Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

MRIにおける視神経断面領域の定量化:フィジーソフトウェアを用いた新規プロトコル

Published: September 4, 2021 doi: 10.3791/62752

Summary

MRIを用いた視神経評価と定量の標準化された方法、広く利用可能な撮像シーケンスを利用した、画像解析用のオープンアクセスソフトウェアの詳細なプロトコルを提供しました。この標準化されたプロトコルに従うと、異なる患者と異なる研究間の比較のための有意義なデータを提供するであろう。

Abstract

視神経評価は緑内障診断とフォローアップの重要な側面です。このプロジェクトでは、画像取得のための3 T MRIと画像処理定量のためのImageJのフィジーソフトウェアを使用した視神経断面評価と定量の統一方法論のためのプロトコルを記述します。画像取得は、3 T MRIを用いて行い、画像化中に患者が直進固定を確保するための適切な指示を与えた。T2加重脂肪抑制配列を用いた。地球の後ろに3mmを取り、視神経軸に垂直に取られたコロナカットは、ソフトウェアにアップロードする必要があります。閾値機能を用いて、視神経の白質領域が選択され、定量され、よって、個々の測定バイアスを排除する。我々はまた、以前に発表された文献に基づいて、年齢に応じて視神経断面積の正常限界を説明した。我々は、記載されたプロトコルを使用して、疑わしい緑内障患者の視神経を評価した。視神経断面積は正常限界内であることが判明し、視神経の光コヘレンス断層撮影を介してさらに確認された知見である。

Introduction

緑内障は、不可逆的失明の最も一般的な原因であると考えられている視神経障害である1.それにもかかわらず、診断を確立するための単一の標準基準を持たない病態生理学および診断の点ではまだ十分に理解されていない2.国立健康・ケア・エクセレンス研究所(NICE)によると、原発性開放角緑内障(POAG)の診断には、眼管試験または光コヘレンス断層撮影(OCT)イメージング、視野場評価、眼圧測定3に関する光学ディスク評価を含む複数のドメインの評価が必要です。緑内障の診断の背後にある考え方は、10月4日に定量的に行うことができる進行する視神経障害の存在を確立することです。この点に関して、MRIは視神経評価および白質領域5の定量にも使用することができるが、臨床的に意味を持つためには、視神経白質定量に用いられるプロトコルを標準化する必要がある。さらに、プロトコルは、異なる疾患の精度に影響を与える可能性のある要因である個人間変動にも対応する必要があります

緑内障における視神経評価は、視神経の最も前部(例えば、視神経板)が評価されるOCTを含む眼科画像を介して最適に評価される。一方、視神経評価のためのMRIの使用は、通常、地球から様々な距離で視神経のレトロブルバー部分を評価する。いくつかの研究は、OCTとMRI7、8を使用して、視ディスク評価の間に強い相関関係を発見しました。しかし、MRIに対する視神経評価と定量化のための統一されたプロトコルはまだありません。MRIの視神経境界の概説は、その断面領域5を定量化するために使用されてきた。ただし、この方法は、経験豊富な評価者が行う必要があり、アウトラインにかなりの時間を要するため、評価者間の変動性がかなりあります。現在のプロジェクトの目的は、画像取得のための3 T MRIとImageJのフィジーソフトウェアを使用した視神経断面評価と定量のための統一された方法論のためのプロトコルを提供することでした。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

以下の研究は、ヨルダン大学病院の研究委員会および機関審査委員会によって承認されました。以下のプロトコルは、MRI画像の取得に使用される画像技術を説明し、その後、フィジーのソフトウェアを使用した画像処理および視神経定量を行う。

1. MRI画像取得

注:MR画像の取得は、マルチプラナーT2加重脂肪抑制シーケンスを実行するために3テスラ(3 T)MRIを使用して行われました(材料表)。

  1. 患者に検査を十分に説明する。以下は患者に言及する必要がある指示および説明を含んでいる。
    1. 彼らは着替えとイメージングのための特別なガウンを着用する必要があることを患者に説明します。
    2. 酸化チタン顔料の電気伝導性のためにアーティファクト(特に3T)を生成できるため、着用したアイライナーを取り除いさせます。
    3. 患者がMRIのイメージ投射を行う禁忌を持たないことを確認しなさい 9:
      1. フェイスマスク、ピアス、人工手足、磁気歯科インプラント、大脳動脈動脈瘤クリップを含む可能性のある金属材料について患者に尋ねます。
      2. 金属眼内異物について患者に尋ねる。このために、彼らは適切な保護具なしで溶接しているかどうかを患者に尋ねます。
      3. ペースメーカーやインスリンポンプ、鎮痛薬、化学療法ポンプなど、埋め込み型デバイスがMRIと互換性がない可能性があることについて患者に尋ねます。これに加えて、人工内耳/耳インプラント、埋め込み可能な神経刺激システム、埋め込み可能な神経刺激システム、金属成分を有するカテーテルは、すべて禁忌である。
      4. 患者に体の中に残された金属異物について尋ねる。これには、弾丸、散弾銃のペレット、金属シュラプネルが含まれます。
      5. 外科用クリップまたはワイヤー縫合、関節置換または補間、下の大静脈(IVC)フィルター、眼用プロテーゼ、ステント、または子宮内装置について患者に尋ねる。
      6. 患者に、過去6週間にタトゥーを入れたかどうか尋ねてください。
      7. 過去8週間に大腸内視鏡検査を受けたかどうかを患者に尋ねる。
      8. MRIマシンの限られたスペースのために、閉所恐怖症があるかどうかを患者に尋ねる。
        注:高い体格指数(BMI)を有する患者に困難が見られる可能性があります。
    4. 患者に対して、患者がじっとしている必要がある15分かかることが予想されることを患者に説明する。
  2. 指示を完了し、患者が試験を完全に理解していることを確認した後、署名された同意を得る。
  3. MRI画像取得中に、患者の仰向けをMRIマシンに置き、頭部の動きを一切起させずにイメージング中にストレートターゲットに固定します。視力が悪い患者の場合は、健全な刺激を使用して固定を最適化します。固定のためのより包括的な方法は、片目を閉じる、色を変更する液晶画面の形で一元的に固定ターゲットの使用、および眼用潤滑剤の使用を含む。
  4. MRIマシンに入っている間に何か必要な場合に押すことができるスクイーズボタンがあることを患者が認識していることを確認してください。ヘッドコイルを使用できる一方で、眼球用コイルと軌道コイルは、眼科画像に適している場合があります。
  5. 画像取得のための次のパラメータを入力します: T2加重脂肪抑制シーケンス (TR = 3000 ミリ秒;TE = 90 ミリ秒。TE = 100;視野 = 16 cm×16 cm;行列 = 296*384;スライスの厚み = 3 mm;スライスギャップ = 0.3 mm)。最終的に解析された画像は、地球の3mm後ろの斜めのコロナ画像でした。T2加重脂肪抑制配列は一般的に視神経イメージングに使用されますが、T2高速スピンエコーイメージングを含む他の配列を使用できることに注意することが重要です。
  6. 視神経直交(すなわち、垂直)のコロナカットを、地球に3mm後方の神経に取り付ける。横断および斜めの矢状面のスカウト画像を使用して、最適な視神経方向および視神経地球性接合位置を確保する。
  7. 視神経の周りのCSF分布によって視線固定の質を評価し、すべての側面でほぼ等しい厚さで視神経の周りに均一に分布する必要があります。
  8. 反対側の視神経を画像化するプロセスを繰り返します。

2. 画像解析

  1. フィジー画像処理パッケージを (https://imagej.net/Fiji) からダウンロードします。
  2. 視神経のコロナ画像を ImageJ フィジーソフトウェアにアップロードして、メニューバーの [ファイル] をクリックし、[ 開く ] ボタンをクリックして分析します。処理するコロナ画像を選択します。画像品質の低下は信頼性の低い画像解析結果につながるため、転送中に画像品質を失うことなくフィジーのソフトウェアに画像を転送します。
  3. マップ縮尺に直線を描画して、長さの単位あたりのピクセル数を指定して縮尺を標準化します。次に、[分析] メニュー バーから[スケールの設定] を選択します。適切な長さの結合(すなわち、ほとんどmm)で地図スケールに表示される線の長さを指定します。
  4. イメージメニューを使用して画像をグレースケールに変換し、[種類] と[8 ビット]を選択します。
  5. 白い物質のピクセルの強度の範囲を定量化します。
    1. なげなわ選択ツール (プラグイン|の使用セグメンテーション|[なげなわツール]を選択すると、選択時にグレーの物質領域が含まれないように、十分な白色物質の領域を選択できます。1000ピクセル程度の白い物質の領域を選択した場合、十分であることがわかりました。 [解析 計測] ツールを使用して、選択した領域を定量化します。
  6. [分析] メニューからヒストグラムツールを表示すると、選択したホワイト マター領域のピクセルの強度の分布が表示されます。[ライブ] ボックスをクリックして、ヒストグラムで選択した領域が評価されていることを確認します。ヒストグラム上のグラフは、強度の正規分布を示している必要があります。
  7. 次のように白色物質の強度範囲を計算します。
    下限 = 平均強度 - (3* 標準偏差)
    上限 = 平均強度 + (3* 標準偏差)
  8. [イメージ] メニューから[しきい値] ツールを開き、続けて調整機能を使用します。前のステップから計算された範囲を指定します。暗い背景関数のみをチェックし、ドロップダウンリストから黒と白の注釈B&Wを指定し、[適用]をクリックします。光学ディスク内に存在する白質のマスクが表示されます。
  9. なげなわ選択ツール (プラグイン|の使用セグメンテーション|[なげなわツール]をクリックし、光学ディスクを表す黒色の領域を選択します。
  10. [分析] メニュー バーの[測定]関数を使用すると、しきい値関数でマークされた領域が mm 単位で計算されます。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

検診の眼科試験のために提示する30歳の男性患者のカップ対ディスク比は0.8(図1A)であり、これは疑わしく、緑内障を示唆している可能性がある。神経線維層の厚さについて光コヘレンス断層撮影を行ったところ、神経の厚さは年齢の通常の限界内にあることがわかった(図1B)。患者は、視神経評価のためのコロナカットが注文され、上記のプロトコルに従って行われた軌道MRIのために予定されていた。

コロナMRIカットを取得し、光学ディスクの後ろに3mm。白質平均強度は94.372(SD 7.085)で、白物質強度の範囲は次の値になります。

下限 = 94.372 - 21.255 = 73.117

上限 = 94.372 + 21.255 = 115.627

図2は、コロナ画像(図2A)、計算された上限と下限を用いて白質閾値を適用した後のコロナ画像(図2B)と、定量用視神経白色物(図2C)を示す。左視神経の白質の断面面積は6.9mm2(0.069 cm2)であり、これは彼の年齢の通常の限界内である、表1に示すように。

Figure 1
図1:緑内障を示唆する可能性のある高カップ対ディスク比を示す眼科画像(A)正常限界内を示す神経線維層(NFL)のための光コヘレンス断層撮影(B)この図の大きなバージョンを表示するには、ここをクリックしてください。

Figure 2
図2:コロナT2-加重脂肪は視神経3mm後ろの視神経に垂直に得られるMRI画像を抑制した(A)。事前に計算されたしきい値範囲(B)を適用した後の同じコロナカット。視神経白物(C).この図の大きなバージョンを表示するには、ここをクリックしてください。

勉強 サンプルサイズ 年齢(年) 平均断面積(mm2) イメージングシーケンス
2013年ベーエルレ。 10 15 平均 (SD) 24.5 ± 0.8 5.69 ± 0.77 T2加重ターボスピンエコー(TSE)シーケンス
王 2012. 11 21 平均 (SD) 51.6±12.0 5.03 ± 0.35 T2重み付け高速回復高速スピンエコー(FRFSE)シーケンス
ヴァイゲル、2006年。 12 32 平均 (範囲) 25 (22-39) 5.7 ± 0.6 T2加重ターボスピンエコー(TSE)シーケンス
ヤンナカ、2013年。 13 8 平均 (範囲) 31 (29-33) 6.2 (1.3) T2-脂肪抑制
アル・ハッダッド,2018. 14 211 中央値 (四分位数) 8.6 (3.9 – 13.3) 4.0 ± 0.20 * T1 加重反転回復シーケンス
*提供された視神経直径を使用して計算されます。

表1は、これまでの研究で見られたように、地球から3mmのMRIを用いた視神経断面径の正常範囲を示す。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

緑内障患者評価に使用される視神経白白質を評価し、定量化するためのプロトコルについて説明した。このプロトコルは、画像取得に広く利用可能なイメージングシーケンスを使用し、画像解析にオープンソースのフィジーソフトウェアを使用します。視神経画像取得において、患者にまっすぐ前方固定を求め、T2を脂肪抑制シーケンスで使用し、地球の3mm後ろの断面積を捉えるなど、これまで最も正確で再現性の高い画像パラメータを標準化しました。また、手動によるセグメンテーションを排除し、患者間の信号変動を補正する詳細な画像解析方法について説明しました。このプロトコルの重要性は、放射線科医による関心領域(ROI)セグメンテーションの変動を排除することであり、これは通常、MRI12に対する視神経評価における主な誤差源である。 表1で視神経断面面積の規範データを提供しようとしたが、臨床現場での使用及び比較には、記載の標準プロトコルを用いたさらなるデータが必要である。このようなデータは、 表1に示すように、視神経サイズの年齢変動に応じて異なる年齢層に対応する必要があります。このような変動は、性別15の間では明らかではないが、最近、屈折誤差16のために存在することが示唆された。

これまでの研究では、視神経白質定量に異なる方法論を適用し、彼らは主に画像分析のためにワークステーションに存在するソフトウェアを使用しました。視神経評価に関する最初の研究は、技術者または放射線科医による手動セグメンテーションを用いて、断面領域に基づく定量化アプローチを採用した12,17.Wangらはまた、10月11日との相関のために、地球から異なる距離で視神経断面積の手動セグメンテーションを使用した。Omodakaら. 1000.1000 と相関のための視神経の指標を抽出するために手動注釈を介して切断された軸方向の切断上の円盤からの視神経の長さおよび視神経の長さとの間の平均断面領域を使用した。OCT と相関しているにもかかわらず、この方法の再現性は、視神経の縦方向評価に必要な精度を得ない可能性がある。Ramli et al. 全軸節における等強烈信号の手動セグメンテーションを通じて視神経の体積を定量化し、軸部自体によって捕捉されない視神経物質を見逃す可能性のあるアプローチ、画像手動セグメンテーション中のヒューマンエラー、あるいは定量評価に含まれる視神経長の決定にさえ含まれる。

異なる研究は、視神経の断面領域の評価を使用したが、彼らは地球からの測定の距離が異なっていました。Wangらは、地球の後ろに3mm、9mm、および15mmを評価し、3mmの断面評価が眼圧11と最も高い相関を有することを発見した。Bäuerleらは、地球の後ろに3mmおよび5mmでMRIの視神経評価の再現性を分析し、彼らは両方の症例10に対して良好な評価を見つけた。Lagrèzeら.は、地球の後ろの5mm、10mm、および15mmの断面面積を測定し、地球17からのさらに遠い測定と比較して、5mm断面面積において断面積評価が最も正確であることを発見した。このプロトコルでは、視神経評価におけるその使用が以前に1.5 T MRI18、19よりも優れていることがわかった画像取得に3 T MRI使用しました。ますます利用される7 T MRIはまた、優れた結果を提供するかもしれないが、また、その規範的な値を必要とする。使用したMRI配列に関しては、主にT2脂肪抑制配列を使用し、その幅広い可用性と、周囲のコナル脂肪を排除した後にCSFを取り巻く視神経を線引く固有の能力のために使用しました。これまでの研究では、ハーフフーリエシングルショットターボスピンエコー(HASTE)シーケンスや拡散テンソルイメージング(DTI)シーケンス7、12など、信頼性の高い結果を持つ他のシーケンスを使用していましたが、これは広く利用できない可能性があります。

画像取得中に考慮すべき重要な側面は、画像の撮影中に非直線ターゲットに固定すると非正確視神経定量12が生じるので、患者がまっすぐなターゲットに固定していることを確認することである。OCTの固定は、近いターゲット上の単眼であり、患者は片目で近いターゲットを見るために評価される目の視力が良好である必要があり、MRIの場合はターゲットがさらに離れているのに対し、固定は双眼鏡であり、より少ない視覚要求を必要とする。しかし、屈折率が高い患者や視力不良の患者にとって、固定は依然として問題となる可能性があります。緑内障患者を評価し、従うためにMRIを使用することは、OCTを含む低コストで単純なイメージング技術の存在下では実現不可能であるかもしれないが、MRIは、OCTが決定的なデータを提供しない特別な状況で有用であり、または重要な眼内心不透明性の存在下など、OCT自体が得られない特別な状況において有用である。さらに、説明されたプロトコルは、原因不明の視神経障害が原因の二次原因を除外する場合にMRI画像化が保証される場合に使用することができる20,21。

このプロトコルの主な制限の1つは、両方の目の視力が悪い患者を含め、適切に固定できない患者を評価できないことである。この点に関して、音刺激を用いることが、画像取得22の際の固定の質を向上させる。さらに、新しい方法論として、視神経白質のMRIベースの断離領域の正常値を描写するために、将来の研究が必要である。正常値を確立することの重要性は、視神経もかなりの量の結合組織23、神経線維と同様の機能能力を有しない組織で構成されるという事実によってさらに強調される。OCTにおける視神経線維層厚の定量化は、定量プロセス24に結合組織を含めることによる再マンテイン神経組織の誤った印象を与えるかもしれないが、このような誤った印象は、このMRIベースの定量方法には存在しない。モーションアーティファクトは、特に試験中の目の動き時に、画像のぼかしにつながる可能性があります。イメージング中には避けるべきですが、白質の範囲を確立することは、脳白質に対する動きアーティファクトによって引き起こされる変化は視神経の白質にほとんど似ているため、視神経白質定量の精度に対するそのようなアーティファクトの影響を減らします。

現在のプロトコルの主な強みは、非専門医または技術者によって行われた場合でも、視神経定量中の個人間の違いの排除です。また、画像解析用に広く利用可能なオープンソースソフトウェアを使用しました。特にOCTの存在下で、視神経定量のための専用MRIイメージングを行うことは不可能であるが、視神経障害および緑内障の二次的原因の排除を含む他の目的のために行われたMRIイメージング中にこのプロトコルを実行することが推奨される。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

すべての著者は利益相反を宣言しません。

Acknowledgments

私たちは、ビデオの撮影と開発における彼らの重要な貢献のためにファリス・ハダッドとハサン・エル・イサに感謝したいと思います。

Materials

Name Company Catalog Number Comments
Magnetic resonance imaging (MRI) machine Siemens Magnetom Verio N/A 3T MRI scanner

DOWNLOAD MATERIALS LIST

References

  1. Quigley, H. A., Broman, A. T. The number of people with glaucoma worldwide in 2010 and 2020. The British Journal of Ophthalmology. 90 (3), 262-267 (2006).
  2. Weinreb, R. N., Aung, T., Medeiros, F. A. The pathophysiology and treatment of glaucoma: a review. JAMA. 311 (18), 1901-1911 (2014).
  3. Overview | Glaucoma: diagnosis and management | Guidance | NICE. , Available from: https://www.nice.org.uk/guidance/ng81 (2021).
  4. Michelessi, M., et al. Optic nerve head and fibre layer imaging for diagnosing glaucoma. The Cochrane Database of Systematic Reviews. (11), 008803 (2015).
  5. Ramli, N. M., et al. Novel use of 3T MRI in assessment of optic nerve volume in glaucoma. Graefe's Archive for Clinical and Experimental Ophthalmology. 252 (6), 995-1000 (2014).
  6. AlRyalat, S. A., Muhtaseb, R., Alshammari, T. Simulating a colour-blind ophthalmologist for diagnosing and staging diabetic retinopathy. Eye. , 1-4 (2020).
  7. Chang, S. T., et al. Optic Nerve Diffusion Tensor Imaging Parameters and Their Correlation With Optic Disc Topography and Disease Severity in Adult Glaucoma Patients and Controls. Journal of Glaucoma. 23 (8), 513-520 (2014).
  8. Omodaka, K., et al. Correlation of magnetic resonance imaging optic nerve parameters to optical coherence tomography and the visual field in glaucoma. Clinical & Experimental Ophthalmology. 42 (4), 360-368 (2014).
  9. Ghadimi, M., Sapra, A. Magnetic Resonance Imaging Contraindications. StatPearls. , (2021).
  10. Bäuerle, J., Schuchardt, F., Schroeder, L., Egger, K., Weigel, M., Harloff, A. Reproducibility and accuracy of optic nerve sheath diameter assessment using ultrasound compared to magnetic resonance imaging. BMC Neurology. 13 (1), 187 (2013).
  11. Wang, N., et al. Orbital Cerebrospinal Fluid Space in Glaucoma: The Beijing Intracranial and Intraocular Pressure (iCOP) Study. Ophthalmology. 119 (10), 2065-2073 (2012).
  12. Weigel, M., Lagrèze, W. A., Lazzaro, A., Hennig, J., Bley, T. A. Fast and Quantitative High-Resolution Magnetic Resonance Imaging of the Optic Nerve at 3.0 Tesla. Investigative Radiology. 41 (2), 83-86 (2006).
  13. Yiannakas, M. C., Toosy, A. T., Raftopoulos, R. E., Kapoor, R., Miller, D. H., Wheeler-Kingshott, C. A. M. MRI Acquisition and Analysis Protocol for In Vivo Intraorbital Optic Nerve Segmentation at 3T. Investigative Ophthalmology & Visual Science. 54 (6), 4235-4240 (2013).
  14. Al-Haddad, C. E., et al. Optic Nerve Measurement on MRI in the Pediatric Population: Normative Values and Correlations. American Journal of Neuroradiology. 39 (2), 369-374 (2018).
  15. Mncube, S. S., Goodier, M. Normal measurements of the optic nerve, optic nerve sheath and optic chiasm in the adult population. South African Journal of Radiology. 23 (1), 7 (2019).
  16. Nguyen, B. N., et al. Ultra-High Field Magnetic Resonance Imaging of the Retrobulbar Optic Nerve, Subarachnoid Space, and Optic Nerve Sheath in Emmetropic and Myopic Eyes. Translational Vision Science & Technology. 10 (2), (2021).
  17. Lagrèze, W. A., et al. Retrobulbar Optic Nerve Diameter Measured by High-Speed Magnetic Resonance Imaging as a Biomarker for Axonal Loss in Glaucomatous Optic Atrophy. Investigative Ophthalmology & Visual Science. 50 (9), 4223-4228 (2009).
  18. Nielsen, K., et al. Magnetic Resonance Imaging at 3.0 Tesla Detects More Lesions in Acute Optic Neuritis Than at 1.5 Tesla. Investigative Radiology. 41 (2), 76-82 (2006).
  19. Mafee, M. F., Rapoport, M., Karimi, A., Ansari, S. A., Shah, J. Orbital and ocular imaging using 3- and 1.5-T MR imaging systems. Neuroimaging Clinics of North America. 15 (1), 1-21 (2005).
  20. Gala, F. Magnetic resonance imaging of optic nerve. The Indian Journal of Radiology & Imaging. 25 (4), 421-438 (2015).
  21. Gao, K., et al. Optic Nerve Cross-Sectional Area Measurement with High-Resolution, Isotropic MRI in Optic Neuritis (P6.159). Neurology. 84 (14), (2015).
  22. Zou, H., Müller, H. J., Shi, Z. Non-spatial sounds regulate eye movements and enhance visual search. Journal of Vision. 12 (5), 2 (2012).
  23. Yang, H., et al. The Connective Tissue Components of Optic Nerve Head Cupping in Monkey Experimental Glaucoma Part 1: Global Change. Investigative Ophthalmology & Visual Science. 56 (13), 7661-7678 (2015).
  24. Mwanza, J. -C., et al. Retinal nerve fibre layer thickness floor and corresponding functional loss in glaucoma. The British Journal of Ophthalmology. 99 (6), 732-737 (2015).

Tags

医学、問題175、MRI、視神経、緑内障、画像J、フィジー、白質
MRIにおける視神経断面領域の定量化:フィジーソフトウェアを用いた新規プロトコル
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Al-Ryalat, N., AlRyalat, S. A.,More

Al-Ryalat, N., AlRyalat, S. A., Malkawi, L., Azzam, M., Mohsen, S. Quantification of Optic Nerve Cross Sectional Area on MRI: A Novel Protocol using Fiji Software. J. Vis. Exp. (175), e62752, doi:10.3791/62752 (2021).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter