-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Journal
Engineering
Drawing and Hydrophobicity-patterning Long Polydimethylsiloxane Silicone Filaments
Drawing and Hydrophobicity-patterning Long Polydimethylsiloxane Silicone Filaments
JoVE Journal
Engineering
This content is Free Access.
JoVE Journal Engineering
Drawing and Hydrophobicity-patterning Long Polydimethylsiloxane Silicone Filaments

Drawing and Hydrophobicity-patterning Long Polydimethylsiloxane Silicone Filaments

Full Text
9,089 Views
07:56 min
January 7, 2019

DOI: 10.3791/58826-v

Katherine Snell1, Isabelle Lopez2, Brandon Louie1, Roxanna Kiessling1, Babak Sanii1,2,3

1Keck Science Department,Claremont McKenna College, 2Keck Science Department,Scripps College, 3Keck Science Department,Pitzer College

Summary

Here, we present a protocol to produce long filaments of polydimethylsiloxane (PDMS) silicone by gravity-drawing through a furnace. Filaments are on the order of hundreds of micrometers in diameter and tens of centimeters in length and are hydrophobically patternable via an Arduino-controlled corona discharge system.

Transcript

Polydimethylsiloxane is a versatile material that could not be formed into long filaments until now. While silicone filaments may have applications in weaving or additive manufacturing, we are particularly interested in them as a model foldamer. Scalable production is enabled by drawing already curing silicone through a tube furnace.

We also demonstrate a way to modify the surface of the silicone filaments using a computer controlled corona discharger. Timing in this procedure is crucial because the polymer is curing continuously. Keep a timer nearby, and be prepared for the next step in advance.

Without A Visual demonstration, the dynamic process of making filaments would not be easily reproduced. The process involves several time sensitive steps that require you to adapt to evolving conditions. To begin, connect 1/8th inch inner diameter high temperature silicone tubing to compressed air through a metering valve.

Connect the other end of the tubing to a brass extrusion adaptor with a 2.15 millimeter diameter aperture. Then, fix the cylindrical ceramic tube furnace vertically in a fume hood, two feet above the floor of the hood. Lay aluminum foil under the furnace to catch excess PDMS during extrusion.

Mount the extrusion adaptor above the tube furnace with the aperture centered on the furnace opening. Ensure that the furnace is not at an angle so that extruded filaments will not contact the furnace. Next, attach a die with a circular cut to an extruder and use a zip tie to connect high temperature silicone rubber tubing to the extruder bit.

Connect the other end of the tubing to the extrusion adaptor. Direct an infrared thermometer towards the furnace and then heat the furnace until the inner temperature is approximately 250 degrees Celsius. Then, move the furnace out from under the extrusion adapter so that the adaptor does not heat up before filament production begins.

Next, start preheating a disposable sample tube to 65 degrees celsius in a viscometer that can measure 200 to 10 thousand millipascal seconds. Check the balance, set the spinning rate to five RPM, and set the measurement rate to once per minute. While the sample tube heats, mix 18 grams of PDMS base with 1.8 grams of curing agent, in a weighing boat.

Degas the PDMS mixture in a room temperature vacuum desiccator for 15 minutes, or until no bubbles remain in the mixture. Periodically vent the desiccator to pop bubbles near the surface. Then remove the preheated sample tube from the viscometer.

Pour the degassed PDMS mixture into it, and put the tube back in the viscometer. Immediately start the measurement sequence. When the PDMS dynamic viscosity reaches four thousand millipascal seconds, note the time, and then use pliers to remove the sample tube from the viscometer.

Immediately pour the PDMS mixture into the room temperature extruder. Confirm that the furnace is at 250 degrees celsius and wait until the PDMS has been out of the viscometer for about four minutes. Then, move the furnace under the extrusion adaptor and align the inner needle of the adaptor with the tube furnace.

Twist the extruder screw by a half revolution and start collecting the filament on a wooden stick. Every three to five seconds, twist the extruder another half revolution to maintain the steady stream of PDMS. The viscosity window for drawing filaments is very narrow.

If the viscosity is too low, wait 30 seconds and try again. The PDMS will continue crosslinking at room temperature. Lay the drawn filaments across wooden racks to cure.

Let the filaments cure at room temperature for 12 hours when finished. To begin the patterning process, set up the patterning assembly in a fume hood, and send the desired pattern to the micro processor. Next, wash a cured PDMS filament with 1%sodium dodecyl sulfate.

And thoroughly rinse it with ultra pure water. Remove visible drops of water with compressed air and let the filament finish drying in the ambient air. Then, tie non conductive fishing line to the circular cut out of the non conductive filament tray.

Lay the dry PDMS filament over the central cut out of the tray and secure it in place with double sided tape. Insert the tray into a ventilated corona discharge box and ensure that it is level. Place a metal slab under the filament tray so that the filament is aligned along the edge of the slab.

Mount the corona discharge electrode about three millimeters above the filament, and connect the corona discharger to the micro controller. Fix the free end of the non conductive line to the spindle mounted on the stepper motor, ensuring that the line is taut. Run the micro controller program to pattern the filament with hydrophilic sections.

The PDMS filaments produced by this method were approximately 200 micrometers in diameter and up to 0.5 meters long. Removing the PDMS from heat before it's viscosity was high enough for drawing filaments, and letting it cross link at room temperature for four and a half minutes, extended the time window in which filaments can be spun to about four minutes. The success of corona patterning was confirmed via droplet contact angle measurements.

Water formed symmetric, barrel shaped droplets on the corona treated hydrophilic PDMS, and asymmetric, shell shaped droplets on the untreated hydrophobic PDMS. The key to this procedure is that you're manipulating the viscosity of PDMS with time and temperature. The viscosity increases with time as it crosslinks and curing accelerates at higher temperatures.

The approach of partially curing a polymer and drawing it through a tube oven, may be adapted to other temperature cured polymers. These filaments are flexible enough to adopt to many conformations, and the hydrophobic regions affectively adhere together in water. We are studying how the hydrophobicity pattern of the filaments affects their folding pathways.

PDMS can drip onto the furnace and produce a small flame. Carefully align the extruder with the furnace and quickly clear any debris from the furnace with a wooden dowel.

Explore More Videos

PolydimethylsiloxaneSilicone FilamentsHydrophobicity-patterningWeavingAdditive ManufacturingFoldamerScalable ProductionCorona DischargerExtrusion ProcessTube FurnaceHigh Temperature Silicone TubingInfrared ThermometerPDMS BaseCuring AgentVacuum Desiccator

Related Videos

Micropunching Lithography for Generating Micro- and Submicron-patterns on Polymer Substrates

09:24

Micropunching Lithography for Generating Micro- and Submicron-patterns on Polymer Substrates

Related Videos

15.4K Views

Microfluidic Fabrication of Polymeric and Biohybrid Fibers with Predesigned Size and Shape

07:38

Microfluidic Fabrication of Polymeric and Biohybrid Fibers with Predesigned Size and Shape

Related Videos

8.8K Views

Construction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture

10:55

Construction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture

Related Videos

10.5K Views

Fabricating Degradable Thermoresponsive Hydrogels on Multiple Length Scales via Reactive Extrusion, Microfluidics, Self-assembly, and Electrospinning

12:07

Fabricating Degradable Thermoresponsive Hydrogels on Multiple Length Scales via Reactive Extrusion, Microfluidics, Self-assembly, and Electrospinning

Related Videos

13.7K Views

Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients

11:23

Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients

Related Videos

14.5K Views

A Versatile Method of Patterning Proteins and Cells

09:57

A Versatile Method of Patterning Proteins and Cells

Related Videos

9.5K Views

Fabricating Reactive Surfaces with Brush-like and Crosslinked Films of Azlactone-Functionalized Block Co-Polymers

10:09

Fabricating Reactive Surfaces with Brush-like and Crosslinked Films of Azlactone-Functionalized Block Co-Polymers

Related Videos

8.5K Views

One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes

08:31

One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes

Related Videos

10.1K Views

Pattern Generation for Micropattern Traction Microscopy

09:26

Pattern Generation for Micropattern Traction Microscopy

Related Videos

2.5K Views

Applying Permanent, Robust Stenciled Patterns of Fine Particles to Elastomeric Surfaces

07:12

Applying Permanent, Robust Stenciled Patterns of Fine Particles to Elastomeric Surfaces

Related Videos

233 Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code