Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

嗜碱性粒细胞活化试验用于过敏诊断

Published: May 31, 2021 doi: 10.3791/62600
* These authors contributed equally

Summary

嗜碱性粒细胞活化试验是一种补充性体 诊断试验,用于评估 IgE 介导的过敏反应,该试验基于通过流式细胞术测量活化标志物在存在特定刺激的情况下检测嗜碱性粒细胞活化。

Abstract

嗜碱性粒细胞活化试验 (BAT) 是一种补充性体外诊断试验,除了临床病史、皮肤试验 (ST) 和特异性 IgE (sIgE) 测定 ,还可用于评估 IgE 介导的对食物、昆虫毒液、药物以及某些形式的慢性荨麻疹的过敏反应。然而,该技术在诊断算法中的作用是高度可变的,并且尚未很好地确定。

BAT基于通过流式细胞术测量活化标志物(如CD63,CD203c)来确定嗜碱性粒细胞对变应原/药物交联IgE活化的反应。该测试可以成为避免受控挑战测试以确认过敏诊断的有用和补充工具,尤其是在经历严重危及生命的反应的受试者中。一般来说,如果 i) 变应原/药物在 ST 中产生假阳性结果;ii) 没有用于 ST 或 sIgE 测定的过敏原/药物来源;iii) 患者病史与 ST 或 sIgE 测定之间存在不一致;iv)症状提示ST可能导致全身反应;v) 在考虑进行 CCT 以确认罪魁祸首过敏原/药物之前。该测试的主要局限性与非最佳灵敏度有关,特别是在药物过敏中,需要在样品提取后不超过24小时进行测试,以及实验室之间在程序,浓度和细胞标志物方面缺乏标准化。

Introduction

IgE 介导的过敏诊断基于临床病史、皮肤试验 (ST)、血清特异性 IgE (sIgE) 的定量,以及对照激发试验 (CCT)(如果需要和指征)1,23456。然而,临床病史可能不可靠,因为可能缺乏准确的信息,ST 和 CCT 不是无风险的程序,在经历严重危及生命的反应的受试者中是禁忌的 123456.这些问题,加上通过经过验证和商业的荧光酶免疫测定测定sIgE仅适用于少数过敏原和药物的事实,突出了其他体外功能测定(如嗜碱性粒细胞活化试验(BAT))的重要作用。

嗜碱性粒细胞是参与 IgE 介导的过敏反应的关键效应细胞,在过敏原/药物暴露后,在细胞表面高亲和力受体 (FcεRI) 上结合的相邻 sIgE 交联时被激活。嗜碱性粒细胞活化触发细胞脱颗粒和细胞胞浆内分泌颗粒中所含的预形成和新合成的炎症介质的释放789BAT是一种体外方法,它试图在刺激(过敏原或药物)存在的情况下模拟嗜碱性粒细胞活化,并通过流式细胞术710确定嗜碱性粒细胞活化标志物表达的变化。有不同的策略来鉴定嗜碱性粒细胞(IgE+、CCR3+、CRTH2+、CD203c+)和使用荧光染料标记抗体的组合来测量细胞活化(主要是 CD63 和 CD203c 的上调710)。CD63是临床验证的最佳活化标志物11,12,13,14,是一种膜蛋白,锚定在含有组胺的分泌颗粒上,在细胞活化和颗粒与膜融合后,在嗜碱性粒细胞表面表达15,16,17,18192021.CD203c是一种表面标志物,在嗜碱性粒细胞上形成型表达,并在FcεRI刺激后上调,在BAT15,22232425中也显示出可靠的结果。此外,它似乎与CD6326共同表达。

在过去的几十年中,BAT已被证明可用于诊断由药物,食物或吸入剂等不同触发因素引起的IgE介导的过敏反应,以及某些形式的慢性荨麻疹,如下所述。然而,该技术在诊断算法中的位置变化很大,并且尚未很好地确定。

药物超敏反应
BAT已被证明可作为特定药物和患者的补充测试,特别是对于那些由于ST的诊断价值尚未很好地确定而出现严重反应的患者,因为它们对有限数量的药物进行了验证和标准化27282930此外,sIgE 的定量仅适用于有限数量的药物,灵敏度低于 ST272829303132因此,药物超敏反应的诊断通常依赖于药物激发试验,这可能在经历严重危及生命的反应的受试者中禁忌33

据报道,在选定的患者中使用BAT有希望的结果,这些患者报告对β内酰胺类(BLs)的即时超敏反应20,34,35,36,37,3839,神经肌肉阻滞剂(NMBAs)1922,40414243,4445氟喹诺酮类(FQ)46,47,48,49,吡唑啉酮类50,51,52,放射造影剂(RCM)53,54,55,56和铂化合物575859.据报道,BAT的敏感性和特异性分别为51.7-66.9%和89.2-97.8%;阳性和阴性预测值分别在 93.4% 和 66.3% 之间2731。此外,BAT已被提议作为铂化合物脱敏过程中突破性反应的预测生物标志物,因为在药物脱敏期间不良反应风险高的患者中,CD203c表达与CD63相比增加57

值得注意的是,BAT仅在反应涉及嗜碱性粒细胞脱颗粒时才对药物超敏反应有用;因此,它在由酶促抑制环加氧酶 142引起的反应中没有用。

食物过敏
BAT已成为食物过敏的潜在诊断工具,因为测定血清sIgE对整个过敏原提取物或单一过敏原通常是模棱两可的,需要口服食物激发试验来确认诊断,这与药物超敏反应类似,是一种昂贵且并非无风险的过程60。多项研究显示了牛奶 61,62、鸡蛋 6163、小麦64、656667、68、花生 6369707172榛子73、74757677,贝类78,桃子7980,81,苹果21芹菜和胡萝8283

与血清中的STs和sIgE相比,BAT在食物过敏诊断中的主要附加值是它显示出更高的特异性和相似的敏感性。因此,BAT是区分临床过敏患者与具有高特异性(75-100%)和敏感性(77-98%)的致敏但耐受的受试者的有用工具636984。敏感性和特异性值取决于变应原和其他因素,如表型(例如口腔过敏综合征全身过敏反应)、年龄和地理相关的致敏模式6385

使用单一过敏原成分的BAT可以潜在地提高某些食物过敏原的诊断准确性6180。有使用种子储存蛋白的研究(例如,来自花生的Ara h 1,Ara h 2,Ara h 3和Ara h 6)86;脂质转移蛋白(例如,来自桃子的Pru p 3和来自花生的Ara h 9)8086;和 Bet v 1 同系物(例如,来自花生的 Ara h 8)87。其他潜在的效用与在花粉食物过敏综合征218788对红肉过敏89或食物依赖性运动诱导的过敏反应66的情况下识别罪魁祸首过敏原有关。

有趣的是,BAT可以提供有关过敏反应的严重程度和阈值的信息,因为反应更严重的患者表现出更大比例的活化嗜碱性粒细胞,如花生和牛奶过敏患者的研究中观察到的那样849091;对微量过敏原有反应的患者表现出更大的嗜碱性粒细胞敏感性849092。这些数据表明,BAT可能有助于识别需要更密切随访和更强化教育的高风险过敏患者93。此外,据报道,BAT可以预测食物挑战反应70,91,92,94和反应性阈值9095以帮助确定何时可以安全地(重新)引入食物84然而,这些发现在一些研究中存在争议6396,需要更多的研究。

另一方面,随着时间的推移,BAT已被用于监测食物过敏的缓解情况,无论是自然的还是在免疫调节治疗下的,到目前为止,仅通过口服食物激发进行评估,具有相关的风险和成本84979899,100,101,102,103,104,105106,107108此外,它还被用于监测奥马珠单抗在食物过敏中的作用,因为在奥马珠单抗治疗期间嗜碱性粒细胞活化降低,但在停止治疗后增加109

吸入剂过敏
BAT很少对吸入剂过敏有益,因为可以通过sIgE定量和ST常规确定诊断。然而,在局部过敏性鼻炎病例(sIgE 水平检测不到和鼻激发试验阳性的 ST 阴性)病例中,BAT 允许诊断 50% 的病例110.进一步报道了嗜碱性粒细胞敏感性与鼻/支气管激发试验反应之间的相关性,以及哮喘严重程度与奥马珠单抗 111112 治疗效果之间的相关性。

BAT也被用于监测屋尘螨和花粉的变应原免疫治疗,因为在免疫治疗期间嗜碱性粒细胞敏感性降低,可能是由于阻断IgG抗体113,114,115,116117的干扰。

膜翅目毒液过敏
膜翅目毒液过敏的诊断通常基于 ST 和血清 sIgE。BAT显示出高敏感性(85-100%)和特异性(83-100%),据报道,对于结果模棱两可的病例或有提示性毒液过敏临床病史但sIgE检测不到且ST 118119阴性的患者,BAT是有用的。然而,BAT似乎不能预测这些反应的严重程度120121

高达 60% 的患者对黄蜂和蜂毒均表现出 sIgE,鉴定显性变应原对于充分的免疫治疗至关重要。据报道,在这些情况下,BAT可用于鉴定主要过敏原119122,123124尽管对蜜蜂和黄蜂毒液的主要过敏原的sIgE可能会降低BAT在两种毒液双重阳性患者中的效用,但它主要在sIgE测定结果为阴性的受试者中提供有用的信息123

一些研究表明,在毒液免疫治疗的积累阶段,BAT可能可作为副作用的预测生物标志物,因为据报道这种治疗选择会降低嗜碱性粒细胞的敏感性。然而,反应性并没有降低,这个BAT实用程序现在有争议的是13,120,125,126,127,128,129130

荨麻疹和血管性水肿
一部分慢性荨麻疹患者具有自身免疫病理生理学,这是由于针对自身过敏原的 IgE 自身抗体和靶向肥大细胞表面存在的 FcεRI 或 IgE-FcεRI 复合物的 IgG 自身抗体 131132在临床实践中,这种类型的慢性荨麻疹的诊断依赖于自体血清ST阳性,该血清ST具有意外感染的风险。BAT已被提议作为诊断和监测疑似慢性荨麻疹患者的体外检查。据报道,在慢性荨麻疹患者的血清刺激后,嗜碱性粒细胞表面的CD63和CD203c表达均增加,显示检测到活性自身抗体133,134,135,136137最近,据报道,与BAT138阴性的患者相比,BAT阳性患者通常经历最活跃的疾病状态,通过荨麻疹活动评分评估,并且需要更高剂量的抗组胺药联合三线治疗(环孢素A或奥马珠单抗)。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

协议执行是根据赫尔辛基原则宣言进行的,并得到当地道德委员会(西班牙马拉加省调查委员会)的批准。所有受试者都口头告知了这项研究,并签署了相应的知情同意书。

注意:本协议详细介绍了作者每天使用的BAT程序。然而,这不是一种标准化的方法,并且与其他作者发表的程序存在差异。主要的方案修改与刺激缓冲液中IL-3的使用,刺激物的孵育时间,停止嗜碱性粒细胞脱颗粒的方法以及流式细胞术策略有关。此外,不同的市售BAT试剂盒包括制造商推荐的特定方案。

1. 样品制备

  1. 在 9 mL 肝素化管中收集外周血,并将样品保持在室温 (RT) 在转子中,直到实验方案需要为止。
  2. 标记 5 mL 细胞仪管,用于阴性对照(2 管)、阳性对照(2 管)和不同浓度的过敏原/药物(每个测试的过敏原/药物浓度 1 个管)。将试管放在试管完美贴合而不会滑落的架子上。
  3. 在含有 2% (v/v) HEPES、78 mg/L NaCl、3.7 mg/L KCl、7.8 mg/L CaCl 2、3.3 mg/L MgCl2、1 g/L HSA 的双蒸水中制备刺激缓冲液。将 pH 值调节至 7.4,并以 2 ng/mL 的浓度添加 IL-3。通常准备100mL并分成2.5mL等分试样在-20°C冷冻。
  4. 在PBS-吐温-20中准备阳性对照0.05%(v / v)(PBS-T):阳性对照1,N-甲酰甲硫酰基亮酰基苯丙氨酸(fMLP)(4μM),以确认嗜碱性粒细胞的质量;阳性对照2,抗IgE(0.05mg / mL)作为IgE介导的阳性对照。
  5. 在PBS-T中以所需最终浓度的2倍制备过敏原/药物。
    注意:必须事先通过使用各种浓度,剂量反应曲线以及遵循相同方案步骤139的细胞毒性研究来确定要使用的最佳过敏原/药物浓度。

2. 染色混合物制备

  1. 按照制造商推荐的抗体浓度或先前的抗体滴定,将用荧光染料标记的单克隆抗体添加到刺激缓冲液中。在该协议中,我们添加 1 μL 每种抗体(CCR3-APC 和 CD203c-PE 用于嗜碱性粒细胞鉴定;CD63-FITC用于嗜碱性粒细胞活化)每20μL刺激缓冲液140
    注意:保护染色混合物制剂免受光照。
  2. 向每个试管中加入 23 μL 染色混合物。

3. 血液刺激

  1. 向试管 1 和 2(阴性对照)中加入 100 μL PBS-T,向试管 3 中加入 100 μL fMLP,向试管 4 中加入 100 μL 抗 IgE,向以下试管中加入 100 μL 不同过敏原/药物浓度。在恒温浴中在37°C下孵育10分钟,培养基搅拌以预热试剂。
  2. 向每个试管中轻轻添加 100 μL 血液以避免溶血。轻轻涡旋管并在37°C下在恒温浴中孵育25分钟,培养基搅拌。
  3. 停止脱颗粒,将管保持在4°C至少5分钟。
    注意:如果需要,可以在4°C下暂停协议30-45分钟141,142143

4.红细胞裂解

  1. 向每个试管中加入 2 mL 的 1x 裂解缓冲液以裂解红细胞。涡旋每个管并在室温下孵育5分钟。
    注意:在此步骤中,由于缓冲液中含有固定剂(甲醛),细胞被固定。
  2. 在4°C下以300× g 离心5分钟。倒出上清液,将架子翻转成水槽。细胞保留在管的底部。
  3. 向每个试管中加入 3 mL PBS-T 以洗涤细胞。涡旋每个管子。
  4. 在4°C下以300× g 离心5分钟。倒出上清液,将架子翻转成水槽。
    注意:将样品保持在4°C,避光直至流式细胞仪采集。

5. 流式细胞术采集

  1. 通过流式细胞仪(例如BD FACSCalibur流式细胞仪)采集样品。将流式细胞仪连接到计算机软件,等待细胞仪准备就绪。加载模板和仪器设置(表1)。
  2. 开始样品采集。
  3. 使用以下细胞仪策略选择活化的嗜碱性粒细胞139
    1. 从侧向散射 (SSC) - 前向散射 (FSC) 图中门控淋巴细胞。
    2. 将淋巴细胞群中的嗜碱性粒细胞作为CCR3 + CD203c +细胞。每管至少采集 500 个嗜碱性粒细胞。
    3. 显示 CCR3 - CD63 图以使用 CD63 作为激活标记来分析激活。使用阴性对照管将CD63阴性阈值设置为约2.5%。
    4. 获取所有样品。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

使用变应原或药物进行的 BAT 可以检查 IgE 依赖性超敏反应。嗜碱性粒细胞反应性应在至少两个最佳浓度下测量,以获得最佳结果34 ,并通过细胞表面CD63的上调来观察活化。此外,在过敏原的情况下,为了确认嗜碱性粒细胞反应性,应通过测量多个降低的过敏原浓度的反应性来分析嗜碱性粒细胞敏感性114。该测量允许确定诱导50%嗜碱性粒细胞(EC50)反应的过敏原浓度,其可以表示为“CD-sens”141。最近有人提出测量剂量曲线下面积(AUC)来同时评估嗜碱性粒细胞反应性和嗜碱性粒细胞敏感性58

用于分析BAT结果的流式细胞术策略如图1和图2所示,包括来自SSC-FSC的门控淋巴细胞(步骤1),来自淋巴细胞群的门控嗜碱性粒细胞作为CCR3 + CD203c +细胞(步骤2),显示CCR3 - CD63图以分析使用CD63作为活化标志物的活化(步骤3)。图显示了药物(图1)和过敏原(图2)获得的BAT结果的代表性示例。

Figure 1
图1:流式细胞术药物嗜碱性粒细胞活化试验的代表性分析 。 (A)SSC-FSC图以选择淋巴细胞+嗜碱性粒细胞群。(B)CCR3-CD203c图以将淋巴细胞群中的嗜碱性粒细胞作为CCR3 + CD203c细胞。(C)CCR3-CD63图,使用CD63作为阴性对照,阳性对照和药物的激活标志物分析激活。每个面板中显示的值表示单元格的百分比。 请点击此处查看此图的大图。

Figure 2
图2:流式细胞术对过敏原嗜碱性粒细胞活化试验的代表性分析。 (A)SSC-FSC图选择淋巴细胞+嗜碱性粒细胞群。(B)CCR3-CD203c图以将淋巴细胞群中的嗜碱性粒细胞作为CCR3 + CD203c +细胞。C)CCR3-CD63图,以使用CD63作为激活标志物分析激活,显示阴性对照和降低过敏原浓度的结果(Ara h 9)。每个面板中显示的值表示单元格的百分比。请点击此处查看此图的大图。

光源(激光) 488 nm 相干公司蓝宝石TM风冷氩离子激光器;20毫瓦;633 纳米 JDS 单相TM 氦气风冷激光器;17毫瓦
光激发波长 蓝色激光:488纳米;红色激光:633 nm
激发波长的光源功率 蓝色激光:20毫瓦;红色激光:17 mW
滤光片 SSC: 488/10;FITC: 530/30, PE:585/42, APC: 660/20
光学探测器 FSC, SSC, FL1-H FITC, FL2-H PE, FL4-H APC
光学探测器 风冷氩离子激光器
光路 BD八边形(488 nm激光线);BD 三角形(633 nm 激光线)

表1:流式细胞仪要求

Subscription Required. Please recommend JoVE to your librarian.

Discussion

BAT是一种补充体 诊断试验,用于评估IgE介导的过敏反应,已被证明可用于诊断由药物,食物或吸入剂等不同触发因素引起的反应,以及某些形式的慢性荨麻疹。一般来说,如果 i) 变应原/药物在 ST 中产生假阳性结果;ii) 过敏原/药物不能用于 ST 或 sIgE 定量;iii) 临床病史与 ST 或 sIgE 测定之间存在不一致;iv)症状表明ST段可能诱发全身反应;v) 在 CCT 之前,用于致病原原/药物确认10.

关于实验方案,要获得适合测试的血液样本,需要考虑不同的重要方面。由于嗜碱性粒细胞反应降低146(抗组胺药和局部类固醇不影响BAT结果)146,在测试前应避免全身性类固醇146和免疫抑制药,包括口服皮质类固醇147该测试不应在感染或活动性慢性炎症状况148期间进行。反应和测试之间的间隔时间不应超过 1 年,因为报告的 sIgE 水平随时间推移呈负化4252149该测试使用新鲜全血进行,并且必须在抽血后不超过24小时进行150151血液必须收集在肝素稳定的管中,因为如果使用EDTA或酸柠檬酸葡萄糖作为稳定剂,嗜碱性粒细胞不会脱颗粒,尽管可以在添加钙152后使用。另一方面,测试中使用的刺激不应包括任何赋形剂;因此,建议使用标准化的过敏原提取物,重组或纯化的过敏原,纯活性成分或静脉注射药物制剂。此外,需要考虑药物的化学特性。例如,一些药物在溶液中不稳定,必须在每次测试前新鲜制备,而其他药物则光不稳定,必须在保护测定免受光照的同时进行48。应评估每种测试的变应原/药物的毒性和非特异性激活,并且必须对确诊患者进行ROC曲线评估,并且必须分析耐受对照以确定临界值。最后,在最佳可得技术分析中应强调两种阳性对照的重要性。fMLP是一种细菌肽,通过G蛋白偶联的fMLP受体诱导嗜碱性粒细胞活化。因此,它通常用作非IgE介导的激活的阳性对照16。抗 IgE 或替代抗 FcεRI 用作 IgE 介导的嗜碱性粒细胞活化的阳性对照。在非 IgE 和 IgE 介导的阳性对照同时存在的情况下,没有嗜碱性粒细胞活化表明嗜碱性粒细胞质量不足或实验方案中的错误。相比之下,用fMLP激活但未被抗IgE或抗FcεRI激活的嗜碱性粒细胞被指定为无应答性嗜碱性粒细胞,据估计,在BAT 6384153中,6-17%的一般人群对通过FcεRI的刺激无反应尽管它们表达细胞表面IgE的正常密度。无反应可能与Syk磷酸酶154,155156水平低以及CD45 157水平升高有关。尽管研究表明,在体外测定中,在IL-3158存在的情况下,无应答性嗜碱性粒细胞可转化为应答者,但在BAT中仍可检测到无应答性嗜碱性粒细胞,在这些情况下,不能考虑评估结果。

关于纳入嗜碱性粒细胞启动细胞因子IL-3,尚无普遍共识。据报道,使用 IL-3 可增强基于 CD63 的 BAT 的嗜碱性粒细胞反应性,而不会在短时间预处理后自行诱导 CD63 上调7159160。然而,另一项研究表明,IL-3在基线161时上调CD63表达。相反,在基于CD203c的BAT的情况下,研究证实IL-3启动通过静息嗜碱性粒细胞来增强CD203c表达,减少未刺激和刺激的嗜碱性粒细胞之间的差异,并降低BAT敏感性159161

不同的门控策略可用于识别嗜碱性粒细胞群体,并通过流式细胞法分析嗜碱性粒细胞活化。嗜碱性粒细胞是低侧散射细胞,可以通过不同的选择标记选项162,163,164进行鉴定,是可能影响BAT诊断效率的关键点165166细胞标志物的选择应基于特异性,以区分嗜碱性粒细胞与其他细胞群,以及静息细胞和活化细胞的细胞标志物表达。最著名和最常用的嗜碱性粒细胞选择标志物是:CD193(CCR3)(也表达于肥大细胞、Th2 淋巴细胞162 和嗜酸性粒细胞)、CD123(也在 HLA-DR+ 浆细胞样树突状细胞上表达)、CD203c(仅在嗜碱性粒细胞上表达并在嗜碱性粒细胞活化后上调)和 FcεRI(也在肥大细胞的多能祖细胞上表达)139。基于这些细胞标志物并与 SSC 结合使用,更常见的选择策略是 SSC 低 CCR3+、SSC 低 CCR3+CD203c+(应用于本协议)、SSC 低 CD123+HLA-DR−、SSC 低 CD203c+CD123+HLA-DR−、SSCFcεRI+HLA-DR(排除抗原呈递细胞和单核细胞 146,161,162163),SSCCD203c + CRTH2 + CD3-(排除T细胞)164,SSC低CD203c +或SSC低CCR3 + CD123 + 10,162,166,SSCCD123 +(CD3-CD14-CD19-CD20-)167,168以及皮肤接触 IgE+169170 较低,但由于 IgE 水平低的患者存在局限性不推荐使用后者。在准确选择嗜碱性粒细胞群后,通常通过检测CD63来检测活化,CD63位于分泌颗粒16,171的膜中,其在嗜碱性粒细胞表面的表达与嗜碱性粒细胞脱颗粒和组胺释放16,172173直接相关。另一种选择是分析CD203c,但由于其上调IL-3159161在静息嗜碱性粒细胞上构成型表达,在活化的嗜碱性粒细胞上上调,灵敏度较低。

通过测量CD63阳性细胞(基于CD63的BAT)的百分比或CD203c平均荧光强度(MFI)(基于CD203c的BAT)的变化与设置为每次测定阈值的阴性对照相比,来检测嗜碱性粒细胞活化。建议阴性对照(未刺激细胞)中CD63阳性细胞的阈值为2.5%,以确定与对照激发试验相比最准确的BAT结果。阳性的考虑取决于测试的刺激。如果存在刺激的CD63阳性嗜碱性粒细胞的百分比除以阴性对照中CD63阳性嗜碱性粒细胞的百分比高于通过ROC曲线分析从确诊的过敏患者和健康供体获得的数据计算的临界值,则认为嗜碱性粒细胞激活对刺激呈阳性。

BAT性能允许通过分析麦芽甘素(WTM)16,174175的抑制作用来区分IgE依赖性和IgE非依赖性嗜碱性粒细胞活化,麦芽糖蛋白是参与IgE介导的嗜碱性粒细胞活化的磷酸肌醇3激酶的有效和特异性抑制剂。抑制测定是通过在与刺激物孵育之前将血液与WTM(1μM)在37°C下孵育5分钟来进行的。为了确认WTM对BAT的抑制是正确的,必须观察阳性对照抗IgE的抑制,而不是阳性对照fMLP的抑制。

不幸的是,不同实验室在程序、浓度和标记物方面没有标准化。未来的多中心研究需要标准化方法,以比较中心之间的结果,并在临床上标准化和验证测试。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

作者没有什么可透露的。

Acknowledgments

我们感谢克劳迪娅·科拉扎(Claudia Corazza)宝贵的英语语言支持。这项工作得到了MIENCO卫生研究所“Carlos III”(ISCIII)的支持(由ERDF共同资助的赠款:“Una manera de hacer Europa”;授权号PI20/01715;PI18/00095;PI17/01410;PI17/01318;PI17/01237 和 RETIC ARADYAL RD16/0006/0001;安达卢西亚地区卫生部(批准号PI-0127-2020,PIO-0176-2018;PE-0172-2018;PE-0039-2018;PC-0098-2017;PI-0075-2017;PI-0241-2016)。ID是一名临床研究者(B-0001-2017),AA持有高级博士后合同(RH-0099-2020),两者都由安达卢西亚地区卫生部支持(由ESF共同资助:“Andalucía se mueve con Europa”)。

Materials

Name Company Catalog Number Comments
5 mL Round Bottom Polystyrene Test Tube, without Cap, Nonsterile Corning 352008
APC anti-human CD193 (CCR3) Antibody BioLegend 310708
BD FACSCalibur Flow Cytometer BD Biosciences
Calcium chloride Sigma-Aldrich C1016
FITC anti-human CD63 Antibody BioLegend 353006
HEPES (1 M) Thermo-Fisher 15630106
Lysing Solution 10x concentrated BD Biosciences 349202
Magnesium chloride Sigma-Aldrich M8266
N-Formyl-Met-Leu-Phe Sigma-Aldrich F3506
PE anti-human CD203c (E-NPP3) Antibody BioLegend 324606
Potassium chloride Sigma-Aldrich P9541
Purified Mouse Anti-Human IgE BD Biosciences 555857
Recombinant Human IL-3 R&D Systems 203-IL
Sheath Fluid BD Biosciences 342003
Sodium chloride Sigma-Aldrich S3014
TUBE 9 mL LH Lithium Heparin Greiner Bio-One 455084
Tween 20 Sigma-Aldrich P1379

DOWNLOAD MATERIALS LIST

References

  1. Mayorga, C., et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 71 (8), 1103-1134 (2016).
  2. Romano, A., et al. Towards a more precise diagnosis of hypersensitivity to beta-lactams - an EAACI position paper. Allergy. 75 (6), 1300-1315 (2020).
  3. Garvey, L. H., et al. An EAACI position paper on the investigation of perioperative immediate hypersensitivity reactions. Allergy. 74 (10), 1872-1884 (2019).
  4. Gomes, E. R., et al. Drug hypersensitivity in children: report from the pediatric task force of the EAACI Drug Allergy Interest Group. Allergy. 71 (2), 149-161 (2016).
  5. Ansotegui, I. J., et al. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organization Journal. 13 (2), 100080 (2020).
  6. Jeebhay, M. F., et al. Food processing and occupational respiratory allergy- An EAACI position paper. Allergy. 74 (10), 1852-1871 (2019).
  7. Ebo, D. G., et al. Flow-assisted allergy diagnosis: current applications and future perspectives. Allergy. 61 (9), 1028-1039 (2006).
  8. Bochner, B. S. Systemic activation of basophils and eosinophils: markers and consequences. Journal of Allergy and Clinical Immunology. 106 (5), Suppl 292-302 (2000).
  9. Ghannadan, M., et al. Detection of novel CD antigens on the surface of human mast cells and basophils. International Archives of Allergy and Immunology. 127 (4), 299-307 (2002).
  10. Hoffmann, H. J., et al. The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease. Allergy. 70 (11), 1393-1405 (2015).
  11. Sainte-Laudy, J., Sabbah, A., Drouet, M., Lauret, M. G., Loiry, M. Diagnosis of venom allergy by flow cytometry. Correlation with clinical history, skin tests, specific IgE, histamine and leukotriene C4 release. Clinical & Experimental Allergy. 30 (8), 1166-1171 (2000).
  12. Sturm, G. J., et al. The CD63 basophil activation test in Hymenoptera venom allergy: a prospective study. Allergy. 59 (10), 1110-1117 (2004).
  13. Erdmann, S. M., et al. The basophil activation test in wasp venom allergy: sensitivity, specificity and monitoring specific immunotherapy. Allergy. 59 (10), 1102-1109 (2004).
  14. De Weck, A. L., et al. Diagnostic tests based on human basophils: more potentials and perspectives than pitfalls. International Archives of Allergy and Immunology. 146 (3), 177-189 (2008).
  15. Buhring, H. J., Streble, A., Valent, P. The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis. International Archives of Allergy and Immunology. 133 (4), 317-329 (2004).
  16. Knol, E. F., Mul, F. P., Jansen, H., Calafat, J., Roos, D. Monitoring human basophil activation via CD63 monoclonal antibody 435. Journal of Allergy and Clinical Immunology. 88 (3), Pt 1 328-338 (1991).
  17. Fureder, W., Agis, H., Sperr, W. R., Lechner, K., Valent, P. The surface membrane antigen phenotype of human blood basophils. Allergy. 49 (10), 861-865 (1994).
  18. Sanz, M. L., et al. Allergen-induced basophil activation: CD63 cell expression detected by flow cytometry in patients allergic to Dermatophagoides pteronyssinus and Lolium perenne. Clinical & Experimental Allergy. 31 (7), 1007-1013 (2001).
  19. Monneret, G., et al. Monitoring of basophil activation using CD63 and CCR3 in allergy to muscle relaxant drugs. Clin Immunol. 102 (2), 192-199 (2002).
  20. Sanz, M. L., et al. Flow cytometric basophil activation test by detection of CD63 expression in patients with immediate-type reactions to betalactam antibiotics. Clinical & Experimental Allergy. 32 (2), 277-286 (2002).
  21. Ebo, D. G., et al. Flow cytometric analysis of in vitro activated basophils, specific IgE and skin tests in the diagnosis of pollen-associated food allergy. Cytometry Part B: Clinical Cytometry. 64 (1), 28-33 (2005).
  22. Sudheer, P. S., Hall, J. E., Read, G. F., Rowbottom, A. W., Williams, P. E. Flow cytometric investigation of peri-anaesthetic anaphylaxis using CD63 and CD203c. Anaesthesia. 60 (3), 251-256 (2005).
  23. Binder, M., Fierlbeck, G., King, T., Valent, P., Buhring, H. J. Individual hymenoptera venom compounds induce upregulation of the basophil activation marker ectonucleotide pyrophosphatase/phosphodiesterase 3 (CD203c) in sensitized patients. International Archives of Allergy and Immunology. 129 (2), 160-168 (2002).
  24. Hauswirth, A. W., et al. Recombinant allergens promote expression of CD203c on basophils in sensitized individuals. Journal of Allergy and Clinical Immunology. 110 (1), 102-109 (2002).
  25. Boumiza, R., et al. Marked improvement of the basophil activation test by detecting CD203c instead of CD63. Clinical & Experimental Allergy. 33 (2), 259-265 (2003).
  26. Macglashan, D. Expression of CD203c and CD63 in human basophils: relationship to differential regulation of piecemeal and anaphylactic degranulation processes. Clinical & Experimental Allergy. 40 (9), 1365-1377 (2010).
  27. Mayorga, C., Dona, I., Perez-Inestrosa, E., Fernandez, T. D., Torres, M. J. The Value of In Vitro Tests to DiminishDrug Challenges. International Journal of Molecular Sciences. 18 (6), (2017).
  28. Brockow, K., et al. General considerations for skin test procedures in the diagnosis of drug hypersensitivity. Allergy. 57 (1), 45-51 (2002).
  29. Brockow, K., et al. Skin test concentrations for systemically administered drugs -- an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 68 (6), 702-712 (2013).
  30. Torres, M. J., et al. Approach to the diagnosis of drug hypersensitivity reactions: similarities and differences between Europe and North America. Clinical and Translational Allergy. 7, 7 (2017).
  31. Mayorga, C., et al. In vitro tests for drug hypersensitivity reactions: an ENDA/EAACI Drug Allergy Interest Group position paper. Allergy. 71 (8), 1103-1134 (2016).
  32. Mayorga, C., et al. Controversies in drug allergy: In vitro testing. Journal of Allergy and Clinical Immunology. 143 (1), 56-65 (2019).
  33. Aberer, W., et al. Drug provocation testing in the diagnosis of drug hypersensitivity reactions: general considerations. Allergy. 58 (9), 854-863 (2003).
  34. De Week, A. L., et al. Diagnosis of immediate-type beta-lactam allergy in vitro by flow-cytometric basophil activation test and sulfidoleukotriene production: a multicenter study. Journal of Investigational Allergology and Clinical Immunology. 19 (2), 91-109 (2009).
  35. Abuaf, N., et al. Comparison of two basophil activation markers CD63 and CD203c in the diagnosis of amoxicillin allergy. Clinical & Experimental Allergy. 38 (6), 921-928 (2008).
  36. Torres, M. J., et al. The diagnostic interpretation of basophil activation test in immediate allergic reactions to betalactams. Clinical & Experimental Allergy. 34 (11), 1768-1775 (2004).
  37. Torres, M. J., et al. Clavulanic acid can be the component in amoxicillin-clavulanic acid responsible for immediate hypersensitivity reactions. Journal of Allergy and Clinical Immunology. 125 (2), 502-505 (2010).
  38. Eberlein, B., et al. A new basophil activation test using CD63 and CCR3 in allergy to antibiotics. Clinical & Experimental Allergy. 40 (3), 411-418 (2010).
  39. Sanchez-Morillas, L., et al. Selective allergic reactions to clavulanic acid: a report of 9 cases. Journal of Allergy and Clinical Immunology. 126 (1), 177-179 (2010).
  40. Leysen, J., et al. Allergy to rocuronium: from clinical suspicion to correct diagnosis. Allergy. 66 (8), 1014-1019 (2011).
  41. Ebo, D. G., et al. Flow-assisted diagnostic management of anaphylaxis from rocuronium bromide. Allergy. 61 (8), 935-939 (2006).
  42. Kvedariene, V., et al. Diagnosis of neuromuscular blocking agent hypersensitivity reactions using cytofluorimetric analysis of basophils. Allergy. 61 (3), 311-315 (2006).
  43. Hagau, N., Gherman-Ionica, N., Sfichi, M., Petrisor, C. Threshold for basophil activation test positivity in neuromuscular blocking agents hypersensitivity reactions. Allergy Asthma Clin Immunol. 9 (1), 42 (2013).
  44. Uyttebroek, A. P., et al. Flowcytometric diagnosis of atracurium-induced anaphylaxis. Allergy. 69 (10), 1324-1332 (2014).
  45. Abuaf, N., et al. Validation of a flow cytometric assay detecting in vitro basophil activation for the diagnosis of muscle relaxant allergy. Journal of Allergy and Clinical Immunology. 104 (2), Pt 1 411-418 (1999).
  46. Aranda, A., et al. In vitro evaluation of IgE-mediated hypersensitivity reactions to quinolones. Allergy. 66 (2), 247-254 (2011).
  47. Fernandez, T. D., et al. Hypersensitivity to fluoroquinolones: The expression of basophil activation markers depends on the clinical entity and the culprit fluoroquinolone. Medicine (Baltimore). 95 (23), 3679 (2016).
  48. Mayorga, C., et al. Fluoroquinolone photodegradation influences specific basophil activation. International Archives of Allergy and Immunology. 160 (4), 377-382 (2013).
  49. Rouzaire, P., et al. Negativity of the basophil activation test in quinolone hypersensitivity: a breakthrough for provocation test decision-making. International Archives of Allergy and Immunology. 157 (3), 299-302 (2012).
  50. Hagau, N., Longrois, D., Petrisor, C. Threshold for positivity and optimal dipyrone concentration in flow cytometry-assisted basophil activation test. Allergy, Asthma & Immunology Research. 5 (6), 383-388 (2013).
  51. Gamboa, P. M., et al. Use of CD63 expression as a marker of in vitro basophil activation and leukotriene determination in metamizol allergic patients. Allergy. 58 (4), 312-317 (2003).
  52. Gomez, E., et al. Immunoglobulin E-mediated immediate allergic reactions to dipyrone: value of basophil activation test in the identification of patients. Clinical & Experimental Allergy. 39 (8), 1217-1224 (2009).
  53. Pinnobphun, P., Buranapraditkun, S., Kampitak, T., Hirankarn, N., Klaewsongkram, J. The diagnostic value of basophil activation test in patients with an immediate hypersensitivity reaction to radiocontrast media. Annals of Allergy, Asthma & Immunology. 106 (5), 387-393 (2011).
  54. Salas, M., et al. Diagnosis of immediate hypersensitivity reactions to radiocontrast media. Allergy. 68 (9), 1203-1206 (2013).
  55. Chirumbolo, S. Basophil activation test (BAT) in the diagnosis of immediate hypersensitivity reactions to radiocontrast media. Allergy. 68 (12), 1627-1628 (2013).
  56. Dona, I., et al. Hypersensitivity Reactions to Multiple Iodinated Contrast Media. Frontiers in Pharmacology. 11, 575437 (2020).
  57. Giavina-Bianchi, P., Galvao, V. R., Picard, M., Caiado, J., Castells, M. C. Basophil Activation Test is a Relevant Biomarker of the Outcome of Rapid Desensitization in Platinum Compounds-Allergy. Journal of Allergy and Clinical Immunology Practice. 5 (3), 728-736 (2017).
  58. Iwamoto, T., et al. Evaluation of basophil CD203c as a predictor of carboplatin-related hypersensitivity reaction in patients with gynecologic cancer. Biological and Pharmaceutical Bulletin. 35 (9), 1487-1495 (2012).
  59. Iwamoto, T., et al. Carboplatin-induced severe hypersensitivity reaction: role of IgE-dependent basophil activation and FcepsilonRI. Cancer Science. 105 (11), 1472-1479 (2014).
  60. Muraro, A., et al. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy. 69 (8), 1008-1025 (2014).
  61. Sato, S., et al. Basophil activation marker CD203c is useful in the diagnosis of hen's egg and cow's milk allergies in children. International Archives of Allergy and Immunology. 152, Suppl 1 54-61 (2010).
  62. Ciepiela, O., et al. Basophil activation test based on the expression of CD203c in the diagnostics of cow milk allergy in children. European Journal of Medical Research. 15, Suppl 2 21-26 (2010).
  63. Ocmant, A., et al. Basophil activation tests for the diagnosis of food allergy in children. Clinical & Experimental Allergy. 39 (8), 1234-1245 (2009).
  64. Carroccio, A., et al. A comparison between two different in vitro basophil activation tests for gluten- and cow's milk protein sensitivity in irritable bowel syndrome (IBS)-like patients. Clinical Chemistry and Laboratory Medicine. 51 (6), 1257-1263 (2013).
  65. Tokuda, R., et al. Antigen-induced expression of CD203c on basophils predicts IgE-mediated wheat allergy. Allergology International. 58 (2), 193-199 (2009).
  66. Chinuki, Y., et al. CD203c expression-based basophil activation test for diagnosis of wheat-dependent exercise-induced anaphylaxis. Journal of Allergy and Clinical Immunology. 129 (5), 1404-1406 (2012).
  67. Carroccio, A., et al. Non-celiac wheat sensitivity diagnosed by double-blind placebo-controlled challenge: exploring a new clinical entity. Am J Gastroenterol. 107 (12), 1898-1906 (2012).
  68. Carroccio, A., et al. A cytologic assay for diagnosis of food hypersensitivity in patients with irritable bowel syndrome. Clin Gastroenterol Hepatol. 8 (3), 254-260 (2010).
  69. Santos, A. F., et al. Basophil activation test discriminates between allergy and tolerance in peanut-sensitized children. Journal of Allergy and Clinical Immunology. 134 (3), 645-652 (2014).
  70. Glaumann, S., et al. Basophil allergen threshold sensitivity, CD-sens, IgE-sensitization and DBPCFC in peanut-sensitized children. Allergy. 67 (2), 242-247 (2012).
  71. Javaloyes, G., et al. Performance of different in vitro techniques in the molecular diagnosis of peanut allergy. Journal of Investigational Allergology and Clinical Immunology. 22 (7), 508-513 (2012).
  72. Glaumann, S., Nopp, A., Johansson, S. G., Borres, M. P., Nilsson, C. Oral peanut challenge identifies an allergy but the peanut allergen threshold sensitivity is not reproducible. PLoS One. 8 (1), 53465 (2013).
  73. Elizur, A., et al. NUT Co Reactivity - ACquiring Knowledge for Elimination Recommendations (NUT CRACKER) study. Allergy. 73 (3), 593-601 (2018).
  74. Cucu, T., De Meulenaer, B., Bridts, C., Devreese, B., Ebo, D. Impact of thermal processing and the Maillard reaction on the basophil activation of hazelnut allergic patients. Food Chem Toxicol. 50 (5), 1722-1728 (2012).
  75. Worm, M., et al. Impact of native, heat-processed and encapsulated hazelnuts on the allergic response in hazelnut-allergic patients. Clinical & Experimental Allergy. 39 (1), 159-166 (2009).
  76. Brandstrom, J., et al. Basophil allergen threshold sensitivity and component-resolved diagnostics improve hazelnut allergy diagnosis. Clinical & Experimental Allergy. 45 (9), 1412-1418 (2015).
  77. Lotzsch, B., Dolle, S., Vieths, S., Worm, M. Exploratory analysis of CD63 and CD203c expression in basophils from hazelnut sensitized and allergic individuals. Clinical and Translational Allergy. 6, 45 (2016).
  78. Ebo, D. G., Bridts, C. H., Hagendorens, M. M., De Clerck, L. S., Stevens, W. J. Scampi allergy: from fancy name-giving to correct diagnosis. Journal of Investigational Allergology and Clinical Immunology. 18 (3), 228-230 (2008).
  79. Gamboa, P. M., et al. Component-resolved in vitro diagnosis in peach-allergic patients. Journal of Investigational Allergology and Clinical Immunology. 19 (1), 13-20 (2009).
  80. Gamboa, P. M., et al. Two different profiles of peach allergy in the north of Spain. Allergy. 62 (4), 408-414 (2007).
  81. Diaz-Perales, A., et al. Recombinant Pru p 3 and natural Pru p 3, a major peach allergen, show equivalent immunologic reactivity: a new tool for the diagnosis of fruit allergy. Journal of Allergy and Clinical Immunology. 111 (3), 628-633 (2003).
  82. Erdmann, S. M., Heussen, N., Moll-Slodowy, S., Merk, H. F., Sachs, B. CD63 expression on basophils as a tool for the diagnosis of pollen-associated food allergy: sensitivity and specificity. Clinical & Experimental Allergy. 33 (5), 607-614 (2003).
  83. Erdmann, S. M., et al. In vitro analysis of birch-pollen-associated food allergy by use of recombinant allergens in the basophil activation test. International Archives of Allergy and Immunology. 136 (3), 230-238 (2005).
  84. Rubio, A., et al. Benefit of the basophil activation test in deciding when to reintroduce cow's milk in allergic children. Allergy. 66 (1), 92-100 (2011).
  85. Decuyper, I. i, et al. Performance of basophil activation test and specific IgG4 as diagnostic tools in nonspecific lipid transfer protein allergy: Antwerp-Barcelona comparison. Allergy. 75 (3), 616-624 (2020).
  86. Mayorga, C., et al. Basophil response to peanut allergens in Mediterranean peanut-allergic patients. Allergy. 69 (7), 964-968 (2014).
  87. Glaumann, S., et al. Evaluation of basophil allergen threshold sensitivity (CD-sens) to peanut and Ara h 8 in children IgE-sensitized to Ara h 8. Clinical and Molecular Allergy. 13 (1), 5 (2015).
  88. Wolbing, F., et al. The clinical relevance of birch pollen profilin cross-reactivity in sensitized patients. Allergy. 72 (4), 562-569 (2017).
  89. Commins, S. P., et al. Delayed clinical and ex vivo response to mammalian meat in patients with IgE to galactose-alpha-1,3-galactose. Journal of Allergy and Clinical Immunology. 134 (1), 108-115 (2014).
  90. Santos, A. F., et al. Distinct parameters of the basophil activation test reflect the severity and threshold of allergic reactions to peanut. Journal of Allergy and Clinical Immunology. 135 (1), 179-186 (2015).
  91. Song, Y., et al. Correlations between basophil activation, allergen-specific IgE with outcome and severity of oral food challenges. Annals of Allergy, Asthma & Immunology. 114 (4), 319-326 (2015).
  92. Chinthrajah, R. S., et al. Development of a tool predicting severity of allergic reaction during peanut challenge. Annals of Allergy, Asthma & Immunology. 121 (1), 69-76 (2018).
  93. Santos, A. F., Shreffler, W. G. Road map for the clinical application of the basophil activation test in food allergy. Clinical & Experimental Allergy. 47 (9), 1115-1124 (2017).
  94. Santos, A. F., et al. Biomarkers of severity and threshold of allergic reactions during oral peanut challenges. Journal of Allergy and Clinical Immunology. 146 (2), 344-355 (2020).
  95. Reier-Nilsen, T., et al. Predicting reactivity threshold in children with anaphylaxis to peanut. Clinical & Experimental Allergy. 48 (4), 415-423 (2018).
  96. Chapuis, A., et al. h 2 basophil activation test does not predict clinical reactivity to peanut. Journal of Allergy and Clinical Immunology Practice. 6 (5), 1772-1774 (2018).
  97. Patil, S. U., et al. Early decrease in basophil sensitivity to Ara h 2 precedes sustained unresponsiveness after peanut oral immunotherapy. Journal of Allergy and Clinical Immunology. 144 (5), 1310-1319 (2019).
  98. Chinthrajah, R. S., et al. Sustained outcomes in oral immunotherapy for peanut allergy (POISED study): a large, randomised, double-blind, placebo-controlled, phase 2 study. Lancet. 394 (10207), 1437-1449 (2019).
  99. Kim, E. H., et al. Long-term sublingual immunotherapy for peanut allergy in children: Clinical and immunologic evidence of desensitization. Journal of Allergy and Clinical Immunology. 144 (5), 1320-1326 (2019).
  100. Tsai, M., Mukai, K., Chinthrajah, R. S., Nadeau, K. C., Galli, S. J. Sustained successful peanut oral immunotherapy associated with low basophil activation and peanut-specific IgE. Journal of Allergy and Clinical Immunology. 145 (3), 885-896 (2020).
  101. Nachshon, L., et al. Efficacy and Safety of Sesame Oral Immunotherapy-A Real-World, Single-Center Study. Journal of Allergy and Clinical Immunology Practice. 7 (8), 2775-2781 (2019).
  102. Goldberg, M. R., et al. Efficacy of baked milk oral immunotherapy in baked milk-reactive allergic patients. Journal of Allergy and Clinical Immunology. 136 (6), 1601-1606 (2015).
  103. Keet, C. A., et al. The safety and efficacy of sublingual and oral immunotherapy for milk allergy. Journal of Allergy and Clinical Immunology. 129 (2), 448-455 (2012).
  104. Matsui, T., et al. Changes in passively-sensitized basophil activation to alphaS1-casein after oral immunotherapy. Immunity, Inflammation and Disease. 8 (2), 188-197 (2020).
  105. Giavi, S., et al. Oral immunotherapy with low allergenic hydrolysed egg in egg allergic children. Allergy. 71 (11), 1575-1584 (2016).
  106. Jones, S. M., et al. Clinical efficacy and immune regulation with peanut oral immunotherapy. Journal of Allergy and Clinical Immunology. 124 (2), 292-300 (2009).
  107. Burks, A. W., et al. Oral immunotherapy for treatment of egg allergy in children. New England Journal of Medicine. 367 (3), 233-243 (2012).
  108. Elizur, A., et al. Clinical and laboratory 2-year outcome of oral immunotherapy in patients with cow's milk allergy. Allergy. 71 (2), 275-278 (2016).
  109. Gernez, Y., et al. Basophil CD203c levels are increased at baseline and can be used to monitor omalizumab treatment in subjects with nut allergy. International Archives of Allergy and Immunology. 154 (4), 318-327 (2011).
  110. Gomez, E., et al. Role of the basophil activation test in the diagnosis of local allergic rhinitis. Journal of Allergy and Clinical Immunology. 132 (4), 975-976 (2013).
  111. Nopp, A., et al. Basophil allergen threshold sensitivity: a useful approach to anti-IgE treatment efficacy evaluation. Allergy. 61 (3), 298-302 (2006).
  112. Dahlen, B., et al. Basophil allergen threshold sensitivity, CD-sens, is a measure of allergen sensitivity in asthma. Clinical & Experimental Allergy. 41 (8), 1091-1097 (2011).
  113. Lalek, N., Kosnik, M., Silar, M., Korosec, P. Immunoglobulin G-dependent changes in basophil allergen threshold sensitivity during birch pollen immunotherapy. Clinical & Experimental Allergy. 40 (8), 1186-1193 (2010).
  114. Schmid, J. M., Wurtzen, P. A., Dahl, R., Hoffmann, H. J. Early improvement in basophil sensitivity predicts symptom relief with grass pollen immunotherapy. Journal of Allergy and Clinical Immunology. 134 (3), 741-744 (2014).
  115. Sharif, H., et al. Immunologic mechanisms of a short-course of Lolium perenne peptide immunotherapy: A randomized, double-blind, placebo-controlled trial. Journal of Allergy and Clinical Immunology. 144 (3), 738-749 (2019).
  116. Kim, S. H., et al. Changes in basophil activation during immunotherapy with house dust mite and mugwort in patients with allergic rhinitis. Asia Pacific Allergy. 8 (1), 6 (2018).
  117. Feng, M., et al. Allergen Immunotherapy-Induced Immunoglobulin G4 Reduces Basophil Activation in House Dust Mite-Allergic Asthma Patients. Frontiers in Cell and Developmental Biology. 8, 30 (2020).
  118. Korosec, P., et al. Clinical routine utility of basophil activation testing for diagnosis of hymenoptera-allergic patients with emphasis on individuals with negative venom-specific IgE antibodies. International Archives of Allergy and Immunology. 161 (4), 363-368 (2013).
  119. Ebo, D. G., Hagendorens, M. M., Bridts, C. H., De Clerck, L. S., Stevens, W. J. Hymenoptera venom allergy: taking the sting out of difficult cases. Journal of Investigational Allergology and Clinical Immunology. 17 (6), 357-360 (2007).
  120. Ebo, D. G., et al. Flow-assisted quantification of in vitro activated basophils in the diagnosis of wasp venom allergy and follow-up of wasp venom immunotherapy. Cytometry Part B: Clinical Cytometry. 72 (3), 196-203 (2007).
  121. Ott, H., Tenbrock, K., Baron, J., Merk, H., Lehmann, S. Basophil activation test for the diagnosis of hymenoptera venom allergy in childhood: a pilot study. Klin Padiatr. 223 (1), 27-32 (2011).
  122. Eberlein-Konig, B., Rakoski, J., Behrendt, H., Ring, J. Use of CD63 expression as marker of in vitro basophil activation in identifying the culprit in insect venom allergy. Journal of Investigational Allergology and Clinical Immunology. 14 (1), 10-16 (2004).
  123. Eberlein, B., Krischan, L., Darsow, U., Ollert, M., Ring, J. Double positivity to bee and wasp venom: improved diagnostic procedure by recombinant allergen-based IgE testing and basophil activation test including data about cross-reactive carbohydrate determinants. Journal of Allergy and Clinical Immunology. 130 (1), 155-161 (2012).
  124. Sturm, G. J., et al. Inconsistent results of diagnostic tools hamper the differentiation between bee and vespid venom allergy. PLoS One. 6 (6), 20842 (2011).
  125. Zitnik, S. E., et al. Monitoring honeybee venom immunotherapy in children with the basophil activation test. Pediatric Allergy and Immunology. 23 (2), 166-172 (2012).
  126. Kosnik, M., Silar, M., Bajrovic, N., Music, E., Korosec, P. High sensitivity of basophils predicts side-effects in venom immunotherapy. Allergy. 60 (11), 1401-1406 (2005).
  127. Celesnik, N., et al. Short-term venom immunotherapy induces desensitization of FcepsilonRI-mediated basophil response. Allergy. 67 (12), 1594-1600 (2012).
  128. Nullens, S., et al. Basophilic histamine content and release during venom immunotherapy: insights by flow cytometry. Cytometry Part B: Clinical Cytometry. 84 (3), 173-178 (2013).
  129. Bidad, K., Nawijn, M. C., Van Oosterhout, A. J., Van Der Heide, S., Elberink, J. N. Basophil activation test in the diagnosis and monitoring of mastocytosis patients with wasp venom allergy on immunotherapy. Cytometry Part B: Clinical Cytometry. 86 (3), 183-190 (2014).
  130. Eberlein-Konig, B., Schmidt-Leidescher, C., Behrendt, H., Ring, J. Predicting side-effects in venom immunotherapy by basophil activation. Allergy. 61 (7), 897 (2006).
  131. Kikuchi, Y., Kaplan, A. P. Mechanisms of autoimmune activation of basophils in chronic urticaria. Journal of Allergy and Clinical Immunology. 107 (6), 1056-1062 (2001).
  132. Huston, D. P., Sabato, V. Decoding the Enigma of Urticaria and Angioedema. Journal of Allergy and Clinical Immunology Practice. 6 (4), 1171-1175 (2018).
  133. Netchiporouk, E., et al. Positive CD63 Basophil Activation Tests Are Common in Children with Chronic Spontaneous Urticaria and Linked to High Disease Activity. International Archives of Allergy and Immunology. 171 (2), 81-88 (2016).
  134. Irinyi, B., et al. Extended diagnostic value of autologous serum skin test and basophil CD63 expression assay in chronic urticaria. British Journal of Dermatology. 168 (3), 656-658 (2013).
  135. Chen, Q., et al. Basophil CD63 expression in chronic spontaneous urticaria: correlation with allergic sensitization, serum autoreactivity and basophil reactivity. Journal of the European Academy of Dermatology and Venereology. 31 (3), 463-468 (2017).
  136. Wedi, B., Novacovic, V., Koerner, M., Kapp, A. Chronic urticaria serum induces histamine release, leukotriene production, and basophil CD63 surface expression--inhibitory effects ofanti-inflammatory drugs. Journal of Allergy and Clinical Immunology. 105 (3), 552-560 (2000).
  137. Yasnowsky, K. M., et al. Chronic urticaria sera increase basophil CD203c expression. Journal of Allergy and Clinical Immunology. 117 (6), 1430-1434 (2006).
  138. Curto-Barredo, L., et al. Basophil Activation Test identifies the patients with Chronic Spontaneous Urticaria suffering the most active disease. Immunity, Inflammation and Disease. 4 (4), 441-445 (2016).
  139. Santos, A. F., Alpan, O., Hoffmann, H. J. Basophil activation test: Mechanisms and considerations for use in clinical trials and clinical practice. Allergy. , (2021).
  140. Boumiza, R., Debard, A. L., Monneret, G. The basophil activation test by flow cytometry: recent developments in clinical studies, standardization and emerging perspectives. Clinical and Molecular Allergy. 3, 9 (2005).
  141. Aljadi, Z., et al. Activation of basophils is a new and sensitive marker of biocompatibility in hemodialysis. Artif Organs. 38 (11), 945-953 (2014).
  142. Rasmussen, P., Spillner, E., Hoffmann, H. J. Inhibiting phosphatase SHIP-1 enhances suboptimal IgE-mediated activation of human blood basophils but inhibits IgE-mediated activation of cultured human mast cells. Immunology Letters. 210, 40-46 (2019).
  143. Mueller-Wirth, N., et al. IgE-mediated chlorhexidine allergy-Cross-reactivity with other biguanide disinfectants. Allergy. 75 (12), 3237-3247 (2020).
  144. Johansson, S. G., et al. Passive IgE-sensitization by blood transfusion. Allergy. 60 (9), 1192-1199 (2005).
  145. Ariza, A., et al. Basophil activation after nonsteroidal anti-inflammatory drugs stimulation in patients with immediate hypersensitivity reactions to these drugs. Cytometry A. 85 (5), 400-407 (2014).
  146. Sturm, G. J., et al. The basophil activation test in the diagnosis of allergy: technical issues and critical factors. Allergy. 64 (9), 1319-1326 (2009).
  147. Iqbal, K., Bhargava, K., Skov, P. S., Falkencrone, S., Grattan, C. E. A positive serum basophil histamine release assay is a marker for ciclosporin-responsiveness in patients with chronic spontaneous urticaria. Clinical and Translational Allergy. 2 (1), 19 (2012).
  148. Korosec, P., et al. high-affinity IgE receptors, and CCL2 in human anaphylaxis. Journal of Allergy and Clinical Immunology. 140 (3), 750-758 (2017).
  149. Fernandez, T. D., et al. Negativization rates of IgE radioimmunoassay and basophil activation test in immediate reactions to penicillins. Allergy. 64 (2), 242-248 (2009).
  150. Kwok, M., Lack, G., Santos, A. F. Improved standardisation of the whole blood basophil activation test to peanut. Clinical and Translational Allergy. 8 (26), Suppl 2 15-16 (2017).
  151. Mukai, K., et al. Assessing basophil activation by using flow cytometry and mass cytometry in blood stored 24 hours before analysis. Journal of Allergy and Clinical Immunology. 139 (3), 889-899 (2017).
  152. Sousa, N., Martinez-Aranguren, R., Fernandez-Benitez, M., Ribeiro, F., Sanz, M. L. Comparison of basophil activation test results in blood preserved in acid citrate dextrose and EDTA. Journal of Investigational Allergology and Clinical Immunology. 20 (6), 535-536 (2010).
  153. Knol, E. F., Koenderman, L., Mul, F. P., Verhoeven, A. J., Roos, D. Differential activation of human basophils by anti-IgE and formyl-methionyl-leucyl-phenylalanine. Indications for protein kinase C-dependent and -independent activation pathways. European Journal of Immunology. 21 (4), 881-885 (1991).
  154. Macglashan, D. W. Basophil activation testing. Journal of Allergy and Clinical Immunology. 132 (4), 777-787 (2013).
  155. Macglashan, D., Moore, G., Muchhal, U. Regulation of IgE-mediated signalling in human basophils by CD32b and its role in Syk down-regulation: basic mechanisms in allergic disease. Clinical & Experimental Allergy. 44 (5), 713-723 (2014).
  156. Macglashan, D. Subthreshold desensitization of human basophils re-capitulates the loss of Syk and FcepsilonRI expression characterized by other methods of desensitization. Clinical & Experimental Allergy. 42 (7), 1060-1070 (2012).
  157. Grochowy, G., Hermiston, M. L., Kuhny, M., Weiss, A., Huber, M. Requirement for CD45 in fine-tuning mast cell responses mediated by different ligand-receptor systems. Cell Signaling. 21 (8), 1277-1286 (2009).
  158. Schroeder, J. T., Chichester, K. L., Bieneman, A. P. Human basophils secrete IL-3: evidence of autocrine priming for phenotypic and functional responses in allergic disease. Journal of Immunology. 182 (4), 2432-2438 (2009).
  159. Ocmant, A., et al. Flow cytometry for basophil activation markers: the measurement of CD203c up-regulation is as reliable as CD63 expression in the diagnosis of cat allergy. Journal of Immunology Methods. 320 (1-2), 40-48 (2007).
  160. Gentinetta, T., et al. Individual IL-3 priming is crucial for consistent in vitro activation of donor basophils in patients with chronic urticaria. Journal of Allergy and Clinical Immunology. 128 (6), 1227-1234 (2011).
  161. Sturm, E. M., et al. CD203c-based basophil activation test in allergy diagnosis: characteristics and differences to CD63 upregulation. Cytometry Part B: Clinical Cytometry. 78 (5), 308-318 (2010).
  162. Hausmann, O. V., et al. Robust expression of CCR3 as a single basophil selection marker in flow cytometry. Allergy. 66 (1), 85-91 (2011).
  163. Nucera, E., et al. Utility of Basophil Activation Test for monitoring the acquisition of clinical tolerance after oral desensitization to cow's milk: Pilot study. United European Gastroenterol Journal. 3 (3), 272-276 (2015).
  164. Imoto, Y., et al. Peripheral basophil reactivity, CD203c expression by Cryj1 stimulation, is useful for diagnosing seasonal allergic rhinitis by Japanese cedar pollen. Immunity, Inflammation and Disease. 3 (3), 300-308 (2015).
  165. Konstantinou, G. N., et al. EAACI taskforce position paper: evidence for autoimmune urticaria and proposal for defining diagnostic criteria. Allergy. 68 (1), 27-36 (2013).
  166. Santos, A. F., Becares, N., Stephens, A., Turcanu, V., Lack, G. The expression of CD123 can decrease with basophil activation: implications for the gating strategy of the basophil activation test. Clinical and Translational Allergy. 6, 11 (2016).
  167. Dijkstra, D., et al. Identification and quantification of basophils in the airways of asthmatics following segmental allergen challenge. Cytometry A. 85 (7), 580-587 (2014).
  168. Dijkstra, D., Meyer-Bahlburg, A. Human Basophils Modulate Plasma Cell Differentiation and Maturation. Journal of Immunology. 198 (1), 229-238 (2017).
  169. Sihra, B. S., Kon, O. M., Grant, J. A., Kay, A. B. Expression of high-affinity IgE receptors (Fc epsilon RI) on peripheral blood basophils, monocytes, and eosinophils in atopic and nonatopic subjects: relationship to total serum IgE concentrations. Journal of Allergy and Clinical Immunology. 99 (5), 699-706 (1997).
  170. Dehlink, E., Baker, A. H., Yen, E., Nurko, S., Fiebiger, E. Relationships between levels of serum IgE, cell-bound IgE, and IgE-receptors on peripheral blood cells in a pediatric population. PLoS One. 5 (8), 12204 (2010).
  171. Hoffmann, H. J., Frandsen, P. M., Christensen, L. H., Schiotz, P. O., Dahl, R. Cultured human mast cells are heterogeneous for expression of the high-affinity IgE receptor FcepsilonRI. International Archives of Allergy and Immunology. 157 (3), 246-250 (2012).
  172. Ebo, D. G., et al. Analyzing histamine release by flow cytometry (HistaFlow): a novel instrument to study the degranulation patterns of basophils. Journal of Immunology Methods. 375 (1-2), 30-38 (2012).
  173. Macglashan, D. Marked differences in the signaling requirements for expression of CD203c and CD11b versus CD63 expression and histamine release in human basophils. International Archives of Allergy and Immunology. 159 (3), 243-252 (2012).
  174. Torres, M. J., et al. Clavulanic acid can be the component in amoxicillin-clavulanic acid responsible for immediate hypersensitivity reactions. Journal of Allergy and Clinical Immunology. 125 (2), 502-505 (2010).
  175. Ariza, A., et al. Pyrazolones metabolites are relevant for identifying selective anaphylaxis to metamizole. Scientific Reports. 6, 23845 (2016).

Tags

医学,第171期,嗜碱性粒细胞,过敏原,药物,过敏,诊断, 体外 方法,CD63,CD203c
嗜碱性粒细胞活化试验用于过敏诊断
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Doña, I., Ariza, A.,More

Doña, I., Ariza, A., Fernández, T. D., Torres, M. J. Basophil Activation Test for Allergy Diagnosis. J. Vis. Exp. (171), e62600, doi:10.3791/62600 (2021).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter