Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biochemistry

細菌細胞での共発現と組み合わせたプルダウンアッセイは、困難なタンパク質間相互作用をテストするための時間効率の良いツールとして

Published: December 23, 2022 doi: 10.3791/64541

Summary

ここでは、適合ベクターのセットを使用して、タグ差のあるタンパク質を細菌で共発現させる方法について説明し、その後、 in vitroで組み立てられないタンパク質複合体を研究するための従来のプルダウン技術について説明します。

Abstract

プルダウンは、簡単で広く使用されているタンパク質間相互作用アッセイです。しかし、 in vitroで効果的に集合しないタンパク質複合体の研究には限界があります。そのような複合体は、共翻訳アセンブリおよび分子シャペロンの存在を必要とし得る。それらは、 in vitro で解離および再会合することができない安定なオリゴマーを形成するか、結合パートナーなしでは不安定である。これらの問題を克服するために、従来のプルダウン技術に続く一連の適合ベクターを用いた差次的タグタンパク質の細菌共発現に基づく方法を用いることができる。このワークフローは、相互作用するタンパク質の個別の精製とその後のインキュベーションという時間のかかるステップがないため、従来のプルダウンと比較して時間効率が高くなります。別の利点は、ステップ数が大幅に少なく、 in vitro 環境内に存在するタンパク質がタンパク質分解および酸化にさらされる期間が短いため、再現性が高いことです。この方法は、他の in vitro 技術が不適切であることが判明した場合に、多くのタンパク質間相互作用を研究するために首尾よく適用されました。この方法は、タンパク質間相互作用のバッチ試験に使用できます。BTBドメインと天然変性タンパク質との相互作用、および亜鉛フィンガー関連ドメインのヘテロ二量体の研究について、代表的な結果が示されています。

Introduction

従来のプルダウンは、タンパク質間相互作用の研究に広く使用されています1。しかしながら、精製されたタンパク質は、インビトロで効果的に相互作用しないことが多く2,3、それらのいくつかは、それらの結合パートナーなしでは不溶性である4,5そのようなタンパク質は、共翻訳アセンブリまたは分子シャペロンの存在を必要とするかもしれない5,6,7,8,9。従来のプルダウンの別の制限は、共翻訳的に組み立てられた安定なホモオリゴマーとして存在し得るドメイン間のヘテロ多量体化活性の試験です8,10、それらの多くはインビトロで解離および再会合することができないため、インキュベーション時間中に。共発現は、このような問題を克服するのに有用であることがわかった311。細菌における適合ベクターを用いた共発現は、ポリコーム抑制複合体PRC2 12、RNAポリメラーゼIIメディエーターヘッドモジュール13、バクテリオファージT4ベースプレート14、SAGA複合体デユビキチニラーゼモジュール15、16およびフェリチン17を含む大きなマルチサブユニット高分子複合体の精製に成功しました。共発現に一般的に使用される複製起点は、ColE1、p15A18、CloDF1319、およびRSF20です。市販のDuet発現システムでは、これらの起源を異なる抗生物質耐性遺伝子および便利な複数のクローニング部位と組み合わせてポリシストロニックベクターを作製し、最大8つのタンパク質の発現を可能にします。これらの起源は異なるコピー数を有し、標的タンパク質のバランスの取れた発現レベルを達成するために様々な組み合わせで使用することができる21。タンパク質間相互作用をテストするために、さまざまな親和性タグが使用されます。最も一般的なのは、6xヒスチジン、グルタチオン-S-トランスフェラーゼ(GST)、およびマルトース結合タンパク質(MBP)であり、それぞれが対応する樹脂に特異的な親和性を持っています。GSTおよびMBPはまた、タグ付きタンパク質の溶解性および安定性を高める22

真核細胞におけるタンパク質共発現を含む多くの方法も開発されており、その中で最も顕著なのは酵母ツーハイブリッドアッセイ(Y2H)23です。Y2Hアッセイは安価で簡単で、複数の相互作用のテストが可能です。ただし、ワークフローが完了するまでに1週間以上かかります。また、蛍光ツーハイブリッドアッセイ(F2H)24 や細胞アレイタンパク質間相互作用アッセイ(CAPPIA)25など、あまり使用頻度の低い哺乳類細胞ベースのアッセイもいくつかあります。F2Hアッセイは比較的高速であり、天然の細胞環境でタンパク質相互作用を観察することができますが、高価なイメージング機器を使用する必要があります。これらの方法はすべて、ネイティブの真核生物の翻訳および折り畳み環境を提供する原核生物発現よりも優れています。しかし、それらは、転写活性化または蛍光エネルギー伝達のいずれかによって間接的に相互作用を検出し、しばしばアーティファクトを生成します。また、真核細胞は、目的のタンパク質の他の相互作用パートナーを含む可能性があり、これは、高等真核生物のタンパク質間の二元相互作用の試験を妨げる可能性がある。

本研究では、従来のプルダウン技術に従った、差次的にタグ付けされたタンパク質の細菌共発現の方法について説明しています。この方法では、共発現を必要とする標的タンパク質間の相互作用を研究することができます。従来のプルダウンに比べて時間効率が高く、複数のターゲットのバッチテストが可能で、ほとんどの場合に有利です。適合ベクターを用いた共発現は、面倒なクローニング工程を必要としないため、ポリシストロニック共発現よりも簡便である。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

メソッドワークフローの概略図を 図1に示します。

1. 大腸菌の共形質転換

  1. 標準的なクローニング法を用いて標的タンパク質の発現ベクターを調製します。
    注:通常、GST/MBPタグ付きタンパク質の発現にはアンピシリン耐性遺伝子とColE1起源を持つ従来のpGEX/pMALベクターを使用し、6xHisタグタンパク質を発現させるにはp15AまたはRSF起源とカナマイシン耐性を持つ適合ベクターを使用し、場合によっては溶解性を高めるためにチオレドキシンまたはSUMOタグのいずれかと組み合わせることをお勧めします。通常、実験の前にタグのいくつかの組み合わせをテストする必要があります。記載された方法自体は、標的タンパク質の発現条件をバッチ試験するのに便利である。ほとんどのロゼッタ株には、希少コドンのtRNAを発現させるためのp15A起源のプラスミドがすでに含まれているため、そのような株を使用することが可能な選択肢である場合は、p15Aプラスミドを避けるべきであることに注意することが重要です。詳細については、 材料の表 を参照してください。
    1. 適切な菌株の細菌を37°CのLuria-Bertani(LB)培地で0.1〜0.2の光学密度(OD)まで増殖させます。BL21(DE3)株は、この研究の実施例に使用されました。
      注:2つのベクターで効率的な共形質転換を達成するために、新たに調製したコンピテントセルを使用することをお勧めします。2つ以上のベクトルを共変換する必要がある場合は、良好な変換効率を達成するために、それらを順次変換することをお勧めします。エレクトロポレーションは良い代替手段です。
    2. 菌懸濁液1.0 mLを4°Cで9,000 x g で1分間遠心分離し、上清を捨てる。
    3. 0.5 mLの氷冷バッファー変換バッファー(TB)(10 mM MOPS [pH 6.7]、250 mM KCl、55 mM MnCl 2、および15 mM CaCl2)を加え、氷上で10分間インキュベートします。
    4. 4°Cで8,000 x g で30秒間遠心分離し、上清を廃棄します。
    5. 100 μLのTBバッファーを加え、各ベクターを100 ng加え、氷上で30分間インキュベートします。単一のベクターを個別に変換して、共発現なしでタンパク質の挙動を調べます。さらに、非特異的結合コントロールのための空の共発現ベクターとペアで発現ベクターを共変換する。
      注:この研究で提供された例では、対応するcDNAをGST/MBP cDNAに融合させたpGEX/pMALベクターを、チオレドキシンcDNAに融合したパートナータンパク質ドメインをコードするcDNAを有する互換性のあるpACCYC由来ベクターと組み合わせて使用 しました。
    6. 42°Cで150秒間加熱し、氷上で1分間冷やします。
    7. 抗生物質を含まない液体LB培地1 mLを加え、37°Cで90分間インキュベートします。0.5%グルコースと対応する抗生物質を含むLB-寒天プレート上のプレート(一般的な濃度は、50 mg / Lアンピシリン、20 mg / Lカナマイシン、50 mg / Lストレプトマイシン、35 mg / Lクロラムフェニコール)です。.プレートを37°Cで一晩インキュベートします。

2.表現

  1. 2 mLの液体LB培地を含むプレートから、対応する抗生物質を含む50 mLのLB培地に細胞を洗い流します(一般的な濃度は、50 mg / Lアンピシリン、20 mg / Lカナマイシン、50 mg / Lストレプトマイシン、35 mg / Lクロラムフェニコール)です。金属イオンまたは他の既知の補因子を添加する(この研究で提供される例では、0.2mM ZnCl2 を培地に添加した)。20%グリセロールを含むアリコートを-70°Cで保存し、その後の実験を繰り返します。
    注:2つのプラスミド間の時折の組換えイベントによる単一の単離されたクローンでの発現不良の可能性を排除するために、プレートから直接いくつかのコロニーを洗い流すことをお勧めします。
  2. 細胞を37°Cで220rpmの一定回転でOD0.5〜0.7まで増殖させ、室温(RT)まで冷却し、イソプロピルβ-D-1-チオガラクトピラノシド(IPTG)を1mMまで加えます。誘導されていないサンプルのコントロールとして20 μLの細胞懸濁液を保存してください。
  3. 細胞を18°Cで220rpmの一定回転で一晩インキュベートします。
    注:インキュベーションの最適な時間と温度は異なる場合があります。18°Cで一晩過ごすと、ほとんどのタンパク質に最適であり、デフォルトで試すことをお勧めします。強い非特異的結合が観察された場合は、インキュベーション時間を2〜3時間に短縮します。.
  4. 細菌懸濁液を2つの部分(または2つ以上の異なるタグを使用した場合はそれ以上)に分割し、細胞懸濁液の20 μLアリコートを保存してタンパク質発現を確認します。4,000 x g で15分間遠心分離します。
    注:一時停止ポイント:細菌ペレットは-70°Cで少なくとも6か月間保存できます。

3. プルダウンアッセイ

注:詳細な手順は、6xHisまたはMBP/GSTのいずれかでタグ付けされたタンパク質について説明されています。すべての手順は4°Cで行われます。

  1. 実験の直前に添加したプロテアーゼ阻害剤と還元剤(下記参照)を含む1 mLの氷冷溶解バッファーに細菌ペレットを再懸濁します。金属キレート樹脂を使用する場合は、金属イオンを除去するため、ジチオトレイトール(DTT)は避けてください。試験したタンパク質のバッファー組成を調整します。ほとんどのタンパク質に適していると思われる溶解バッファーの一般的なレシピは次のとおりです。
    1. 6xHisプルダウン:30 mM HEPES(pH 7.5)、400 mM NaCl、10 mMイミダゾール、0.1%NP40、10%[w/w]グリセロール、5 mMベータメルカプトエタノール、1 mMフェニルメチルスフルフォニルフルオライド(PMSF)、およびプロテアーゼ阻害剤カクテルの1:1,000希釈液を混合します( 材料の表を参照)。
    2. GSTまたはMBPプルダウン:20 mMトリス(25°CでpH 7.5)、150 mM NaCl、10 mM KCl、10 mM MgCl 2、0.1 mM ZnCl2、0.1% NP40、10% [w/w]グリセロール、5 mM DTT、1 mM PMSF、およびプロテアーゼ阻害剤カクテルの1:1,000希釈液を混合します(材料の表を参照)。
  2. 氷上で超音波処理によって細胞を破壊する。電気泳動用に20 μlのアリコートを保管してください。
    注:通常、サンプルあたり20Wの出力電力で15秒間隔で5秒の20〜25パルスが必要です。適切な超音波処理力は、過熱を避け、細胞全体の破壊を確実にするために、各機器に対して調整する必要があります。より良い性能を達成するために、それは強く高スループットマルチチップ超音波処理器プローブを使用することをお勧めします。
  3. 20,000 x g で30分間遠心分離します。その後のSDS-PAGE分析のために、清澄化されたライセートを20 μL収集します。
  4. レジン(各サンプルにつき50 μL)を1 mLの氷冷溶解バッファーで10分間平衡化し、2,000 x g で30秒間遠心分離し、上清を廃棄します。
  5. 細胞ライセート(総タンパク質濃度:20-50 mg/mL)を樹脂に加え、15 rpmの一定回転で10分間インキュベートし、2,000 x g で30秒間遠心分離し、上清を廃棄します。その後のSDS-PAGE分析のために、20 μLの非結合画分を収集します。
  6. 1 mLの氷冷洗浄バッファーを加え、1分間インキュベートします。2,000 x g で30秒間遠心分離し、上清を廃棄します。洗浄バッファーの一般的なレシピは次のとおりです。
    1. 6xHisプルダウン:30 mM HEPES(pH 7.5)、400 mM NaCl、30 mM イミダゾール、0.1% NP40、10% [w/w] グリセロール、および5 mM β-メルカプトエタノールを混合します。
    2. GSTまたはMBPプルダウン:20 mMトリス(25°CでpH 7.5)、500 mM NaCl、10 mM KCl、10 mM MgCl 2、0.1 mM ZnCl2、0.1% NP40、10%[w/w]グリセロール、および5 mM DTTを混合します。
  7. 2回の長時間洗浄を実行します:1 mLの氷冷洗浄バッファーを追加し、15 rpmの一定の回転で10〜30分間インキュベートし、2,000 x g で30秒間遠心分離し、上清を廃棄します。
  8. 1 mLの氷冷洗浄バッファーを加え、1分間インキュベートし、2,000 x g で30秒間遠心分離し、上清を廃棄します。
  9. 結合したタンパク質を50 μLの溶出バッファーでシェーカーで1,200 rpm、10分間溶出します。溶出バッファーの一般的なレシピは次のとおりです。
    1. 6xHisプルダウン:30 mM HEPES(pH 7.5)、400 mM NaCl、300 mM イミダゾール、および5 mMベータメルカプトエタノールを混合します。
    2. GSTプルダウン:20 mMトリス(25°CでpH 7.5)、150 mM NaCl、50 mMグルタチオン(塩基性トリスでpH 7.5に調整)、および5 mM DTT。
    3. MBPプルダウン:20 mMトリス(25°CでpH 7.5)、150 mM NaCl、40 mMマルトース、および5 mM DTTを混合します。
  10. 溶出したタンパク質をSDS-PAGEで分析します。
    注:アクリルアミドの割合は、タンパク質のサイズに合わせて調整する必要があります。この研究で提供された例では、12%アクリルアミドゲルを使用し、トリス-グリシン-SDSバッファー(2 mMトリス、250 mMグリシン、0.1%SDS)で180 Vの定電圧で実行し、ゲルを0.2%クマシーブルーR250、10%酢酸、および30%イソプロパノールで煮沸して染色し、10%酢酸で煮沸して脱染色しました。さまざまな量の相互作用タンパク質が異なる実験で引き下げられる可能性があるため、負荷されたタンパク質の量は等しくないはずです。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

記載された方法は、多くの異なるターゲットで日常的に使用されていた。ここでは、従来のプルダウン技術では得られない可能性のある代表的な結果をいくつか紹介します。1つ目は、特異的ZAD(亜鉛フィンガー関連ドメイン)二量体化の研究です11。ZADは安定で特異的な二量体を形成し、ヘテロ二量体はパラロググループ内の密接に関連するドメイン間でのみ可能です。これらのドメインによって形成される二量体は安定しており、少なくとも数日間は解離しません。したがって、精製されたZADを混合しても、検出可能な結合は生成されません。同時に、MBPとチオレドキシン-6xHis融合ZADの共発現は、良好で再現性のあるホモ二量体化活性を示し(図2A)、MBPプルダウンアッセイのSDS-PAGE結果に追加のバンドとして現れます。ヘテロダイマーのごく一部は、別のドメインと共発現するM1BPで見ることができます。この相互作用はY2Aでは確認されておらず、これらのドメインはシステインが豊富で非常に凝集しやすいため、タンパク質濃度が高いため、非特異的な会合の結果である可能性が最も高いです。特に、この場合、ZADは金属キレート樹脂に非特異的に結合する金属配位ドメインであるため、6xHisプルダウンは不適切です。そのような活動は、並行実験で慎重に調べられるべきです。

別の例は、ENY2タンパク質とその結合パートナーであるSgf11(1-83aa)およびCTCFタンパク質26の亜鉛フィンガードメイン(460-631aa)との間の競合アッセイである。単独で発現すると、ENY2タンパク質は二量体を形成し、天然の結合パートナーとの相互作用を防ぎます。おそらく、Sgf11タンパク質とCTCFタンパク質の両方がENY2の同じ分子表面に結合し、それらの相互作用を相互に排他的にします。共発現アッセイでは、6xHisタグ付きENY2はGSTタグ付きSgf11およびMBP-CTCFの両方と相互作用しましたが、MBPプルダウンにはGST-Sgf11は存在せず、その逆も同様でした(図2B)。これらの結果は、三重複合体は形成できず、相互作用は相互に排他的であることを示唆しています。これらのデータは、他のアッセイで独立して確認され、これらの複合体におけるENY2の異なる機能的役割を支持している。大きな親和性タグはそれ自体で立体障害を課し、複雑な形成を妨げる可能性があるという事実に注意を払う必要があります。したがって、結論は共発現データのみに基づくべきではない。

従来の共発現プルダウンと結合共発現プルダウンのワークフローの段階的な比較を 図3Aに示します。共発現結合プルダウンは、サンプル数が少なくても少なくとも2倍の時間効率が高く、優れたスケーラビリティを可能にします。両方の技術を利用して、CP190タンパク質のBTBドメイン(1-126aa)とショウジョウバエCTCFタンパク質(dCTCF)のGSTタグ付きC末端ドメイン(610-818aa)との間の同じ相互作用を研究した結果を 図3Bに示す。どちらの方法も良好な効率と再現性を示しています(アッセイは3回の反復で実施されました)。この場合、共発現共役プルダウンは、GSTタンパク質のみを用いた対照サンプルに見られるように、より低い非特異的結合を示した。

Figure 1
1:プロトコルの概略図。概略図は、この研究で採用されたメソッドワークフローを示しています。この図の拡大版を表示するには、ここをクリックしてください。

Figure 2
図2:代表的な結果 。 (A)MBPおよび6xHisプルダウンアッセイにおけるジンクフィンガー関連ドメイン(ZAD)ホモ二量体化の研究。MBP(40 kDa)または6xHis-チオレドキシン(20 kDa)のいずれかと融合したZADを細菌細胞で共発現させ、アミロース樹脂(MBPタグ付きタンパク質に結合)またはNi-NTA樹脂(6xHisタグタンパク質に結合)でアフィニティー精製しました。共精製されたタンパク質をSDS-PAGEで可視化し、続いてクーマシー染色を行った。MBPプルダウン結果は上のパネルに、6xHisプルダウンの結果は下のパネルに示されています(多くのZADはNi-NTAに非特異的に結合するため、タンパク質発現コントロールとしてのみ使用されます)。(B)ENY2とSgf11/CTCFタンパク質の相互排他的相互作用の研究。GSTタグ付きSgf11(1-81aa)、MBPタグ付きCTCFジンクフィンガードメイン(460-631aa)、および6xHisタグ付きENY2タンパク質を様々な組み合わせで共発現し、アミロース樹脂、グルタチオン樹脂(GSTタグタンパク質に結合)、またはNi-NTA樹脂でアフィニティー精製しました。共精製されたタンパク質をSDS-PAGEで可視化し、続いてクーマシー染色を行った。パネルAおよびBの図は、Bonchuk et al.11 およびBonchuk et al.26の許可を得て変更されています。 この図の拡大版を表示するには、ここをクリックしてください。

Figure 3
図3:従来の共発現プルダウンアッセイと共役共発現プルダウンアッセイのワークフローの比較。 (A)従来のプルダウンアッセイのワークフローにおける必要な時間間隔の段階的な比較と、共発現に結合されたプルダウンと比較。(B)GSTプルダウンアッセイにおけるdCTCF C末端ドメイン(610-818aa)とCP190タンパク質のBTBドメイン(1-126aa)の間の相互作用を研究する際の2つの異なるプルダウン技術の比較。GST(25kDa)またはGST単独と融合したdCTCF(610-818aa)を細菌細胞で共発現させるか、チオレドキシン-6xHisタグ付きCP190 BTBとインビトロでインキュベートし、グルタチオン樹脂でアフィニティー精製しました。各アッセイの3つの独立した反復が示されている。共精製されたタンパク質をSDS-PAGEで可視化し、続いてクーマシー染色を行った。この図の拡大版を表示するには、ここをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

記載された方法は、インビトロで効率的に組み立てることができず、共発現を必要とするタンパク質間相互作用の試験を可能にする。この方法は、ヘテロ二量体化タンパク質を研究するための数少ない適切なアプローチの1つであり、別々に精製すると、そのようなタンパク質は、実験中に解離および再会合することが最も多い安定したホモ二量体を形成するため、ホモ二量体化も可能です3,11

記載された方法のワークフローは、相互作用するタンパク質の分離精製およびその後のインキュベーションの時間のかかるステップがないため、従来のプルダウンと比較して時間効率が高い。別の利点は、タンパク質分解および酸化にさらされながら人工のin vitro環境内に存在するステップ数が大幅に少なく、期間が短いため、再現性が高いことです。この方法は、他のin vitro技術が不適切であることが判明した場合に、いくつかのタンパク質間相互作用を研究するために首尾よく適用されました3,11,27異なるアフィニティータグを用いた並行共沈は、タンパク質発現レベルの制御を提供します。この方法は従来のプルダウンよりも簡単で高速であるため、共発現が絶対に必要でなくても、代わりに使用できます。細胞破壊の速度は明白ではないボトルネックであり、最初のサンプルと最後のサンプルがin vitro条件にさらされてからタンパク質分解されるまでのさまざまな時間のために、合計時間を大幅に増加させ、結果の偏差につながる可能性があります。したがって、高スループットのマルチチップ超音波処理器プローブを使用することを強くお勧めします。例については、材料表を参照してください。

磁気ビーズを使用すると、非特異的結合が減少し、メソッドがさらに高速化され、洗浄ステップに必要な時間が短縮されます。相溶性のある起源を持つベクターを使用することは、同じターゲットとの複数のタンパク質相互作用をテストするための便利な組み合わせアプローチを提供し、組み合わせごとに新しいベクターを生成する必要がないため、ポリシストロニック発現よりも有利です。

この方法の欠点は、タンパク質が細菌中で高濃度で共発現されるため、偽陽性の結果の確率が比較的高いことです。したがって、この方法によって発見された予期しない相互作用は慎重に扱われるべきであり、共発現31128も使用するY2Aまたは細胞技術24などの独立したアッセイで試験されるべきである。ハイスループットバイオインフォマティクスアプローチは、複雑なタンパク質間相互作用ネットワークを分析および検証するためにも使用できます29。別の独特の障害は、タンパク質複合体が別々のタンパク質と比較して完全に異なる生化学的特性を有する可能性があることである。複合体は、その成分が溶液中に存在する間は不溶性であり得る。この問題は、典型的には、タンパク質を適切な溶解度タグに融合させることによって解決することができる。MBPが最も効果的ですが、NusAは別の優れたオールラウンドな代替手段22です。GSTタグは多くの亜鉛配位ドメインで効率的であることが判明しましたが、二量体であるため、オリゴマードメインを扱う場合は避ける必要があります。それどころか、チオレドキシンやSUMOなどの小さなモノマードメインは、多量体タンパク質ドメインでうまく機能します。

記載された方法の重要なステップは、タンパク質発現の適切な時間(非特異的結合が観察される場合はより短い時間が必要ですが、不十分なタンパク質発現を改善するためにより長いインキュベーション時間が必要になる場合があります)、迅速な細胞破壊、バッファーの適切な選択、およびプロトコル中の一定温度の維持です。誘導後の過剰なインキュベーション時間は、細菌内のタンパク質凝集を引き起こし、偽陽性の結果につながる可能性があります。一方、一部のタンパク質は、十分な量で発現するのにより多くの時間を必要とします。超音波処理および洗浄ステップ中の温度変動は、緩衝液pHおよびタンパク質沈殿の変化につながる可能性があります。不適切なバッファーの選択は、非特異的なタンパク質凝集をもたらす可能性もあります。

タンパク質の発現が不十分な場合は、異なる溶解タグを試し、誘導後のインキュベーション時間を増やす必要があります。強い非特異的な関連が観察された場合は、必要なすべてのネガティブコントロールを実行して、タンパク質と樹脂またはアフィニティータグとの非特異的な関連の可能性を判断する必要があります。コントロールが機能しない場合は、アフィニティタグのさまざまな組み合わせを試し、さまざまなバッファーを使用する必要があります。多くのタンパク質は、この記事で言及されている金属キレート樹脂のようなZADに非特異的に結合する傾向があります。このような場合、一般に、MBP/GSTプルダウンは、タンパク質発現制御にのみ使用できる相互実験なしで十分です。ネガティブコントロールがうまく機能する場合は、特にシステインリッチタンパク質を扱う場合は、タンパク質発現時間を短縮し、バッファーシステムと還元剤を変更するか、還元剤濃度を上げる必要があります。結果の再現性が低い場合は、過熱することなく迅速に実行する必要がある細胞破壊ステップに注意を払う必要があります。温度は実験全体を通して監視する必要があります。

この方法は、多タンパク質複合体またはリボ核タンパク質を研究するために簡単に変更できます。別の可能なアプリケーションは、その後の研究のためのタンパク質複合体発現および精製条件のバッチテストです。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者は競合する利益を宣言しません。

Acknowledgments

この研究は、ロシア科学財団のプロジェクト19-74-30026(メソッド開発と検証)および19-74-10099(タンパク質間相互作用アッセイ)によってサポートされました。ロシア連邦科学高等教育省による助成金075-15-2019-1661(代表的なタンパク質間相互作用の分析)。

Materials

Name Company Catalog Number Comments
8-ELEMENT probe Sonics 630-0586 The high throughput 8-element sonicator probes
Agar AppliChem A0949
Amylose resin New England Biolabs E8021 Resin for purification of MBP-tagged proteins
Antibiotics AppliChem A4789 (kanamycin); A0839 (ampicillin)
Beta-mercaptoethanol AppliChem A1108
BL21(DE3)  Novagen 69450-M
CaCl2 AppliChem A4689
Centrifuge Eppendorf 5415R (Z605212)
Glutathione AppliChem A9782
Glutathione agarose Pierce 16100 Resin for purification of GST-tagged proteins
Glycerol AppliChem A2926
HEPES  AppliChem A3724
HisPur Ni-NTA Superflow Agarose Thermo Scientific 25214 Resin for purification of 6xHis-tagged proteins
Imidazole AppliChem A1378
IPTG AppliChem A4773
KCl AppliChem A2939
LB AppliChem 414753
Maltose AppliChem A3891
MOPS AppliChem A2947
NaCl AppliChem A2942
NP40 Roche 11754599001
pACYCDuet-1 Sigma-Aldrich 71147 Vector for co-expression of proteins with p15A replication origin
pCDFDuet-1 Sigma-Aldrich 71340 Vector for co-expression of proteins with CloDF13 replication origin
PMSF AppliChem A0999
Protease Inhibitor Cocktail VII Calbiochem 539138 Protease Inhibitor Cocktail
pRSFDuet-1 Sigma-Aldrich 71341 Vector for co-expression of proteins with RSF replication origin
SDS  AppliChem A2263
Tris  AppliChem A2264
VC505 sonicator Sonics CV334 Ultrasonic liquid processor
ZnCl2 AppliChem A6285

DOWNLOAD MATERIALS LIST

References

  1. Louche, A., Salcedo, S. P., Bigot, S. Protein-protein interactions: Pulldown assays. Methods in Molecular Biology. 1615, 247-255 (2017).
  2. Rose, R. B., et al. Structural basis of dimerization, coactivator recognition and MODY3 mutations in HNF-1alpha. Nature Structural & Molecular Biology. 7 (9), 744-748 (2000).
  3. Bonchuk, A., et al. Structural basis of diversity and homodimerization specificity of zinc-finger-associated domains in Drosophila. Nucleic Acids Research. 49 (4), 2375-2389 (2021).
  4. Nair, S. K., Burley, S. K. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell. 112 (2), 193-205 (2003).
  5. Badonyi, M., Marsh, J. A. Large protein complex interfaces have evolved to promote co-translational assembly. Elife. 11, 79602 (2022).
  6. Kramer, G., Shiber, A., Bukau, B. Mechanisms of cotranslational maturation of newly synthesized proteins. Annual Reviews in Biochemistry. 88, 337-364 (2019).
  7. Koubek, J., Schmitt, J., Galmozzi, C. V., Kramer, G. Mechanisms of cotranslational protein maturation in bacteria. Frontiers in Molecular Biosciences. 8, 689755 (2021).
  8. Shiber, A., et al. Cotranslational assembly of protein complexes in eukaryotes revealed by ribosome profiling. Nature. 561 (7722), 268-272 (2018).
  9. Shieh, Y. W., et al. Operon structure and co-translational subunit association direct protein assembly in bacteria. Science. 350 (6261), 678-680 (2015).
  10. Bertolini, M., et al. Interactions between nascent proteins translated by adjacent ribosomes drive homomer assembly. Science. 371 (6524), 57-64 (2021).
  11. Bonchuk, A. N., et al. Structural insights into highly similar spatial organization of zinc-finger associated domains with a very low sequence similarity. Structure. 30 (7), 1004-1015 (2022).
  12. Justin, N., et al. Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Nature Communications. 7, 11316 (2016).
  13. Lariviere, L., et al. Structure of the mediator head module. Nature. 492 (7429), 448-451 (2012).
  14. Taylor, N. M., et al. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature. 533 (7603), 346-352 (2016).
  15. Samara, N. L., et al. Structural insights into the assembly and function of the SAGA deubiquitinating module. Science. 328 (5981), 1025-1029 (2010).
  16. Kohler, A., Zimmerman, E., Schneider, M., Hurt, E., Zheng, N. Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell. 141 (4), 606-617 (2010).
  17. Rucker, P., Torti, F. M., Torti, S. V. Recombinant ferritin: modulation of subunit stoichiometry in bacterial expression systems. Protein Engineering. 10 (8), 967-973 (1997).
  18. Selzer, G., Som, T., Itoh, T., Tomizawa, J. The origin of replication of plasmid p15A and comparative studies on the nucleotide sequences around the origin of related plasmids. Cell. 32 (1), 119-129 (1983).
  19. Nijkamp, H. J., et al. The complete nucleotide sequence of the bacteriocinogenic plasmid CloDF13. Plasmid. 16 (2), 135-160 (1986).
  20. Som, T., Tomizawa, J. Origin of replication of Escherichia coli plasmid RSF 1030. Molecular General Genetics. 187 (3), 375-383 (1982).
  21. Tsao, K. L., Waugh, D. S. Balancing the production of two recombinant proteins in Escherichia coli by manipulating plasmid copy number: high-level expression of heterodimeric Ras farnesyltransferase. Protein Expression Purification. 11 (3), 233-240 (1997).
  22. Nallamsetty, S., Waugh, D. S. Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expression Purification. 45 (1), 175-182 (2006).
  23. Paiano, A., Margiotta, A., De Luca, M., Bucci, C. Yeast two-hybrid assay to identify interacting proteins. Current Protocols in Protein Science. 95 (1), 70 (2019).
  24. Zolghadr, K., Rothbauer, U., Leonhardt, H. The fluorescent two-hybrid (F2H) assay for direct analysis of protein-protein interactions in living cells. Methods in Molecular Biology. 812, 275-282 (2012).
  25. Fiebitz, A., et al. High-throughput mammalian two-hybrid screening for protein-protein interactions using transfected cell arrays. BMC Genomics. 9, 68 (2008).
  26. Bonchuk, A. N., Georgiev, P. G., Maksimenko, O. G. CTCF and Sgfl1 proteins form alternative complexes with ENY2 proteins. Doklady Biochemistry and Biophysics. 468 (1), 180-182 (2016).
  27. Maksimenko, O., et al. Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin. Genome Research. 25 (1), 89-99 (2015).
  28. Sabirov, M., et al. Mechanism and functional role of the interaction between CP190 and the architectural protein Pita in Drosophila melanogaster. Epigenetics Chromatin. 14 (1), 16 (2021).
  29. Dong, S., Provart, N. J. Analyses of protein interaction networks using computational tools. Methods in Molecular Biology. 1794, 97-117 (2018).

Tags

生化学、第190号、
細菌細胞での共発現と組み合わせたプルダウンアッセイは、困難なタンパク質間相互作用をテストするための時間効率の良いツールとして
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Bonchuk, A., Zolotarev, N.,More

Bonchuk, A., Zolotarev, N., Balagurov, K., Arkova, O., Georgiev, P. Pulldown Assay Coupled with Co-Expression in Bacteria Cells as a Time-Efficient Tool for Testing Challenging Protein-Protein Interactions. J. Vis. Exp. (190), e64541, doi:10.3791/64541 (2022).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter