Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Developmental Biology

大人のキューティクルをショウジョウバエ脚運動ニューロン軸索を可視化します。

Published: October 30, 2018 doi: 10.3791/58365

Summary

ここで固定、取付け、イメージング、およびイメージ作成後の手順でショウジョウバエの大人の足に蛍光タンパク質を持つ軸索ターゲットを視覚化するプロトコルについて述べる。

Abstract

神経の仕様の仕事の大半は、 Cなどの遺伝学的および生理学的にも扱いやすいモデルで行われています。線虫ショウジョウバエの幼虫、魚、すべての歩行の彼らの主なモードとして (のようなクロールまたは水泳) 波動運動に従事します。しかしより個々 の運動ニューロン (MN) の仕様の理解を洗練された-少なくとも疾患の治療に知らせるという点で-より良いモデルの複雑な付加物に基づいた歩行スキームを均等に扱いやすいシステムを要求脊椎動物。アダルトショウジョウバエ運動システム歩いて担当を満たしているこれらすべての条件は、簡単にこのモデルでは、少数の容易に識別脚 MNs (足あたり約 50 MNs) の仕様を検討することが可能だから両方を使って広大です強力な遺伝学的ツールと付属物に基づいた歩行スキームの生理のコンテキストでは配列です。ここで大人のフライで脚筋の神経支配を視覚化するプロトコルについて述べる。

Introduction

脊椎動物の四肢のようなショウジョウバエの大人の脚は、セグメントに編成されます。各フライの脚には、複数の筋線維1,2を含む 14 の筋肉が含まれています。大人の脚 MNs の細胞体は、T1 (老熟)、(キリギリス)、T2 と T3 (誘発) 大脳腹側神経索 (VNC) 脊椎脊髄 (図 1) に類似した構造の両側にあります。対象筋 (coxa、転子、大腿骨、脛骨) の同側の脚の 4 つのセグメント (図 1)3、各神経節約 50 MNs があります。重要なは、それぞれ個々 の大人の脚 MN は、動物3,4間のステレオタイプが強くユニークな形態の id です。これらのすべてのユニークな MNs は神経芽細胞 (NBs) 幼生3,4脚 MNs の生産と呼ばれる 11 の幹細胞から派生しました。すべて幼虫の段階の終わりに彼らの特定樹状アーバーと、ユニークな形態の34を定義する軸索ターミナルのターゲットを取得する変態未熟な後 MNs を区別します。以前転写因子 (TFs) の組合せのコードが各ショウジョウバエ大人の脚は MN5のユニークな形態を指定する仮説をテストしました。モデルとして系統 B、MNs のうち 7 つを生成し、TFs 後大人の脚 MNs で表現の組合せコードが彼らの個々 の形態を指定することを示した 11 NB 系統の 1 つを使用しました。MNs の TF のコードを reprograming に予測可能な方法で MN の形態を切り替えることがきました。我々 はこれらの TFs を呼び出す: Mtf (形態 TFs)5

大人の MNs の形態学的分析の最も困難な部分の 1 つは高解像度の厚さと自動蛍光キューティクルを介して軸索を視覚化します。我々 は通常DVglut Gal4などのバイナリ表現システムと MNs で表される膜タグ GFP と軸索をラベル/UA mCD8::GFPまたはDVglut QF/擬 mCD8::GFP, DVglutが強いドライバーで表されます運動ニューロン6。抑制型マーカー (MARCM)7、cis MARCM8、または MARCMbow5とモザイク解析など他のクローン技術と、これらのツールを組み合わせて、我々 は表現型の分析を行う MNs のサブポピュレーションを GFP 発現を制限できます。簡単に軸索。大人の脚の内部構造の (1) の固定など大人のショウジョウバエ脚に固有の特定の問題に取り組むことによって脚 MN 軸索形態のイメージングおよび後続の三次元再構成のためそのままを維持するためにプロトコルを生成します。軸索形態、内因性の蛍光式、脚の筋肉に影響を与えずに観察の下でそしてイメージング、および (3) 画像のキューティクルを取得する処理のための適切な方向の全体的な構造を維持するために脚の (2) の取付背景として軸索の蛍光信号。このプロトコルは、MN 軸索における蛍光発現の検出のために詳述されている、間は、節足動物の脚 neuromusculature の他のコンポーネントの可視化に適用できます。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. 足の解剖と固定

  1. ガラスのウェル プレートと塗りつぶし 70% エタノールと井戸の適切な数を取る。15-20 CO2を追加-それぞれに (セックスとあらゆる年齢のいずれか) の麻酔をかけられたハエも、ブラシを使用して軽くエタノール溶液にハエ ハエが完全に水中に沈むまで。
    注: この手順は、キューティクルの疎水性を取り除くことです。これはキューティクルの自己蛍光を増加するため、1 分以上洗浄しないでください。
  2. 1 リン酸緩衝生理食塩水 (PBS) x 0.3% 非イオン性界面活性剤の洗剤液で 3 回ハエをすすいでください。少なくとも 10 分のためのこのソリューションにハエを保ちます。
    注: 洗剤が足の内側固定液の浸透性を高める可能性があるを含むとき足は固定より良いです。
  3. 4% パラホルムアルデヒド (PFA) チューブと一緒に氷上ウェル プレートを配置します。
    注: 新鮮な 4% の準備 16 %pfa エタノール フリー ストック溶液から PFA は重要です。
  4. 胸部のセグメントまたは足を損なうことがなく頭とハエの腹部を削除するのに鉗子を使用します。
    注: 腹部の取り外し簡単、フライを押しながら足を解剖します。
  5. 鉗子で胸部のセグメントから足を分析し、4% を含んでいる井戸に足を置く PFA。このため、微細鉗子の先端を使用して脚が引き抜いて coxa 胸郭ジャンクションで優しく、しっかりとを押してください。
  6. 4 %pfa は 4 ° C (約 20 h 合計) で一晩で足を修正します。
  7. 1x PBS で 0.3% ノニオン界面活性剤の洗剤液、5 x 20 分間足を洗います。
  8. メディアをマウントを洗浄バッファーを交換してください。取付脚にその完全な浸透を可能にする前に少なくとも 1 日のメディアをマウントに足をしてください。
    注: メディアをマウントが高粘度の場合は、粘度の急激な変化を崩壊し、足全体の構造に損傷を与えるキューティクルを引き起こすので、80% に 1 × PBS のメディアをマウントを希釈します。Gal4ドライバーによってハエは取り付けまでメディアのマウントの 4 ° C で 1 ~ 3 週間保存できます。

2. 脚取付

  1. 正方形 22 x 22 mm2 coverslip (図 2 aB) でカバーして顕微鏡スライドの左側に約 20 μ L の 70% のグリセロールを配置します。メディアをマウントし、小さな距離でこの coverslip の右端から平行な線に沿って約 10 μ L をピペットします。スライド (図 2) の右側にさらにメディアをマウントの別の 30 μ L を追加します。
    注: 脚 (下記参照)、coverslip を適用するときメディアをマウント優しく広がっていく、coverslip の下と足の周りそれらをずらすことがなく。
  2. 微細鉗子を用いたソリューションから脚を持ち上げ、そっと左 coverslip 近くメディアをマウントの上に置きます。区間ごとに同じことを行うし、上から下 (図 2 D) に配置。
    1. 転送鉗子の両方のヒントの間に開催中のドロップで足を持ち上げて。2 つの方法で脚を方向づける: 外的な側面の上下。
  3. (最大 6-8 に脚を取り付けることができます) すべての足が合って、一度上に置く 2 番目 coverslip 足この coverslip かかって少し上、以前に配置した(図 2 e)領域を確保し、coverslip と組織の間にするよう取得破損している (図 2) から足を防止します。
    注: また、coverslip とスライドの間にスペースを作成するのにステッカー井戸や矯正ワックスを使用します。
  4. 各端 (図 2 f) coverslips の地位を確保してマニキュアを使用します。
    メモ: 組織、画像の準備ができています。

3. イメージング

  1. GFP 蛍光とキューティクル自動蛍光の両方を取得する 488 nm レーザーおよび 2 つの検出器を同時に使用して 1 つのトラックを設定します。ソフトウェアのウィンドウを光パスのスペクトル ウィンドウの範囲コントロールまたはスライダーの表示を使用して、検出の範囲を設定 1 つ検出器 (1 器) 498-535 nm と他の 1 つの間 (検出器 2) 566-652 nm の間。
    注: 通常、1 検出器べき GaAsP 検出器と検出器 2 光電子増倍管。498 535 チャネル最適 GFP シグナルを検出するが、またキューティクルから自動蛍光を検出します。しかし、566-652 チャネルはキューティクル (図 3 a) から自動蛍光だけを検出します。
  2. 20 X を使用または 25 倍油浸対物レンズ、1024 x 1024 ピクセルの解像度、12 ビット深度と 1 μ m ピクセルの設定滞留時間約 1.58 μ s として 2 フレーム/画像を平均と Z 間隔を設定します。高開口数と目標を使用します。
  3. 共焦点顕微鏡とイメージング ソフトウェアを使用しているに応じて、他のすべての設定を設定します。
    1. 498-535 検出器ではなく 566-652 検出器から明るいキューティクル信号を取得することを確認します。これを行うには、するには、両方器用 488 レーザーのレーザー出力の同じを使用します。十分に明るい GFP 信号 (図 3 b, D) を取得する 1 検出器のゲインを調整最初飽和マーカーを使用して。(図 3E) この検出器の飽和信号を高いキューティクル信号 (足関節の端) と一部の地域に生成を確保する 2 検出器のゲインを調整します。
    2. 脚を拡張し、単一のフレームのイメージを作成するのには大きすぎる場合は、顕微鏡イメージング ソフトウェアからタイルまたは位置オプションを使用します。
  4. イメージング ソフトウェアや ImageJ/フィジー フリーウェア (下記参照) を使用して独自の顕微鏡を使用していずれかの最終的な画像を再構築します。

4. 投稿画像の処理

  1. ImageJ/フィジーの共焦点スタックを開きます。
    1. Bioformats プラグインを使用 (プラグイン |バイオ形式 |Bio-formats 輸入) フィジーではないイメージを開きます。独自のイメージング ソフトウェア パッケージ9から TIF 形式です。
  2. 画像を選択して、チャンネルを分割 |カラー |チャンネルの分割
    注: いくつかの位置からの画像が行われていて、再結合する必要があります、使用ペアワイズ ステッチからフィジーのプラグイン (プラグイン > ステッチ > ペアワイズ ステッチ)10,11
  3. GFP のキューティクル信号を減算するイメージ電卓を開く (プロセス |イメージ電卓): 画像 1 (GFP + キューティクル) として検出器 1 からスタックを選択 (図 4 a)、操作ウィンドウ [減算を選択し、画像 2 (キューティクル) (図 4 b) として検出器 2 からスタックを選択します。その結果、内因性の GFP シグナル (GFP) だけは (図 4) が取得されます。
    1. このスタック (GFP) 検出器 2 から得られたキューティクル専用のスタックを併合 (図 4 b 画像 |カラー |チャンネルを統合)、脚のセグメント (図 4) 軸索のアーバーを識別することができますキューティクル信号と同様に、組織固有の GFP 信号の構成される RGB 画像を取得します。
    2. 各画像のコントラストと明るさを調整 (画像 |調整 |Brightness/Contrast)、単一の RGB イメージを生成 (画像 |種類 |RGB カラー)。
      注: Z スタックの最大投影を生成する (の画像 |スタック |Z プロジェクト...)、GFP の信号と 2 つのチャネルを結合する前に明るさを調整できます、キューティクルの平均強度の最大強度投影を使用します。
  4. また、自動減算と ImageJ/フィジーの画像の処理のため、マクロを使用します。補足的なファイル 1 のマクロ エディターでテキストをコピー (プラグイン |新しい |マクロ)、プラグイン フォルダーにマクロを保存し、マクロを使用できるように一度 ImageJ/フィジーを再起動します。
    1. マクロを使用する共焦点スタックを開き、明るさ/コントラスト] ウィンドウを開きます (画像 |調整 |Brightness/Contrast)。マクロを実行して (プラグイン |マクロ |実行) し、指示に従います。
    2. 操作 (画像 [電卓] ウィンドウ) を指定するように求めるメッセージが表示されたら、(GFP) スタック 1 として画像 1、画像 2 スタック 2 として (表皮)、および減算を選択します。
      注: マクロは、GFP 信号処理 (stack1 の MAX_Result) の最大投影画像を生成しますキューティクル (AVG_stack2) GFP スタック (stack1 の結果)、未処理のキューティクル スタックの減算の結果の平均の投影キューティクル スタック (stack2)。
    3. コントラストを調整するように求めるメッセージが表示されたら、明るさ/コントロール ウィンドウのコントロールを使用して、GFP を示す両方の信号を RGB マージされた画像を生成する、キューティクルの平均の投影の GFP の最大投影画像の明るさ/コントラストを調整するには緑と灰色でキューティクル。同様に次の段階で使用することができます結合された GFP とキューティクルのスタックを生成する stack1 と stack2 の結果をマージします。
  5. 3 つの次元に足を視覚化し、新しく生成されたスタック (図 4E) と専用の 3 D ソフトウェアを使用します。
    1. 3 D ソフトウェアで RGB のスタックを開く (材料の表を参照してください)。ポップアップ ダイアログ ウィンドウ モード変換」セクションですべてのチャンネルを選択し、ボクセル (ピクセルの量) のサイズを入力します。
      注: すべての必要な情報は、使用されているどのような独自の顕微鏡のソフトウェアからイメージ ファイルに含まれます。
    2. チャネル 2 モジュール (gfp) を右クリックし、選択表示 | volren。次に、 volren モジュールをクリックします。(画面左下) の [プロパティ] セクションで編集を左クリックし、 volrengreen.colを選択します。チャンネル 1 モジュール (キューティクル信号) を右クリックし、選択表示 | volren。次に、 volren モジュールをクリックします。高度で選択ddr (透明なレントゲン写真のような表示) の [プロパティ] セクションで左クリックで、キューティクル背景 (図 4E) を参照してくださいにガンマ値を調整します。
    3. 3 D 回転を生成するには、プロジェクトのスタック モジュールを右クリックします。選択アニメーション | 回転。回転モジュールをクリックします。
    4. プロパティセクションはbbox センターを使用をクリックします。回転モジュールを右クリックし、選択計算 | ムービー メーカームービー メーカーでは、モジュールは、マウスの左ボタンをクリックします。左上詳細を左クリックして [プロパティ] セクション ([プロパティ] セクションの右上)。
    5. ファイル名フィールドで映画回転の名前を入力します。品質フィールド 1 (最高の品質) を記述します。200 のフレームのままに 8.3 の s 回転が必要な場合 (この数を減少または回転の速度を変更するのには増加することができます)。(緑のボタン、プロパティ セクション (を参照してくださいビデオ 1) の左下)適用を押します。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

図 4に示すとおり、この手順はそのターミナル アーバーと共に大人のショウジョウバエ脚で GFP 標識軸索の優れたイメージングをできます。重要なの脚キューティクルによって放出される蛍光から任意の汚染のないクリーンな GFP 信号が得られます。キューティクルからの信号は、GFP 信号 (ビデオ 1、図 1図 4E) 足の軸索の位置を識別するために結合できます。批判的に、それはよく固定脚を得ることが重要です。図 5は、よく固定 (図 5 a) とひどく固定脚 (図 5 b) の例を示します。足の中の内部構造は、均一な色の前者の場合、褐色である気管が表示されます。(主な神経幹に隣接) セグメントの脚の中央にメインの気管チューブが実行され、多くのシンナーの影響でも表示されます。後者では、脛骨と足根の暗い材料があるし、気管システムが大腿骨と coxa で明確に表示されていない: このような場合それは常に低強度のまたは完全に不在にされている蛍光タンパク質から信号が劣化するという観察です。足の第二に、慎重な郭清は (脛骨に coxa) からすべての脚部セグメントを取得して足に衝撃を避けるために必要です。第三に、脚を取り付け中足の内部に浸透するために十分な長さに残っていなければなりません。時々 脚部セグメント、特に大腿骨が縮小表示され、これは定着剤やマウント メディアの浸透の不足のためにすることができます。最後に、高品質の顕微鏡の対物レンズ、フィールドの平坦度の修正し、アポクロマートおよび/または蛍光性のために設計を使用する必要が 1 つ。

Figure 1
図 1: 大人のショウジョウバエ脚モーター システムのスキーマします。MNs (緑) の大人の脚の細胞体は、VNC の胸部神経節の皮質 (グレー) でローカライズされます。MNs は、脚の神経網 (青) で、樹状突起を arborize し、14 脚の筋肉 (赤) の 1 つを支配する足に軸索を送る。T1 の足のみがスキーマ化されていることに注意してください。この図の拡大版を表示するのにはここをクリックしてください

Figure 2
図 2: 顕微鏡のスライド足をマウントするプロシージャこの図の拡大版を表示するのにはここをクリックしてください

Figure 3
図 3: プロシージャをイメージングします。(A) 発光スペクトル GFP との gfp 足と GFP をそれぞれ表現はショウジョウバエの足のセクションの分光イメージングを用いて 488 nm アルゴン レーザー励起を用いた脚キューティクル。蛍光強度が正規化されていない、例えば、撮影手順脚に関しては同じパラメーター (目的、媒体、レーザー パワー、共焦点絞り、ゲイン、オフセット マウント) を用いた生のデータから、注意してください。また、GFP + キューティクルをイメージング用検出器窓蛍光 (検出器 1: 緑) とキューティクル (検出器 2: ピンク) GFP 対キューティクル バック グラウンド スペクトルに基づいて。(BC)DVGlut Gal4の制御の下で mCD8::GFP の付いた足の共焦点セクションは 2 (C) 検出器 1 (B) と検出器から取得。(D, E)それぞれイメージ (B, C) に使用される彩度マーカー設定 (説明のテキストを参照してください): 信号、赤の彩度が青い。検出器 1 の主要な神経トラックが飽和している、検出器の 2 キューティクルのいくつかの領域が飽和 (矢印を参照) 中に注意してください。スケールバー = 100 μ m.この図の拡大版を表示するのにはここをクリックしてください

Figure 4
図 4: フィジー/ImageJ を用いた画像処理します。(A) 498-535 nm の検出器から得られた共焦点スタックの最大投影。(B) 566-652 nm 検出器から得られた共焦点スタックの最大投影。(C) (A) から (B) を減算することによって得られる GFP 信号のみのイメージ。(D) (B) の画像をマージおよび (C)。(E) (C) の再構成。スケールバー = 100 μ m.この図の拡大版を表示するのにはここをクリックしてください

Figure 5
図 5: (A) と悪い良い (B) 固定の例を示している切り裂かれた脚の低消費電力表示します。スケール バー = 200 μ m.この図の拡大版を表示するのにはここをクリックしてください

Video
ビデオ 1: GFP 標識軸索 (緑)、脚のキューティクル (グレー) と共に映画してくださいここをクリックしてこのビデオを表示します。(右クリックしてダウンロード)

Subscription Required. Please recommend JoVE to your librarian.

Discussion

多くの暗い顔料を含んだ大人のショウジョウバエと他の節足動物のキューティクルは、自分の体の内部構造を表示するための主要な障害です。さらに、それは強く固定によって悪化している自動蛍光です。これらの 2 つの機能は、蛍光染料または外骨格を持つ動物の体内分子の観測は非常に問題になります。

手順については、ラボで日常的に使用する軸索軌道と大人のショウジョウバエ脚で、ターミナルの語尾のきれいで詳細な画像が得られます。重要なの脚キューティクルによって放出される蛍光から任意の汚染のないクリーンな GFP 信号が得られます。この機能は、視覚化し、3 D イメージング プログラムを使用して軸索アーバー三次元特徴を量的に表わすことができるために必須です。この方法では、いくつかの足から取得したデータを比較できます。プロシージャは、他の蛍光蛋白質からの信号を観察するため適応、他の大人の節足動物のイメージが軸索を簡単に使用できます。

プロシージャの 2 つの重要な側面は、i) 強い GFP シグナルと足の ii) 適切な固定を取得します。後者のための我々 は定期的に良い固定を入手、それにもかかわらずいくつかの足が時々 正しく固定されていません。したがって、プロシージャは、おそらく (ジメチルスルホキシド) などの試薬の浸透や固定 (電子レンジ固定、GFP 蛍光を保持する場合) の他の手段を促進するエージェントを追加することによって改善される必要が、我々 はこの可能性を検討していません。別にトリトン (これは固定の大幅向上) を含む PBS のエームスプレインキュベーションのステップを使用しています。良い GFP シグナルを得るためには、強力な DVglut Gal4ドライバー ( OK371 Gal4とも呼ばれます) を使用します。それは良い記者を使用する必要も-mCD8 GFP を使用し、細胞質の GFP や mCherry と良好な信号を取得します。それにもかかわらず、主なレポーター (6 量体) の複数のコピーとシャワーUAのサイトの複数のコピーを含む記者を使用します。

このプロシージャの制限は、それは固定ティッシュにだけ適用されることです。現在体内観察手順の開発やさまざまな方法 (取付と顕微鏡) をテストしています。共焦点の顕微鏡を使用して 1 つの制限は脚全体を表示することは困難です: これは覆う組織を深部に領域からの信号の GFP から信号が散在しているためにです。交互 biphoton 顕微鏡は、脚全体の厚さを介して画像をことができます。

最後に、他の方法は、異なる種類のマウントと固定4,12を使用します。意義と私達のプロシージャの強さ、他 (主にクチクラ) 信号から真の GFP の信号を分離する減算ステップできる優れた 3次元再構築と可視化軸索とその端末のアーバーのこと。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者が明らかに何もありません。

Acknowledgments

ロバート ・ ルナールにありがとうはえの食糧媒体の準備します。この作品は R.S.M. に NIH グラント NS070644 によってサポートされていると J.E. に ALS 協会 (#256)、FRM (#AJE20170537445)、ATIP アベニール プログラムから資金調達

Materials

Name Company Catalog Number Comments
Ethanol absolute Fisher E/6550DF/17 Absolute analytical reagent grade
nonionic surfactant detergent Sigma-Aldrich T8787 Triton X-100, for molecular biology
Fine forceps Sigma-Aldrich F6521 Jewelers forceps, Dumont No. 5
Glass multi-well plate Electron Microscopy Sciences 71563-01 9 cavity Pyrex, 100 mm x 85 mm
PFA Thermofisher 28908 Pierc 16% Formaldehyde (w/v), Methanol-free
Glycerol Fisher BioReagents BP 229-1 Glycerol (Molecular Biology)
Spacers Sun Jin Lab Co IS006 iSpacer, four wells, around 12 μL working volume per well, 7 mm diameter, 0.18 mm deep
Square 22 mm x 22 mm coverslips Fisher Scientific FIS#12-541-B No.1.5-0.16 to 0.19 mm thick
Mounting Medium Vector Laboratories H-1000 Vectashield Antifade Mounting Medium
Confocal microscope Carl Zeiss LSM780; objective used LD LCI Plan-Apochromat
25X/0.8 Imm Korr DIC M27 (oil/
silicon/glycerol/water
immersion) (420852-9871-000)
imaging software Carl Zeiss ZEN 2011
3D-Image software ThermoFisher Scientific Amira 6.4
ImageJ National Institutes of Health https://imagej.nih.gov/ij/ ImageJ/FIJI

DOWNLOAD MATERIALS LIST

References

  1. Miller, A. The internal anatomy and histology of the imago of Drosophila melanogaster. Biology of Drosophila. Demerec, M. , John Wiley & Sons. New York, NY. 420-531 (1950).
  2. Soler, C., Ladddada, L., Jagla, K. Coordinated development of muscles and tendons of the Drosophila leg. Development. 131 (24), 6041-6051 (2004).
  3. Baek, M., Mann, R. S. Lineage and Birth Date Specify Motor Neuron Targeting and Dendritic Architecture in adult Drosophila. Journal of Neuroscience. 29 (21), 6904-6916 (2009).
  4. Brierley, D. J., Rathore, K., VijayRaghavan, K., Williams, D. W. Developmental origins and architecture of Drosophila leg motoneurons. Journal of Comparative Neurology. 520 (8), 1629-1649 (2012).
  5. Enriquez, J., Mann, R. S. Specification of Individual Adult Motor Neuron Morphologies by Combinatorial Transcription Factor Codes. Neuron. 86 (4), 955-970 (2015).
  6. Mahr, A., Aberle, H. The expression pattern of the Drosophila vesicular glutamate transporter: a marker protein for motoneurons and glutamatergic centers in the brain. Gene Expression Patterns. 6 (3), 299-309 (2006).
  7. Lee, T., Luo, L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends in Neuroscience. 24 (5), 251-254 (2001).
  8. Enriquez, J., Rio, L. Q., Blazeski, R., Bellemin, S., Godement, P., Mason, C. A., Mann, R. S. Differing Strategies Despite Shared Lineages of Motor Neurons and Glia to Achieve Robust Development of an Adult Neuropil in Drosophila. Neuron. 97 (3), 538-554 (2018).
  9. ImageJ. Bio-Formats. , Available from: http://imagej.net/Bio-Formats (2018).
  10. ImageJ. Image Stitching. , Available from: http://imagej.net/Image_Stitching (2018).
  11. Preibisch, S., Saalfeld, S., Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics. 25 (11), 1463-1465 (2009).
  12. Brierley, D. J., Blanc, E., Reddy, O. V., Vijayraghavan, K., Williams, D. W. Dendritic targeting in the leg neuropil of Drosophila: the role of midline signalling molecules in generating a myotopic map. PLoS Biology. 7 (9), e1000199 (2009).

Tags

発生生物学、問題 140、ショウジョウバエ、下肢運動ニューロン、共焦点顕微鏡、軸索、イメージング、緑色蛍光タンパク質 (GFP)、キューティクル
大人のキューティクルを<em>ショウジョウバエ</em>脚運動ニューロン軸索を可視化します。
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Guan, W., Venkatasubramanian, L.,More

Guan, W., Venkatasubramanian, L., Baek, M., Mann, R. S., Enriquez, J. Visualize Drosophila Leg Motor Neuron Axons Through the Adult Cuticle. J. Vis. Exp. (140), e58365, doi:10.3791/58365 (2018).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter