複ローカリゼーション精巣微小環境の調節に彼らの潜在的な役割の更なる調査を求めるメッセージが表示。このため、不死化 mECap18 セルラインに精巣細胞分泌活動を研究するための in vitroモデルとして利用されました。このセルの行の前の特性を染色どちらかのプリンシパルまたは明確な細胞マーカー陽性の港湾混合セル人口を示しています。また、mECap18 細胞も異なる体外治療レジメン35下精巣上体遺伝子および蛋白質の表現の生理学的プロファイルをレポートに適したで証明しています。使用前にそこローカリゼーションは培養 mECap18 細胞におけるポリ L リジン扱われたカバーガラス (図 5 a) 上これらを解決し、蛍光検出へそれらを服従させることによって評価されました。精巣組織切片を頭に記録されている分布パターンに一貫した、DNM1 中に検出されました mECap18 細胞の細胞質中で DNM2 これらの細胞の核上性ドメイン内で濃縮し、DNM3 は離散によって特徴付けられました。膜の小さなサブ人口数内で染色の巣 (すなわち。、11%) ATP6V1B1、mECap18 細胞の陽性 (図 5 b)。これらのデータは、精巣細胞の分泌・吸収活性の調節にそこの役割を調査するための貴重なリソースとして mECap18 細胞株の有用性を確認します。

したがって、ステップ 4 は mECap18 細胞分泌活動の分析のための方法論を説明します異なる実験条件の範囲の影響を評価するため広く従順さであるテクニック。本研究では DNM1 と可視化の前に DNM2 の活動とエアコン中21に mECap18 細胞から放出されたタンパク質のプロファイルの定量化を抑制する選択的な薬理学的介入を適用されます。この分析の重要な機能は、ただし、mECap18 細胞が徹底的に洗浄し、FBS 添加のない状態で培養を確保するためだった。このようなステップは派生 FBS 蛋白質と馴化培地の汚染を防止するために不可欠なそれはそれにもかかわらず mECap18 細胞増殖や生存率に悪影響を及ぼすことのアテンダントのリスクを伴います。この可能性を制御する、我々 は、mECap18 セルライン容認政府短期証券フリー カルチャーとインキュベーション ウィンドウの期間そこ阻害剤の導入を指摘 (すなわち。、12 h)。確かに、この時コース上細胞生存率はすべて実験複製で 90% 以上残った。このアプローチしたがって、遺伝子操作戦略への投資にコミットする前に特定の精巣上体蛋白質の機能を識別するために有用なコンセプトの戦略として勤めるかもしれません。

熱によるエピトープ検索ソリューション 10 ミリ モル/L のクエン酸ナトリウム 50 ミリ モル/L トリス (pH 10.5)
時間 3 分 3 分
6 分 6 分
9 分 9 分
12 分 12 分

テーブル1: パラフィン埋め込まれた精巣上体セクションで使用するため熱による抗原検索の最適化のための一般的な条件。固定プロセスは異なるエピトープしばしば抗原ごとに方法論を最適化することをそれによって異なる固定の技術の使用を必要とするので問題となります。

上皮型 分布 マーカー 参照 (PMID)
主電池 全体精巣上体 AQP9 11027599、17360690
明細胞 頭、コーパスと馬尾 V 型 Atpase、CIC 5 19448084、12475763
基底細胞 全体精巣上体 CLDN1 11159859、21441423
狭いセル 最初のセグメント V 型 Atpase、CIC 5 19448084、12475763

テーブル2: 代表的なマーカー異なるプライマリ精巣上体の上皮細胞のタイプの検出に適しています

Figure 1
図 1: 近位マウス精巣上体内そこ 2 の空間表現します(A)精巣上体、マウス精巣上体のゾーンに分割 10 物理的に描いた模式はターナーと同僚の20によって報告されるように隔壁を分離しました。このモデルでゾーン 1 は、最初のセグメントに対応、精巣上体頭に対応するゾーン 2-5、コーパス精巣上体に対応するゾーン 6-7、8-10 のゾーンを表す馬尾精巣上体。(B ・ C)DNM2 の局在を蛍光抗体法では、ゾーンに固有分布 (白い矢印と矢印で示されます) を明らかにしました。ゾーン 1 と 2 の間の境界線が点線で区画または黄色の矢印で示されます。(D) DNM2 は、また精巣上体頭から分離した精子のペリ先ドメインで表されます。しかし、このような染色定期的に見つかりませんでした内腔精子精巣上体の該当するセクション内の。ep、上皮細胞;l、ルーメン。Neg は、二次抗体の唯一のコントロールです。実験は 3 つの動物の素材にレプリケートされた、代表的な蛍光画像が表示されます。この図の拡大版を表示するのにはここをクリックしてください

Figure 2
図 2: マウス精巣上体頭そこ 1 とそこ 3 の蛍光検出します(A)マウス精巣上体の頭の DNM136の局在を検討しました。(B) DNM3 の共局在36と明細胞マーカー、ATP6V1B137マウス精巣上体頭に。この分析はことを確認両方の DNM3 (緑色の矢印) と ATP6V1B1 (赤矢印) 在住の明細胞サブ人口ですが最小限のサブ携帯電話の重複を表示。ep、上皮細胞;int、間質;l、ルーメン。sp、精子です。Neg は、二次抗体の唯一のコントロールです。細胞核は、DAPI (青) と counterstained いた。実験は 3 つの動物の素材にレプリケートされた、代表的な蛍光画像が表示されます。この図の拡大版を表示するのにはここをクリックしてください

Figure 3
図 3: マウス頭 epididymosomes の濃縮用の隔離のプロトコルの概略図。郭清後、頭精巣組織は BWW 中の液滴に浸漬、内腔の内容を解放するために切開します。内腔の液体は 70 μ m の膜を通して濾過しと任意の残留細胞の残骸を餌するため速度の増加で得られた懸濁液を遠心します。クリアの懸濁液は不連続密度勾配 (iodixanol ソリューション) の頂上にロードし、一晩遠心を受けます。プールされる分画 9-11 に Epididymosomes パーティションは PBS に希釈で洗浄し、ペレット、epididymosomes を超遠心機に返されます。この図の拡大版を表示するのにはここをクリックしてください

Figure 4
図 4: epididymosome 純度の評価します。12 の等しい分数を回収したグラデーションの遠心とそれぞれ(A)蛋白質の準備の因数と RNA 定量、 (B)動的光散乱とを使用してのサイズの不均一性評価 (C)。epididymosome マーカー分布のイムノブロット解析。さらに特性評価の手順は、アルデヒド/硫酸ラテックス ビーズ、 (E)透過電子顕微鏡による評価と精子(F)イムノブロット評価に集中している epididymosomes のデュアル ラベル付け(D)含まれています。(精子) と反アラキドン酸-15-リポキシゲナーゼ (ALOX15、細胞質液滴/精子汚染) または反ヘモグロビンによる赤血球 (RBC) 汚染 (HBB、RBC 汚染)。Immunoblots いた知られている epididymosome の貨物 (26 s プロテアソーム atp アーゼ非調節サブユニット 7、PSMD7; 熱ショック蛋白質 90kDa ベータ版メンバー 1、HSP90B1; と β チューブリン、タッブ) とプローブも。これらのデータはもともと科学的なレポートで出版された (PMID: 27549865) スプリンガー性質出版社の許可を得てここで再現されています。この図の拡大版を表示するのにはここをクリックしてください

Figure 5
図 5: mECap18 細胞におけるそこアイソ フォームの蛍光検出分布パターン頭精巣組織中に検出された合意を明らかにします。(A)滅菌 mECap18 細胞培養のための概略図。(B)代表的な蛍光画像染色精巣切片内で検出されたミラー明らかに細胞の分布パターン (矢印、(DNM3 および明細胞マーカー ATP6V1B1 のデュアル ラベリング) インセット) 試作。細胞核は、ヨウ化 propidium (PI; 赤) または DAPI (青) のいずれかで counterstained いた。実験は 3 つの動物の素材にレプリケートされた、代表的な蛍光画像が表示されます。この図の拡大版を表示するのにはここをクリックしてください

Subscription Required. Please recommend JoVE to your librarian.

Discussion

これらの研究には、パラフィン包埋、セクショニングの標準プロトコルにさらされていたブアン固定精巣組織の使用が組み込まれています。ブアン固定液には、具体的かつ相補的な機能を持つ各コンポーネントにホルムアルデヒド、ピクリン酸と酢酸の混合物が装備されています。したがって、タンパク質の架橋結合を形成する第一級アミンと反応してホルムアルデヒドが、ピクリン酸はゆっくりと塩を形成する組織を浸透し、それ故の基本的な蛋白質と逆に、酢酸凝固は急速に組織を浸透しの凝固を引き起こす核酸。これらの複合プロパティは、形態学的詳細の保存に最適な固定液として Bouin を奇形し、その使用が副睾丸の文献で広く報告されます。ただし、Bouin のソリューションはターゲット抗原を隠す可能性があります傾向定着性誘起蛍光性とホルムアルデヒドによる架橋を含む、制限なしではありません。

背景の蛍光性の可能性を要する厳しいマイナス コントロールを使用、一次抗体、二次抗体の省略の省略を含む私たちの研究と、試薬があります、一次抗体の使用そこから生成された免疫になるペプチドに対する preabsorbed。このようなコントロールのアプリケーションの詳細は、マウス精巣上体21ダイナミンそこ式の先行研究で例証されます。理想的には、このような結果は、ノックアウト動物由来組織を使用しても検証する必要があります、しかし、この材料は常に容易に入手できます。架橋または化学的に変更されたターゲット抗原の二次の問題に対処しようとすると、それは頻繁に固定によって変更されたエピトープの正体を暴露するために抗原検索のいくつかのフォームを実行し、したがって抗体の可能性を復元に必要ですバインディング。検索の方法は、ターゲット抗原、抗体、組織型、および固定法を含む多くの変数に依存します。しかし、最も広く採用されている手法は、いずれかの熱媒介または蛋白の誘導抗原検索のアプリケーションを備えています。熱療法と 1に記載されてよく活用検索ソリューションの詳細との免疫反応性を復元するための高い成功率のおかげで私たちの有利なアプローチとして元の機能。ご注意ただし、これは完全なリストではありませんし、タンパク質/抗体の組み合わせごとの抗原検索の最適化、最終的には pH、温度、時間の組み合わせの行列を用いた予備的研究。追加の考慮事項を引き出す組織の損傷および/または発生する artefactual ラベリング熱取得の可能性があります。したがって、上記で説明した否定的なコントロールのアプリケーションに加え我々 はも日常的にポジティブ コントロールの異なる細胞内小器官を認識抗体抗-ゴルジン-97 などの特徴を組み込みます。

そこの家族に属する蛋白質を満たす精巣組織で、補完的な機能ではなく、冗長かどうかを立証しようとするでそれを発見したなどのデュアル ラベル実験を行うため特に有益です図 2 bに示します。この戦略は、続く一次抗体 (樹種に発生) のペア適切な二次抗体に異なる共役 fluorophores が付いているティッシュ セクションのシーケンシャル ラベルを伴います。しかし、これらのデュアル ラベル研究を実行しようで時折起こる交絡機能は各一次抗体と最適なラベリングに必要な抗原検索のプロトコルの互換性です。共同マウス精巣上体の頭、(同じセクション) ではなく連続したシリアル セクション21を使用して私たちを導いてそこ 2 とゴルジン 97 のラベリングの場合、この制限が発生しました。それにもかかわらず、これらのアプローチのいずれか、偽重層の精巣上体の上皮で表されるそれらの中の特定のセル型にタンパク質発現を配しのコンテキストで非常に便利です。この目標を念頭とは、代表的な細胞のタイプのマーカーと精巣上体管 ( 2) の長さに沿って報告された分布パターンのリスト含まれています。希望するセルの種類を越えるし、ターゲット蛋白質の細胞内分布を探索し始めるに、ゴルジン-97 など、認識された細胞小器官のマーカーとデュアル ラベルの使用は、明確な利点を提供しています。また、標識とタンデムでの高分解能電子顕微鏡のアプリケーションのまま詳細の電顕的局在の選択法と染色蛍光21 を使用して達成パターンの検証.

Epididymosomes の研究によってもたらされる制限事項の中にはサイズが小さい、一般に特に端点の詳細な分析のための十分な量を得ることが困難使用マウスなど実験室種。ただし、サリバンと同僚の38,39,40の先駆的な研究を生かし、できた epididymosome マウスから分離のための強力な手法を最適化するためにモデル (手順 2 を参照)。我々 は、しかし、必要性を強調を評価するための厳格なコントロールと精子、滴および/または血液媒介エクソソーム (から潜在的な汚染による濃縮 epididymosome 集団41の物理的特性を課すこと図 4を参照)。このため、私たちは日常的に使用の組み合わせ: サイズと平均粒子サイズと不均一性 (iii) の濃度の計算 (ii) epididymosome 準備の不均一性を可視化する (i) 高分解能電子顕微鏡、4 μ m アルデヒド/硫酸ラテックス ビーズや蛍光標識の上に epididymosomes 認識エキソソーム表面マーカー、CD9、FLOT1 を含む、一連の抗体の分離 epididymosomes の (iv) 免疫ブロット所見がオススメ実験エクソソームの検証 (e.g。、アンチ CD9、アンチ FLOT1)、精子 (反 IZUMO1) や精子細胞質液滴 (アンチ ALOX15)、血 (反 HBB)22に制限されるべき抗原に対応するだけでなく、否定的なコントロール。これらの基準が満たされて、分離 epididymosome 準備は、容易に精子共培養を含む下流のアプリケーションで使用するためおよび/または貨物プロファイリング解析22,42, 場合どちらの精巣上体精子成熟1を調節する epididymosomes の役割の私達の理解を高めるための強力なアプローチであります。

この研究での影響と同様、精巣の分泌活動21の規制でそこの関与を研究に活用している、SV40 不死化マウス頭精巣上皮 (mECap18) 細胞ラインのアプリケーションについて述べる精巣上体生理43環境有害物質。MECap18 細胞ラインの重要な特徴は通路と機能との間の表現型の安定性両方の主要な細胞21,35,44の代表的な人口が表示されます。プライマリ精巣細胞培養に比べると、mECap18 細胞株も期間と実験的介入の性質のこれらの細胞を拡張、無料の中ながらも、公開できる牛胎児血清の培養への耐性を表示します。寛容な馴化培地から分泌された蛋白質の高い豊かさを回復します。MECap18 細胞株の制限には、免疫関連の刺激に比べて、一次電池の文化やそれらの細胞はin vivoを提示および/または、それは不死化されている、異なるストレスに対応可能性がありますただし、です。この制限を念頭においてとは、生体内で反応可能な限り mECap18 細胞を用いて得られた結果を比較することをお勧めします。要約すると、述べるプロトコルは精巣上体頭内標的タンパク質の機能の研究を開始するためのツールとしてこの細胞ラインの有用性を強調表示します。確かに、商業タンパク質阻害剤および/またはゲノム編集ツール (CRISPR Cas9) などの使用と組み合わせると、mECap18 細胞株は、精巣機能のメカニズムの基礎を解決するために大きな可能性を保持しています。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者が明らかに何もありません。

Acknowledgments

著者は、この作業をサポートするため国立保健医療研究評議会のオーストラリア プロジェクト助成金 APP1103176 を認識したいと思います。

Materials

Name Company Catalog Number Comments
Dynamin 1 antibody Abcam ab108458 Host species: Rabbit, Isotype: IgG, Class: polyclonal
Dynamin 2 antibody Santa Cruz sc-6400 Host species: Goat, Isotype: IgG, Class: polyclonal
Dynamin 3 antibody Proteintech 14737-1-AP Host species: Rabbit, Isotype: IgG, Class: polyclonal
ATP6V1B1 antibody Santa Cruz sc-21206 Host species: Goat, Isotype: IgG, Class: polyclonal
CD9 antibody BD Pharmingen 553758 Host species: Rat, Isotype: IgG, Class: monoclonal
Flotillin-1 antibody Sigma F1180 Host species: Rabbit, Isotype: IgG, Class: polyclonal
ALOX15 antibody Abcam ab80221 Host species: Rabbit, Isotype: IgG, Class: polyclonal
TUBB antibody Santa Cruz sc-5274 Host species: Mouse, Isotype: IgG, Class: monoclonal
PSMD7 antibody Abcam ab11436 Host species: Rabbit, Isotype: IgG, Class: polyclonal
Anti Rabbit Alexa Fluor 488 Thermo A11008 Host species: Goat, Isotype: IgG, Class: polyclonal
Anti Goat Alexa Fluor 488 Thermo A11055 Host species: Donkey, Isotype: IgG, Class: polyclonal
Anti Goat Alexa Fluor 594 Thermo A11058 Host species: Donkey, Isotype: IgG, Class: polyclonal
Anti Rat Alexa Fluor 594 Thermo A11007 Host species: Goat, Isotype: IgG, Class: polyclonal
Anti Rabbit HRP Millipore DC03L Host species: Goat, Isotype: IgG, Class: polyclonal
Anti Rat HRP Millipore DC01L Host species: Goat, Isotype: IgG, Class: polyclonal
Anti Mouse HRP Santa Cruz sc-2005 Host species: Goat, Isotype: IgG, Class: polyclonal
4', 6-diamidino-2-phenylindole (DAPI) Sigma D9564
propidium iodide (PI) Sigma P4170
Mowiol 4-88 Calbiochem 475904
Bovine serum albumin (BSA) Sigma A7906
fetal bovine serum (FBS) Bovogen SFBS-F
DMEM Thermo 11960-044
L-glutamine Thermo 25030-081
penicillin/streptomycin Thermo 15140-122
5α-androstan-17β-ol-3-oneC-IIIN Sigma A8380
sodium pyruvate Thermo 11360-070
Trypsin-ethylenediaminetetraacetic acid (EDTA) Sigma T4049
Paraformaldehyde (PFA) EMS 15710
Xylene VWR Chemicals 1330-20-7
Ethanol VWR Chemicals 64-17-5
Phosphate buffered saline (PBS) Sigma P4417
Sodium citrate Sigma S1804
Tris Astral 0497-5KG
Glycerol Sigma G5516
1, 4-diazabicyclo-(2.2.2)-octane Sigma D2522
Poly-L-gysine Sigma P4832
Triton X-100 Sigma 78787
Trypan blue Sigma T6146
Trichloroacetic acid Sigma T9159
Acetone Ajax Finechem A6-2.5 L GL
Sucrose Sigma S0389
Poly (vinyl alcohol) Sigma P8136
D-Glucose Ajax Finechem 783-500G
OptiPrep Density Gradient Medium Sigma D1556
Fluorescence microscopy Zeiss Zeiss Axio Imager A1
Ultracentrifuge BECKMAN COULTER Optima Max-XP
Microcentrifuges Eppendorf 5424R
Incubator Heracell 150
Large Orbital Shaker Ratek OM7
Microwave LG MS3840SR /00
Lab pH Meter MeterLab PHM220
Liquid-repellent slide marker Daido Sangyo Mini
Coverslip Thermo 586
6 well plate CELLSTAR 657160
12 well plate CELLSTAR 665180
Slide Mikro-Glass SF41296PLMK
0.45 µm filter Millox-HV SLHV033RS
Kimwipes Dustfree Paper KIMTECH 34155
Ultracentrifuge tube (2.2 ml, 11 × 35 mm) BECKMAN COULTER 347356
Ultracentrifuge tube (3.2 ml, 13 × 56 mm) BECKMAN COULTER 362305
Cell strainer 70 µm Nylon FALCON 352350
Petri dish 35 × 10 mm with cams SARSTED 82.1135.500
Slide jar TRAJAN #23 319 00

DOWNLOAD MATERIALS LIST

References

  1. Zhou, W., De Iuliis, G. N., Dun, M. D., Nixon, B. Characteristics of the Epididymal Luminal Environment Responsible for Sperm Maturation and Storage. Frontiers in Endocrinology. 9, 59 (2018).
  2. Dacheux, J. L., Gatti, J. L., Dacheux, F. Contribution of epididymal secretory proteins for spermatozoa maturation. Microscopy research and technique. 61 (1), 7-17 (2003).
  3. Aitken, R. J., et al. Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian journal of andrology. 9 (4), 554-564 (2007).
  4. Hermo, L., Dworkin, J., Oko, R. Role of epithelial clear cells of the rat epididymis in the disposal of the contents of cytoplasmic droplets detached from spermatozoa. The American journal of anatomy. 183 (2), 107-124 (1988).
  5. Robaire, B., Hinton, B., Orgebin-Crist, M. The epididymis. 3, Knobil and Neill's Physiology of Reproduction. (2006).
  6. Nixon, B., et al. Formation and dissociation of sperm bundles in monotremes. Biology of Reproduction. 95 (4), (2016).
  7. Cleland, K. The structure and fuction of the Epididymis. 1. The histology of the Rat Epididymis. Australian Journal of Zoology. 5 (3), 223-246 (1957).
  8. Belleannée, C., et al. Identification of luminal and secreted proteins in bull epididymis. Journal of proteomics. 74 (1), 59-78 (2011).
  9. Turner, T. T. De Graaf's thread: the human epididymis. Journal of andrology. 29 (3), 237-250 (2008).
  10. Holland, M. K., Nixon, B. The specificity of epididymal secretory proteins. Journal of reproduction and fertility. 53, 197-210 (1998).
  11. Cooper, T. G., Hing-Heiyeung, C., Nashan, D., Nieschlag, E. Epididymal markers in human infertility. Journal of andrology. 9 (2), 91-101 (1988).
  12. Turner, T. T., Johnston, D. S., Jelinsky, S. A., Tomsig, J. L., Finger, J. N. Segment boundaries of the adult rat epididymis limit interstitial signaling by potential paracrine factors and segments lose differential gene expression after efferent duct ligation. Asian journal of andrology. 9 (4), 565-573 (2007).
  13. Garrett, S. H., Garrett, J. E., Douglass, J. In situ histochemical analysis of region-specific gene expression in the adult rat epididymis. Molecular reproduction and development. 30 (1), 1-17 (1991).
  14. Lareyre, J. J., et al. A 5-kilobase pair promoter fragment of the murine epididymal retinoic acid-binding protein gene drives the tissue-specific, cell-specific, and androgen-regulated expression of a foreign gene in the epididymis of transgenic mice. Journal of Biological Chemistry. 274 (12), 8282-8290 (1999).
  15. Cornwall, G. A., Orgebin-Crist, M. C., Hann, S. R. The CRES gene: a unique testis-regulated gene related to the cystatin family is highly restricted in its expression to the proximal region of the mouse epididymis. Molecular Endocrinology. 6 (10), 1653-1664 (1992).
  16. Nixon, B., Jones, R. C., Hansen, L. A., Holland, M. K. Rabbit epididymal secretory proteins. I. Characterization and hormonal regulation. Biology of Reproduction. 67 (1), 133-139 (2002).
  17. Nixon, B., Jones, R. C., Clarke, H. G., Holland, M. K. Rabbit epididymal secretory proteins. II. Immunolocalization and sperm association of REP38. Biology of Reproduction. 67 (1), 140-146 (2002).
  18. Nixon, B., Hardy, C. M., Jones, R. C., Andrews, J. B., Holland, M. K. Rabbit epididymal secretory proteins. III. Molecular cloning and characterization of the complementary DNA for REP38. Biology of Reproduction. 67 (1), 147-153 (2002).
  19. Jelinsky, S. A., et al. The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides. Biology of Reproduction. 76 (4), 561-570 (2007).
  20. Johnston, D. S., et al. The Mouse Epididymal Transcriptome: Transcriptional Profiling of Segmental Gene Expression in the Epididymis 1. Biology of Reproduction. 73 (3), 404-413 (2005).
  21. Zhou, W., et al. Developmental expression of the dynamin family of mechanoenzymes in the mouse epididymis. Biology of Reproduction. 96 (1), 159-173 (2017).
  22. Reilly, J. N., et al. Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Scientific reports. 6, (2016).
  23. Sullivan, R. Epididymosomes: a heterogeneous population of microvesicles with multiple functions in sperm maturation and storage. Asian journal of andrology. 17 (5), 726-729 (2015).
  24. Reid, A. T., et al. Glycogen synthase kinase 3 regulates acrosomal exocytosis in mouse spermatozoa via dynamin phosphorylation. The FASEB Journal. 29 (7), 2872-2882 (2015).
  25. Danesh, A., et al. Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood. 123 (5), 687-696 (2014).
  26. Anderson, A. L., et al. Assessment of microRNA expression in mouse epididymal epithelial cells and spermatozoa by next generation sequencing. Genomics data. 6, 208-211 (2015).
  27. Biggers, J., Whitten, W., Whittingham, D. The culture of mouse embryos in vitro. Methods in mammalian embryology. Daniels, J. , San Francisco: Freeman. 86-116 (1971).
  28. Strober, W. Trypan blue exclusion test of cell viability. Current protocols in immunology. , A3. B. 1-A3. B. 3 (2001).
  29. Elkjær, M. -L., et al. Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochemical and biophysical research communications. 276 (3), 1118-1128 (2000).
  30. Gregory, M., Dufresne, J., Hermo, L., Cyr, D. G. Claudin-1 is not restricted to tight junctions in the rat epididymis. Endocrinology. 142 (2), 854-863 (2001).
  31. Isnard-Bagnis, C., et al. Detection of ClC-3 and ClC-5 in epididymal epithelium: immunofluorescence and RT-PCR after LCM. American Journal of Physiology-Cell Physiology. 284 (1), C220-C232 (2003).
  32. Rojek, A. M., et al. Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proceedings of the National Academy of Sciences. 104 (9), 3609-3614 (2007).
  33. Shum, W. W., Da Silva, N., Brown, D., Breton, S. Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk. Journal of Experimental Biology. 212 (11), 1753-1761 (2009).
  34. Shum, W. W., Ruan, Y. C., Silva, N., Breton, S. Establishment of cell-cell cross talk in the epididymis: Control of luminal acidification. Journal of andrology. 32 (6), 576-586 (2011).
  35. Sipilä, P., Shariatmadari, R., Huhtaniemi, I. T., Poutanen, M. Immortalization of epididymal epithelium in transgenic mice expressing simian virus 40 T antigen: characterization of cell lines and regulation of the polyoma enhancer activator 3. Endocrinology. 145 (1), 437-446 (2004).
  36. Feugang, J. M., et al. Profiling of relaxin and its receptor proteins in boar reproductive tissues and spermatozoa. Reproductive Biology and Endocrinology. 13 (1), 46 (2015).
  37. Gullberg, M., et al. Cytokine detection by antibody-based proximity ligation. Proceedings of the National Academy of Sciences. 101 (22), 8420-8424 (2004).
  38. Frenette, G., Girouard, J., Sullivan, R. Comparison between epididymosomes collected in the intraluminal compartment of the bovine caput and cauda epididymidis. Biology of Reproduction. 75 (6), 885-890 (2006).
  39. Fornes, M., Barbieri, A., Sosa, M., Bertini, F. First observations on enzymatic activity and protein content of vesicles separated from rat epididymal fluid. Andrologia. 23 (5), 347-351 (1991).
  40. Eickhoff, R., et al. Influence of macrophage migration inhibitory factor (MIF) on the zinc content and redox state of protein-bound sulphydryl groups in rat sperm: indications for a new role of MIF in sperm maturation. Molecular human reproduction. 10 (8), 605-611 (2004).
  41. Lötvall, J., et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles. 3, 26913 (2014).
  42. Hutcheon, K., et al. Analysis of the small non-protein-coding RNA profile of mouse spermatozoa reveals specific enrichment of piRNAs within mature spermatozoa. RNA biology. 14 (12), 1776-1790 (2017).
  43. Bennett, P. Genetic basis of the spread of antibiotic resistance genes. Annali dell'Istituto superiore di sanita. 23 (4), (1987).
  44. Nixon, B., et al. Next generation sequencing analysis reveals segmental patterns of microRNA expression in mouse epididymal epithelial cells. PloS one. 10 (8), e0135605 (2015).

Tags

発生生物学、問題 138、ダイナミン、精巣上体、epididymosome、エキソソーム、蛍光抗体法、タンパク質の分泌、精子、精子成熟
精巣上体のタンパク質合成と分泌の解析
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Zhou, W., Sipilä, P., DeMore

Zhou, W., Sipilä, P., De Iuliis, G. N., Dun, M. D., Nixon, B. Analysis of Epididymal Protein Synthesis and Secretion. J. Vis. Exp. (138), e58308, doi:10.3791/58308 (2018).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter