Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Chemistry

FACILE syntese af kolloid bly Halide Perovskite Nanoplatelets via ligand-assisteret Renedbør

Published: October 1, 2019 doi: 10.3791/60114

Summary

Dette arbejde demonstrerer facile rum-temperatur syntese af kolloid Quantum-begrænset bly halide perovskite nanoplatelets ved ligand-assisteret renedbør metode. Syntetiserede nanoplatelets viser spektralt smalle optiske funktioner og kontinuerlig spektral tunbarhed i hele det synlige område ved at variere sammensætningen og tykkelserne.

Abstract

I dette arbejde viser vi en facile metode til kolloid bly halide perovskite nanoplatelet syntese (kemisk formel: L2[ABX3]n-1BX4, l: butylammonium og octylammonium, a: methylammonium eller formamidinium, B: bly, X: bromid og Iodid, n: antal [BX6]4- oktaedriske lag i retning af nanoplatelet tykkelse) via ligand-assisteret renedbør. Individuelle perovskite forløber opløsninger fremstilles ved at opløse hver nanoplatelet konstituerende salt i N, N-dimethylformamid (DMF), som er et polært organisk opløsningsmiddel, og derefter blande i specifikke nøgletal for målrettet nanoplatelet tykkelse og sammensætning. Når den blandede prækursor opløsning er faldet i ikke polære toluen, inducerer den pludselige ændring i opløselighed den øjeblikkelige krystallisering af nanoplatelets med overflade bundne alkylammoniumhalogenid-ligander, der giver kolloid stabilitet. Photoluminescens og absorption Spectra afslører lysafgivende og stærkt Quantum-begrænset funktioner. Røntgen diffraktion og transmission elektronmikroskopi bekræfter de to-dimensionelle struktur af nanoplatelets. Desuden viser vi, at bandet Gap af perovskite nanoplatelets kan løbende justeres i det synlige område ved at variere støkiometri af halide ion (s). Endelig viser vi fleksibiliteten i den ligand-assisterede renedbør metode ved at introducere flere arter som overflade-capping ligands. Denne metode er en simpel procedure til tilberedning af dispersioner af lysafgivende 2D-kolloid-halvledere.

Introduction

I det seneste årti, fabrikation af bly halide perovskites solceller1,2,3,4,5,6 har effektivt fremhævet de fremragende egenskaber af denne halvledermateriale, herunder lang bærediffusions længder7,8,9,10, kompositoriske tunbarhed4,5,11 og lavpris syntese12. Især den unikke karakter af defekt tolerance13,14 gør bly halide perovskites fundamentalt forskellige fra andre halvledere og dermed meget lovende for næste generation optoelektroniske applikationer.

Ud over solceller har bly halide perovskiter vist sig at gøre fremragende optoelektroniske anordninger såsom lysemitterende dioder6,15,16,17,18, 19,20,21,22, lasere23,24,25og foto detektorer26,27, 28. Især når de er tilberedt i form af kolloid nanokrystaller18,29,30,31,32,33,34, 35,36,37,38,39,40,41,42,43, bly halide perovskites kan udvise stærk kvante-og dielektrisk-indeslutning, stor exciton binding energi44,45, og lyse luminescens17,19 sammen med facile løsning forarbejdning. Forskellige rapporterede geometrier, herunder quantum dots29,30,31,32, nanoroder33,34 og nanoplatelets18, 35,36,37,38,39,40,41,43 yderligere demonstrere form tunbarhed af bly halide perovskite nanokrystaller.

Blandt disse nanokrystaller, kolloid to-dimensionelle (2D) bly halide perovskites, eller "perovskite nanoplatelets", er særligt lovende for lysemitterende applikationer på grund af stærk indeslutning af ladning bærere, stor exciton bindende energi nå op til hundredvis af meV44, og spektralt smal emission fra tykkelse-Pure ensembler af nanoplatelets39. Desuden, Anisotropisk emission rapporteret for 2D perovskite nanokrystaller46 og andre 2D halvledere47,48 fremhæver potentialet for at maksimere udkoblings effektivitet fra perovskite nanoplatelet-baserede lysemitterende enheder.

Her demonstrerer vi en protokol for den enkle, universelle, rumtemperatur syntese af kolloid bly halide perovskite nanoplatelets via en ligand-assisteret reudfældnings teknik36,38,49. Perovskite nanoplatelets med Iodid og/eller bromid Halogenid anioner, methylammonium eller formamidinium organiske kationer og variable organiske overflade ligander påvises. Procedurer for kontrol af absorption og emission energi og tykkelsen renhed af kolloid dispersion diskuteres.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

Bemærk: enklere notationer af 'n = 1 BX ' og 'n = 2 ABX ' vil blive brugt herfra i stedet for den komplekse kemiske formel i henholdsvis l2BX4 og l2[ABX3] BX4. For bedre stabilitet og optiske egenskaber af resulterende perovskite nanoplatelets, anbefales det at fuldføre hele proceduren under inaktive betingelser49 (dvs. en nitrogen glovebox).

1. fremstilling af perovskite nanoplatelet forløber opløsning

  1. Forbered ~ 1 ml 0,2 M opløsninger af methylammoniumbromid (mabr), formamidiniumbromid (fabr), blybromid (pbbr2), butylammonumbromid (babr), octylammoniumbromid (oabr), methylammoniumiiodid (Mai), formamidinium kaliumiodid (FAI), bly kaliumiodid (PBI2), butylammonium kaliumiodid (Bai) og octylammonium kaliumiodid (OAI) i n, n-dimethylformamid (DMF) enten ved at opløse hvert salt i DMF eller ved at fortynde kommercielt tilgængelige opløsninger.
    1. PbBr2 er ikke let opløseligt i DMF ved stuetemperatur, hold opløsningen ved 80 °c i 10 min eller længere for fuldstændig opløsning. Når opløsningen er opløst, afkøles den til stuetemperatur før brug.
      Bemærk: koncentrationen af individuelle prækursoropløsninger kan øges for at syntetisere flere nanoplatelets, men den maksimale koncentration er normalt begrænset af opløseligheden af PbBr2 og PBI2 i DMF.
  2. Bland disse individuelle prækursoropløsninger i specifikke volumetriske forhold for hver måltykkelse og-sammensætning.
    1. At syntetisere bromid-only eller kaliumiodid-kun nanoplatelets, se tabel 1, som opsummerer volumetriske nøgletal for n = 1 og n = 2 bromid og kaliumiodid nanoplatelets.
    2. At syntetisere nanoplatelets med blandede Halogenid kompositioner, kombinere bromid-only og iodide-kun perovskite nanoplatelet forløber løsninger af samme tykkelse på det ønskede volumetriske forhold for målet sammensætning. For eksempel, at gøre 30%-bromid-70%-iodide n = 2 perovskite nanoplatelets, bland prækursorer opløsninger af n = 2 mapbbr og n = 2 mapbi på en 3:7 volumetrisk ratio.
      Bemærk: ændring af organisk kation påvirker ikke i væsentlig grad den optiske overgang energier13. Absorption og luminescens er primært tunet ved at ændre halide sammensætning eller nanoplatelet tykkelse.

2. syntese af perovskite nanoplatelets via ligand-assisteret renedbør metode

  1. 10 μL blandet prækursoropløsning indsprøjtes i 10 mL toluen under kraftig omrøring. Nanoplatelets vil øjeblikkeligt krystallisere på grund af den pludselige ændring i opløseligheden.
    Bemærk: mængden af blandet prækursor opløsning, der injiceres i toluen, kan øges til ~ 100 μL. samlet mængde af injiceret forløber opløsning og injektion hastighed synes ikke at signifikant påvirke perovskite nanoplatelet morfologi (figur S1). Men, injektion af for meget DMF øger polaritet af opløsningen og reducerer krystalliseringen.
  2. Lad opløsningen være under omrøring i 10 minutter, indtil der ikke observeres yderligere farveændringer fra opløsningen for at sikre fuldstændig krystallisering af perovskite nanoplatelets.
    Bemærk: frisk syntetiseret perovskite nanoplatelets fra frisklavede prækursorer viser normalt det bedste fotoluminescens kvanteudbytte og foto stabilitet49. Og over tid, vil nanoplatelets langsomt aggregere (figur S2), forværring kolloid stabilitet. Således, det anbefales at bruge nanoplatelet opløsninger så hurtigt som muligt, når syntetiseres.

3. karakterisering prøveforberedelse og rensning af kolloid perovskite nanoplatelet opløsning.

  1. Prøveforberedelse af transmissionselektronmikroskopi (TEM).
    1. Opløsningen centrifugeres ved 2050 x g i 10 minutter.
    2. Kassér supernatanten.
    3. Redisperse nanoplatelets i 1 mL toluen.
    4. Drop 1 dråbe på et TEM-gitter.
    5. Tør prøven under vakuum.
  2. Prøveforberedelse af røntgen diffraktion (XRD)
    1. Opløsningen centrifugeres ved 2050 x g i 10 minutter.
    2. Kassér supernatanten.
    3. Redisperse nanoplatelets i 30 μL toluen.
    4. Drop Cast på en glas slide.
    5. Tør prøven under vakuum.
  3. Generel rensning
    1. Opløsningen centrifugeres ved 2050 x g i 10 minutter.
    2. Kassér supernatanten.
    3. Redisperse nanoplatelets i den ønskede mængde opløsningsmiddel afhængigt af brugen.
      Bemærk: afhængigt af brugen af nanoplatelets kan volumenet af det redisperserende opløsningsmiddel justeres frit, og andre ikke-polære organiske opløsningsmidler såsom hexan, oktan eller Chlorbenzen kan anvendes i stedet for toluen.

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

Skematisk illustration af perovskite nanoplatelets og syntese procedure giver et overblik over de materielle og syntetiske detaljer (figur 1). Billeder af kolloid perovskite nanoplatelet opløsninger under omgivende lys og UV (figur 2), kombineret med fotoluminescens og absorption Spectra (figur 3) bekræfter yderligere den lysafgivende og absorptions karakter af nanoplatelets. TEM-billeder (figur 4) og xrd-mønstre (figur 5) bruges til at estimere de laterale dimensioner og stabling af nanoplatelets, samtidig med at de to-dimensionelle struktur bekræftes. Absorptionsspektre af perovskite nanoplatelet opløsninger med blandede halogenider demonstrere tunbarhed af bandgap (figur 6). Ufølsom heden af fotoluminescens spektret til den kemiske identitet af organiske overflade udjævningen ligander fremhæver disse materialers kompositoriske fleksibilitet (figur 7).

MABr FABr PbBr2 BABr OABr Mai Fai PbI2 Bai Oai
n = 1 PbBr 0 0 1 1 1 0 0 0 0 0
n = 2 FAPbBr 0 1 2 5 5 0 0 0 0 0
n = 2 MAPbBr 1 0 2 5 5 0 0 0 0 0
n = 1 PbI 0 0 0 0 0 0 0 1 1 1
n = 2 FAPbI 0 0 0 0 0 0 1 2 5 5
n = 2 MAPbI 0 0 0 0 0 1 0 2 5 5

Tabel 1. Formulering retningslinjer for perovskite nanoplatelet prækursorer løsninger.
Tallene i tabellen angiver volumetriske ækvivalenter for hver prækursoropløsning (kolonner), der skal kombineres for at opnå det målrettede nanoplatelet (rækker) i henhold til koncentrations specifikationerne i protokolteksten.

Figure 1
Figur 1. Perovskite nanoplatelet struktur og syntese procedure.
(a) illustration af perovskite enheds celle og nanoplatelet struktur. (b) skematisk illustration af kolloid perovskite nanoplatelet syntese. Genoptrykt (tilpasset) med tilladelse fra Ref. 48. Copyright 2019 det amerikanske kemikalie selskab. Venligst klik her for at se en større version af dette tal.

Figure 2
Figur 2. Kolloid perovskite nanoplatelet opløsninger belyst af UV-lys.
Emission fra nanoplatelets kan tydeligt ses langs stråle stien. Genoptrykt (tilpasset) med tilladelse fra Ref. 48. Copyright 2019 det amerikanske kemikalie selskab. Venligst klik her for at se en større version af dette tal.

Figure 3
Figur 3. Fotoluminescens og absorption spektre af kolloid perovskite nanoplatelet opløsninger.
Bandgap af nanoplatelets kan justeres med tykkelse og sammensætning. Longpass filter (cut-on bølgelængde: 400 nm) blev brugt til at bortfiltrere excitation UV-lys før fotoluminescens spektrum indsamling og det kunne have lidt ændret n = 1 blybromid nanoplatelet emission spektrum.

Figure 4
Figur 4. Transmission elektronmikroskopi (TEM) billeder af perovskite nanoplatelets.
Billeder viser tilfældigt overlappende nanoplatelets. Se også figur S7. Venligst klik her for at se en større version af dette tal.

Figure 5
Figur 5. X-ray diffraktion (XRD) mønstre og d-spacings af perovskite nanoplatelets.
XRD mønstre er domineret af nanoplatelet stabling toppe, som bekræfter den todimensionelle karakter af nanoplatelets og deres ansigt-til-ansigt selv-forsamling i dropcasted film. Venligst klik her for at se en større version af dette tal.

Figure 6
Figur 6. Absorptionsspektre af kolloid perovskite nanoplatelet opløsninger med blandede halogenider.
Kontinuerlig forskydning af første excitonic absorption funktioner viser bandgap tunbarhed med halide sammensætning. Venligst klik her for at se en større version af dette tal.

Figure 7
Figur 7. Photoluminescens Spectra af n = 1 pbbr og n = 2 mapbbr nanoplatelets syntetiseres med forskellige ligand arter.
Genudfældnings metoden kan let udvides til andre ligand-kemikere. Se også tabel S2 for retningslinjer for formulering. Longpass filter (cut-on bølgelængde: 400 nm) blev brugt til at bortfiltrere excitation UV-lys før fotoluminescens spektrum indsamling og det kunne have lidt ændret n = 1 blybromid nanoplatelet emission spektrum. Venligst klik her for at se en større version af dette tal.

Supplerende fil. Supplerende oplysninger. Venligst klik her for at downloade denne fil.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

Produktet af denne syntese er kolloid bly halide nanoplatelets udjævnet af alkylammoniumhalogenid overflade ligander (figur 1a). Figur 1b demonstrerer den syntetiske procedure af kolloid perovskite nanoplatelets via ligand-assisteret renedbør. For at opsummere, konstituerende forløber salte blev opløst i en Polar solvent DMF i specifikke nøgletal for ønsket tykkelse og sammensætning, og derefter injiceres i toluen, som er nonpolar. På grund af den pludselige ændring i opløselighed, kolloid perovskite nanoplatelets begyndte at krystallisere øjeblikkeligt. Ved forberedelsen af den blandede prækursor opløsning bestemmes forholdet mellem prækursorer primært af tykkelsen af de resulterende nanoplatetter (figur S3), og tilstedeværelsen af overskydende ligander i prækursoropløsningen var afgørende for at sikre produktets tykkelse homogenitet (figur S4). Generelt kan ethvert polært opløsningsmiddel bruges til at opløse perovskite prækursorsalte, mens ethvert nonpolært opløsningsmiddel kan bruges til at sprede kolloid nanoplatelets. Men, blandbarhed af disse ikke-polære og polære opløsningsmidler er afgørende for homogen syntese af kolloid perovskite nanoplatelets, og dermed valgte vi DMF og toluen. Også, det er vigtigt at have ikke polære solvent i stort overskud til den ekstra polære opløsningsmiddel til krystallisering af perovskite nanoplatelets at forekomme. Tilsætning af for meget Polar solvent øger polariteten af den resulterende opløsningsmiddel blanding (dvs. DMF + toluen), som kan opløse nanoplatelets. Chlorid-og cæsium-indarbejde nanopatelets kan også syntetiseres ved denne fremgangsmåde (figur s5), selv om de chlorid-holdige nanoplatelets er nonemissive og cæsium-baserede nanoplatelets lider af ringere stabilitet og tykkelse homogenitet i forhold til de methylammoniumbaserede nanoplatelets, når syntetiseres via denne metode38. Endelig bemærker vi, at kun n = 1 og n = 2 medlemmer er blevet syntetiseret med god tykkelse homogenitet ved denne metode; forsøg på at lave tykkere (n ≥ 3) nanoplatelets giver typisk dispersioner i blandet tykkelse (figur S6).

Figur 2 viser billederne af AS-syntetiserede kolloid perovskite nanoplatelet løsninger BELYST af UV-lys, hvor emissionen af nanoplatelets kan tydeligt ses langs stråle stien. Figur 3 viser den normaliserede photoluminescens (pl) og absorptionsspektre af kolloid perovskite nanoplatelet opløsninger, som er i overensstemmelse med tidligere rapporter37,38,50,51 , demonstrerer tunbarhed af perovskite nanoplatelets med tykkelse og konstituerende arter. For alle nanoplatelets, stærke excitoniske funktioner i absorptionsspektre og signifikant blå-skift af spektre sammenlignet med bulk perovskites35 blev observeret på grund af stærk kvante-og dielektriske-indeslutning. Ændring af den organiske kation fra methylammonium til formamidinium påvirkede ikke i signifikant grad bånd kløften – hverken for bromid eller kaliumiodid nanoplatelets – i forståelse med forståelsen af den elektroniske Valens af Valence i bly halide perovskites13 . Tabel S1 opsummerer de fotoluminescens kvante udbytter (PLQYs) for disse kolloid perovskite nanoplatelet opløsninger.

Den todimensionelle struktur af perovskite nanoplatelets blev bekræftet af TEM og XRD. I figur 4, tem billeder viser delvist overlappende todimensionale perovskite nanoplatelets, med individuelle laterale dimensioner spænder fra et par hundrede nanometer til en mikrometer. Billedet kontrast og tilfældig konfiguration af nanoplatelets på tem gitter tyder på, at de er spredt i opløsning som individuelle ark – snarere end stablet lamel krystaller. Små, mørke sfæriske prikker optrådte ved elektronstråle bestråling som observeret i figur 4, og de menes at være metallisk PB som tidligere rapporteret36,52. På grund af de store laterale dimensioner af perovskite nanoplatelets, de fortrinsvis lå fladt oven på hinanden, når kastet ind i en film, og periodisk stabling toppe domineret XRD mønster som vist i figur 5. I betragtning af at gitter konstant for den kubiske perovskite enhed cellen er ~ 0,6 nm53, det kan udledes, at den organiske ligand lag er 1 nm tyk i stablet nanoplatelet film uanset nanoplatelet arter38.

Absorption og emission resonans kan løbende justeres ved at variere halide sammensætning. Figur 6 viser de normaliserede absorptionsspektre af kolloid n = 1 PBX og n = 2 mapbx nanoplatelet opløsninger med varierende forhold mellem bromid og Iodid. Klare excitonic absorption toppe indikerer stærk indeslutning af bærere i nanoplatelets, og kontinuerlig forskydning af disse toppe med halide sammensætning demonstrerer band Gap tunbarhed gennem halide sammensætning variation (figur S8). Men, photoluminescens spektre af blandede Halogenid nanoplatelets udviser brede eller flere funktioner (figur S9), som muligvis skyldes foto induceret Halogenid segregation. 54

Den ligand-assisterede renedbør metode er særligt modtagelig for at ændre identiteten af den langkædede capping ligand, som vist i figur 7. Dette åbner mulighed for at finjustere karakteren af de overflade bundne organiske arter for den optimerede ydeevne af en bestemt anordning eller applikation55. Vi bemærker dog, at forholdet mellem de enkelte prækursorer kan kræve en mindre justering, når der anvendes nye ligand arter for den bedste tykkelse homogenitet af det resulterende system (figur S10 og tabel S2).

Afslutningsvis har vi demonstreret en enkel, alsidig metode til syntese af kolloid bly halide perovskite nanoplatelets af varierende sammensætning (figur s11). Den ligand-assisterede renedbør tilgang er potentielt modtagelig for høj gennemløb syntese og yderligere data-drevet analyse. Tykkelse-, sammensætning-og ligand-tunbarhed kan opnås uden nogen større ændringer i de syntetiske protokoller. Bevæger sig fremad, ville det være ønskeligt at yderligere øge fotoluminescens effektivitet til niveauer, der svarer til andre perovskite nanokrystaller29,32,56.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

Forfatterne erklærer ikke konkurrerende finansielle interesser.

Acknowledgments

Dette arbejde blev støttet af det amerikanske energiministerium, Office of Science, Basic Energy Sciences (BES) underpris nummer DE-SC0019345. Seung Kyun ha blev delvist støttet af Kwanjeong Education Foundation Overseas doktor program Scholarship. Dette arbejde gjorde brug af MRSEC fælles eksperimentelle faciliteter på MIT, støttet af National Science Foundation under Award nummer DMR-08-19762. Vi takker Eric Powers for hjælp med korrektur og redigering.

Materials

Name Company Catalog Number Comments
Equipment
365nm fiber-coupled LED Thorlabs M365FP1 Excitation source (Photoluminescence)
Avantes fiber-optic spectrometer Avantes AvaSpec-2048XL Photoluminescence detector (Photoluminescence spectra)
Cary 5000 Agilent Technologies UV-Vis spectrophotometer (Absorption spectra)
FEI Tecnai G2 Spirit Twin TEM FEI Company Transmission electron microscopy (TEM) operating at 120kV
PANalytical X'Pert Pro MPD Malvern Panalytical X-ray diffraction (XRD) operating at 45 kV and 40 mA with a copper radiation source.
Materials
n-butylammonium bromide (BABr) GreatCell Solar MS305000-50G
n-butylammonium chloride (BACl) Fisher Scientific B071025G butylamine hydrochloride
n-butylammonium iodide (BAI) Sigma-Aldrich 805874-25G
N,N-dimethylforamide (DMF) Sigma-Aldrich 227056-1L Anhydrous, 99.8%
n-dodecylammonium bromide (DDABr) GreatCell Solar MS300880-05
formamidinium bromide (FABr) GreatCell Solar MS350000-100G
formamidinium iodide (FAI) GreatCell Solar MS150000-100G
n-hexylammonium bromide (HABr) GreatCell Solar MS300860-05
lead bromide (PbBr2) Sigma-Aldrich 398853-5G .99.999%
lead chloride (PbCl2) Sigma-Aldrich 268-690-5G 98%
lead iodide (PbI2) solution Sigma-Aldrich 795550-10ML 0.55M in DMF
methylammonium bromide (MABr) GreatCell Solar MS301000-100G
methylammonium iodide (MAI) GreatCell Solar MS101000-100G
n-octylammonium bromide (OABr) GreatCell Solar MS305500-50G
n-octylammonium chloride (OACl) Fisher Scientific O04841G octylamine hydrochloride
n-octylammonium iodide (OAI) GreatCell Solar MS105500-50G
iso-pentylammonium bromide (i-PABr) GreatCell Solar MS300710-05
toluene Sigma-Aldrich 244511-1L Anhydrous, 99.8%

DOWNLOAD MATERIALS LIST

References

  1. Kim, H. S., et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific Reports. 2, 591 (2012).
  2. Zhou, H., et al. Interface engineering of highly efficient perovskite solar cells. Science. 345 (6196), 542-546 (2014).
  3. Yang, W. S., et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science. 356 (6345), 1376-1379 (2017).
  4. Saliba, M., et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science. 9 (6), 1989-1997 (2016).
  5. Jeon, N. J., et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature. 517 (7535), 476-480 (2015).
  6. Stranks, S. D., Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nature Nanotechnology. 10 (5), 391-402 (2015).
  7. Ma, L., et al. Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. Journal of the American Chemical Society. 138 (44), 14750-14755 (2016).
  8. Dong, Q., et al. Electron-hole diffusion lengths> 175 μm in solution grown CH3NH3PbI3 single crystals. Science. 347 (6225), 967-970 (2015).
  9. Stranks, S. D., et al. Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science. 342 (6156), 341-344 (2013).
  10. Shi, D., et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science. 347 (6221), 519-522 (2015).
  11. McMeekin, D. P., et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science. 351 (6269), 151-155 (2016).
  12. Saidaminov, M. I., et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nature Communications. 6, 7586 (2015).
  13. Kovalenko, M. V., Protesescu, L., Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science. 358 (6364), 745-750 (2017).
  14. Akkerman, Q. A., Rainò, G., Kovalenko, M. V., Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Materials. 17, 394-405 (2018).
  15. Gangishetty, M. K., Hou, S., Quan, Q., Congreve, D. N. Reducing Architecture Limitations for Efficient Blue Perovskite Light-Emitting Diodes. Advanced Materials. 30 (20), 1706226 (2018).
  16. Congreve, D. N., et al. Tunable Light-Emitting Diodes Utilizing Quantum-Confined Layered Perovskite Emitters. ACS Photonics. 4 (3), 476-481 (2017).
  17. Kumar, S., et al. Ultrapure Green Light-Emitting Diodes Using Two-Dimensional Formamidinium Perovskites: Achieving Recommendation 2020 Color Coordinates. Nano Letters. 17 (9), 5277-5284 (2017).
  18. Kumar, S., et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano. 10 (10), 9720-9729 (2016).
  19. Pan, J., et al. Bidentate Ligand-Passivated CsPbI3 Perovskite Nanocrystals for Stable Near-Unity Photoluminescence Quantum Yield and Efficient Red Light-Emitting Diodes. Journal of the American Chemical Society. 140 (2), 562-565 (2018).
  20. Kim, Y. H., et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Advanced Materials. 27 (7), 1248-1254 (2015).
  21. Pan, J., et al. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering. Advanced Materials. 28 (39), 8718-8725 (2016).
  22. Tsai, H., et al. Stable Light-Emitting Diodes Using Phase-Pure Ruddlesden–Popper Layered Perovskites. Advanced Materials. 30 (6), 1704217 (2018).
  23. Sutherland, B. R., Hoogland, S., Adachi, M. M., Wong, C. T., Sargent, E. H. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano. 8 (10), 10947-10952 (2014).
  24. Deschler, F., et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. The Journal of Physical Chemistry Letters. 5 (8), 1421-1426 (2014).
  25. Zhu, H., et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials. 14 (6), 636-642 (2015).
  26. Fang, Y., Huang, J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Advanced Materials. 27 (17), 2804-2810 (2015).
  27. Shen, L., et al. A Self-Powered, Sub-nanosecond-Response Solution-Processed Hybrid Perovskite Photodetector for Time-Resolved Photoluminescence-Lifetime Detection. Advanced Materials. 28 (48), 10794-10800 (2016).
  28. Dou, L., et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nature Communications. 5, 5404 (2014).
  29. Protesescu, L., et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX(3), X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters. 15 (6), 3692-3696 (2015).
  30. Schmidt, L. C., et al. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. Journal of the American Chemical Society. 136 (3), 850-853 (2014).
  31. Imran, M., et al. Shape-Pure, Nearly Monodispersed CsPbBr3 Nanocubes Prepared Using Secondary Aliphatic Amines. Nano Letters. 18 (12), 7822-7831 (2018).
  32. Dong, Y., et al. Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium. Nano Letters. 18 (6), 3716-3722 (2018).
  33. Sun, S., Yuan, D., Xu, Y., Wang, A., Deng, Z. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano. 10 (3), 3648-3657 (2016).
  34. Zhang, D., Eaton, S. W., Yu, Y., Dou, L., Yang, P. Solution-phase synthesis of cesium lead halide perovskite nanowires. Journal of the American Chemical Society. 137 (29), 9230-9233 (2015).
  35. Weidman, M. C., Goodman, A. J., Tisdale, W. A. Colloidal halide perovskite nanoplatelets: An exciting new class of semiconductor nanomaterials. Chemistry of Materials. 29 (12), 5019-5030 (2017).
  36. Sichert, J. A., et al. Quantum Size Effect in Organometal Halide Perovskite Nanoplatelets. Nano Letters. 15 (10), 6521-6527 (2015).
  37. Bohn, B. J., et al. Boosting Tunable Blue Luminescence of Halide Perovskite Nanoplatelets through Postsynthetic Surface Trap Repair. Nano Letters. 18 (8), 5231-5238 (2018).
  38. Weidman, M. C., Seitz, M., Stranks, S. D., Tisdale, W. A. Highly Tunable Colloidal Perovskite Nanoplatelets Through Variable Cation, Metal, and Halide Composition. ACS Nano. 10 (8), 7830-7839 (2016).
  39. Bekenstein, Y., Koscher, B. A., Eaton, S. W., Yang, P., Alivisatos, A. P. Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. Journal of the American Chemical Society. 137 (51), 16008-16011 (2015).
  40. Shamsi, J., et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. Journal of the American Chemical Society. 138 (23), 7240-7243 (2016).
  41. Vybornyi, O., Yakunin, S., Kovalenko, M. V. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals. Nanoscale. 8 (12), 6278-6283 (2016).
  42. Huang, H., et al. Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications. NPG Asia Materials. 8 (11), e328 (2016).
  43. Tyagi, P., Arveson, S. M., Tisdale, W. A. Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement. J Phys Chem Lett. 6 (10), 1911-1916 (2015).
  44. Saidaminov, M. I., Mohammed, O. F., Bakr, O. M. Low-Dimensional-Networked Metal Halide Perovskites: The Next Big Thing. ACS Energy Letters. 2 (4), 889-896 (2017).
  45. Zheng, K., et al. Exciton binding energy and the nature of emissive states in organometal halide perovskites. The Journal of Physical Chemistry Letters. 6 (15), 2969-2975 (2015).
  46. Jurow, M. J., et al. Manipulating the Transition Dipole Moment of CsPbBr3 Perovskite Nanocrystals for Superior Optical Properties. Nano Letters. , (2019).
  47. Gao, Y., Weidman, M. C., Tisdale, W. A. CdSe Nanoplatelet Films with Controlled Orientation of their Transition Dipole Moment. Nano Letters. 17 (6), 3837-3843 (2017).
  48. Schuller, J. A., et al. Orientation of luminescent excitons in layered nanomaterials. Nature Nanotechnology. 8 (4), 271-276 (2013).
  49. Ha, S. K., Mauck, C. M., Tisdale, W. A. Towards Stable Deep-Blue Luminescent Colloidal Lead Halide Perovskite Nanoplatelets: Systematic Photostability Investigation. Chemistry of Materials. 31 (7), 2486-2496 (2019).
  50. Paritmongkol, W., Dahod, N., Mao, N., Zheng, S. L., Tisdale, W. Synthetic Variation and Structural Trends in Layered Two-Dimensional Alkylammonium Lead Halide Perovskites. ChemRxiv. , (2019).
  51. Stoumpos, C. C., et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials. 28 (8), 2852-2867 (2016).
  52. Akkerman, Q. A., et al. Solution Synthesis Approach to Colloidal Cesium Lead Halide Perovskite Nanoplatelets with Monolayer-Level Thickness Control. Journal of the American Chemical Society. 138 (3), 1010-1016 (2016).
  53. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society. 131 (17), 6050-6051 (2009).
  54. Bischak, C. G., et al. Origin of reversible photoinduced phase separation in hybrid perovskites. Nano Letters. 17 (2), 1028-1033 (2017).
  55. Mauck, C. M., Tisdale, W. A. Excitons in 2D Organic–Inorganic Halide Perovskites. Trends in Chemistry. , (2019).
  56. Gong, X., et al. Electron-phonon interaction in efficient perovskite blue emitters. Nat. Mater. 17 (6), 550-556 (2018).

Tags

Kemi colloid bly halide perovskite nanoplatelet nanosheet nanocrystal Ruddlesden-popper 2D kvante indespærring renedbør
FACILE syntese af kolloid bly Halide Perovskite Nanoplatelets via ligand-assisteret Renedbør
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Ha, S. K., Tisdale, W. A. FacileMore

Ha, S. K., Tisdale, W. A. Facile Synthesis of Colloidal Lead Halide Perovskite Nanoplatelets via Ligand-Assisted Reprecipitation. J. Vis. Exp. (152), e60114, doi:10.3791/60114 (2019).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter