-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Journal
Environment
Investigating the Relationship between Sea Surface Chlorophyll and Major Features of the South Ch...
Investigating the Relationship between Sea Surface Chlorophyll and Major Features of the South Ch...
JoVE Journal
Environment
This content is Free Access.
JoVE Journal Environment
Investigating the Relationship between Sea Surface Chlorophyll and Major Features of the South China Sea with Satellite Information

Investigating the Relationship between Sea Surface Chlorophyll and Major Features of the South China Sea with Satellite Information

Full Text
6,069 Views
10:28 min
June 13, 2020

DOI: 10.3791/61172-v

Huan-Huan Chen*1,2, Rui Tang*2, Hao-Ran Zhang*1,2, Yi Yu2, Yuntao Wang2

1College of Oceanography,Hohai University, 2State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography,Ministry of Natural Resources

Summary

Sea surface chlorophyll, temperature, sea level height, wind, and front data obtained or derived from satellite observations offer an effective way to characterize the ocean. Presented is a method for the comprehensive study of these data, including overall average, seasonal cycle, and intercorrelation analyses, to fully understand regional dynamics and ecosystems.

Transcript

Satellite observations offer a great approach to investigate the features of major marine parameters, including sea surface chlorophyll and temperature, sea surface height, and the factors derived from these parameters, such like fronts. Our study shows how to use satellite observations to describe major parameters and their relationships. Satellite data science from 2002 to 2017 were used to describe the surface features of the South China Sea.

The satellite observation of chlorophyll is factor, which is used to ocean protection. Factors related to chlorophyll variability were investigated using time series. The method can be applied to other global oceans and will be helpful for understanding marine dynamics and the ecosystem.

We show a step-by-step procedure for acquiring satellite data of different parameters describing the spatial and temporal variabilities and determining interrelationships among different factors. Spatial and temporal variabilities of parameters are obtained. They are empirical orthogonal function and the interrelationship among different factors are acquired by zero correlation coefficients.

For sea surface temperature and sea surface chlorophyll data acquisition, download a dataset of satellite observations from MODIS Aqua, for which the spatial resolution of both datasets is roughly 4.5 kilometers at daily intervals. Store the downloaded satellite files in the data folder and structure the directory of folders as shown. Add the path of the toolbox for NetCDF file in MATLAB and select add with subfolders to enclose the paths of the scripts folder.

The path for all of the required directories of the data and functions will appear in the MATLAB search path. Then load the sea surface temperature data into the analysis software. For sea level anomaly dataset acquisition, download daily sea level anomaly data with a 25 kilometer spatial resolution from the same timeframe and enter the command to load the single day sea level anomaly data.

To obtain the wind speed data, download the wind data from the same time period from an ERA interim re-analysis product and enter the command to read the one-month wind data. The obtained u, v, and time variables represent the zonal and meridian all speeds and the corresponding time respectively. To access the topography dataset, download the high-resolution topography data from the National Centers for Environmental Information website and enter the command to load the topography data into the analysis software.

The XX, YY, and ZZ variables indicate the latitude, longitude, and corresponding depth respectively. Due to the large cloud coverage in the sea surface temperature and sea surface chlorophyll data, use the command to replace the original data with the three-day average data. Because the spatial resolution is not consistent for different datasets, enter the command to interpolate the sea surface temperature and sea surface chlorophyll data into a spatial grid that is the same as the wind and sea level anomaly spatial grid.

Enter the command as indicated to calculate the wind stress and wind stress curl. To calculate the monthly sea surface temperature, wind, and sea level anomaly time series as 30-day averages in each pixel, enter the command as indicated. For spatial smoothing, enter the command to run the script to smooth the three-day average sea surface temperature data in each pixel.

To determine the sea surface temperature gradient, enter the command to run the script to calculate the zonal and meridian all sea surface temperature gradients as the sea surface temperature difference between the nearest two pixels divided by the corresponding distance. To identify a front by testing the value of the sea surface temperature gradient, label the pixel as a potential frontal pixel if the value was larger than a designated threshold. To calculate the monthly frontal probability of observing a front take place for a specific time span, enter the command.

To load the monthly data for analysis, enter the commands and apply an empirical orthogonal function to describe the spatial and temporal variabilities of the different parameters. The program will calculate the magnitude, eigenvalues, and amplitude of the empirical orthogonal functions for the dataset. To determine the correlation at the seasonal scale, enter the command to calculate the correlations between two factors using their time series at each pixel.

Then enter the command to calculate the correlations between the monthly anomalies of the sea surface chlorophyll and other factors. To display the satellite information, enter the command to run the script to generate a showcase of satellite information, including the sea surface chlorophyll, temperature and wind, and sea level anomaly and frontal distribution. Enter the command to display the empirical orthogonal function result.

Then enter the command as indicated to calculate the relationship between the chlorophyll and other factors at seasonal and anomalous fields. The topography has a prominent impact on the spatial distribution of sea surface chlorophyll with high sea surface chlorophyll mainly distributed along the coast of the South China Sea where the topography is shallow. Wind is also influenced by orography with the lease side of mountains characterized by weak wind and a prominent wind stress curl identified southwest of the South China Sea.

The thresholds applied here effectively capture the location of the front and ensure the depiction of the boundaries of entire water masses. In this analysis, empirical orthogonal function one captured a large variance in the northern section of the South China Sea. The corresponding monthly average of the time series showed that the sea surface chlorophyll was elevated during the winter and depressed during the summer.

The region next to the southwest coast was characterized by a weak magnitude, and the corresponding variability was mainly captured by empirical orthogonal function two. Sea surface chlorophyll values were high in the summer and low in the winter, which was mainly out of phase compared to the northern region. Indeed, the monthly time series for the empirical orthogonal functions demonstrated clear seasonal variability with empirical orthogonal function two leading empirical orthogonal function one by approximately four months.

The correlations between the chlorophyll and other factors represents the interrelationships of the factors. For example, in this analysis, the sea surface temperature is negatively correlated with the chlorophyll while the wind stress is positively correlated with the chlorophyll. Thus, a high chlorophyll was associated with a low temperature and strong wind for these data.

Identification the variability of ocean parameters and investigate their relationship with chlorophyll are critical and important for ocean dynamics and the marine ecosystem. Frontal activities are particularly important because high chlorophyll is usually associated with front. Modification may take place to change the threshold of front detection and the best approach to validate the front is to compare them with institute observations.

In summary, using satellite observations can accurately describe the spatial distribution and the temporal variability in ocean surface features. With the increasing resolution of more detailed features can be identified and investigated in the future.

Explore More Videos

Sea Surface ChlorophyllSouth China SeaSatellite ObservationsMarine ParametersOcean ProtectionChlorophyll VariabilitySpatial VariabilityTemporal VariabilityEmpirical Orthogonal FunctionZero Correlation CoefficientsMODIS AquaSea Surface TemperatureSea Level AnomalyWind Speed DataTopography Dataset

Related Videos

An Ultra-clean Multilayer Apparatus for Collecting Size Fractionated Marine Plankton and Suspended Particles

09:01

An Ultra-clean Multilayer Apparatus for Collecting Size Fractionated Marine Plankton and Suspended Particles

Related Videos

9.1K Views

Evaluation of Photosynthetic Behaviors by Simultaneous Measurements of Leaf Reflectance and Chlorophyll Fluorescence Analyses

10:20

Evaluation of Photosynthetic Behaviors by Simultaneous Measurements of Leaf Reflectance and Chlorophyll Fluorescence Analyses

Related Videos

13K Views

Surface Mapping of Earth-like Exoplanets using Single Point Light Curves

06:48

Surface Mapping of Earth-like Exoplanets using Single Point Light Curves

Related Videos

3.8K Views

Early Detection of Cyanobacterial Blooms and Associated Cyanotoxins using Fast Detection Strategy

07:13

Early Detection of Cyanobacterial Blooms and Associated Cyanotoxins using Fast Detection Strategy

Related Videos

4.1K Views

A Standardized Procedure for Monitoring Harmful Algal Blooms in Chile by Metabarcoding Analysis

09:47

A Standardized Procedure for Monitoring Harmful Algal Blooms in Chile by Metabarcoding Analysis

Related Videos

5.6K Views

Autofluorescence Imaging to Evaluate Red Algae Physiology

05:54

Autofluorescence Imaging to Evaluate Red Algae Physiology

Related Videos

1.6K Views

Visualizing Oceanographic Data to Depict Long-term Changes in Phytoplankton

08:15

Visualizing Oceanographic Data to Depict Long-term Changes in Phytoplankton

Related Videos

1.6K Views

Computer Vision-Based Biomass Estimation for Invasive Plants

08:47

Computer Vision-Based Biomass Estimation for Invasive Plants

Related Videos

1.8K Views

Reefshape: A System for the Efficient Collection and Automated Processing of Time-Series Underwater Photogrammetry Data for Benthic Habitat Monitoring

13:35

Reefshape: A System for the Efficient Collection and Automated Processing of Time-Series Underwater Photogrammetry Data for Benthic Habitat Monitoring

Related Videos

903 Views

Measuring the Structure, Composition, and Change of Underwater Environments with Large-area Imaging

09:19

Measuring the Structure, Composition, and Change of Underwater Environments with Large-area Imaging

Related Videos

1K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code