Skip to content
Articles by Hongkui Zeng in JoVE
-
Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method
Jonathan T. Ting*1, Brian R. Lee*1, Peter Chong1, Gilberto Soler-Llavina1, Charles Cobbs2, Christof Koch1, Hongkui Zeng1, Ed Lein1
1Cell Types Program, Allen Institute for Brain Science, 2The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute
This protocol demonstrates the implementation of an optimized N-methyl-D-glucamine (NMDG) protective recovery method of brain slice preparation. A single media formulation is used to reliably obtain healthy brain slices from animals of any age and for diverse experimental applications.
Other articles by Hongkui Zeng on PubMed
-
-
-
Visual Tuning Properties of Genetically Identified Layer 2/3 Neuronal Types in the Primary Visual Cortex of Cre-transgenic Mice
Frontiers in Systems Neuroscience.
|
Pubmed ID: 21283555 The putative excitatory and inhibitory cell classes within the mouse primary visual cortex V1 have different functional properties as studied using recording microelectrode. Excitatory neurons show high selectivity for the orientation angle of moving gratings while the putative inhibitory neurons show poor selectivity. However, the study of selectivity of the genetically identified interneurons and their subtypes remain controversial. Here we use novel Cre-driver and reporter mice to identify genetic subpopulations in vivo for two-photon calcium dye imaging: Wfs1(+)/Gad1(-) mice that labels layer 2/3 excitatory cell population and Pvalb(+)/Gad1(+) mice that labels a genetic subpopulation of inhibitory neurons. The cells in both mice were identically labeled with a tdTomato protein, visible in vivo, using a Cre-reporter line. We found that the Wfs1(+) cells exhibited visual tuning properties comparable to the excitatory population, i.e., high selectivity and tuning to the angle, direction, and spatial frequency of oriented moving gratings. The functional tuning of Pvalb(+) neurons was consistent with previously reported narrow-spiking interneurons in microelectrode studies, exhibiting poorer selectivity than the excitatory neurons. This study demonstrates the utility of Cre-transgenic mouse technology in selective targeting of subpopulations of neurons and makes them amenable to structural, functional, and connectivity studies.
-
Mouse Transgenic Approaches in Optogenetics
Progress in Brain Research.
|
Pubmed ID: 22341327 A major challenge in neuroscience is to understand how universal behaviors, such as sensation, movement, cognition, and emotion, arise from the interactions of specific cells that are present within intricate neural networks in the brain. Dissection of such complex networks has typically relied on disturbing the activity of individual gene products, perturbing neuronal activities pharmacologically, or lesioning specific brain regions, to investigate the network's response in a behavioral output. Though informative for many kinds of studies, these approaches are not sufficiently fine-tuned for examining the functionality of specific cells or cell classes in a spatially or temporally restricted context. Recent advances in the field of optogenetics now enable researchers to monitor and manipulate the activity of genetically defined cell populations with the speed and precision uniquely afforded by light. Transgenic mice engineered to express optogenetic tools in a cell type-specific manner offer a powerful approach for examining the role of particular cells in discrete circuits in a defined and reproducible way. Not surprisingly then, recent years have seen substantial efforts directed toward generating transgenic mouse lines that express functionally relevant levels of optogenetic tools. In this chapter, we review the state of these efforts and consider aspects of the current technology that would benefit from additional improvement.
-
-
-
Correlated Gene Expression and Target Specificity Demonstrate Excitatory Projection Neuron Diversity
Cerebral Cortex (New York, N.Y. : 1991).
|
Pubmed ID: 24014670 The neocortex contains diverse populations of excitatory neurons segregated by layer and further definable by their specific cortical and subcortical projection targets. The current study describes a systematic approach to identify molecular correlates of specific projection neuron classes in mouse primary somatosensory cortex (S1), using a combination of in situ hybridization (ISH) data mining, marker gene colocalization, and combined retrograde labeling with ISH for layer-specific marker genes. First, we identified a large set of genes with specificity for each cortical layer, and that display heterogeneous patterns within those layers. Using these genes as markers, we find extensive evidence for the covariation of gene expression and projection target specificity in layer 2/3, 5, and 6, with individual genes labeling neurons projecting to specific subsets of target structures. The combination of gene expression and target specificity imply a great diversity of projection neuron classes that is similar to or greater than that of GABAergic interneurons. The covariance of these 2 phenotypic modalities suggests that these classes are both discrete and genetically specified.
-
Medial Habenula Output Circuit Mediated by α5 Nicotinic Receptor-expressing GABAergic Neurons in the Interpeduncular Nucleus
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience.
|
Pubmed ID: 24227714 The Chrna5 gene encodes the α5 nicotinic acetylcholine receptor subunit, an "accessory" subunit of pentameric nicotinic receptors, that has been shown to play a role in nicotine-related behaviors in rodents and is genetically linked to smoking behavior in humans. Here we have used a BAC transgenic mouse line, α5(GFP), to examine the cellular phenotype, connectivity, and function of α5-expressing neurons. Although the medial habenula (MHb) has been proposed as a site of α5 function, α5(GFP) is not detectable in the MHb, and α5 mRNA is expressed there only at very low levels. However, α5(GFP) is strongly expressed in a subset of neurons in the interpeduncular nucleus (IP), median raphe/paramedian raphe (MnR/PMnR), and dorsal tegmental area (DTg). Double-label fluorescence in situ hybridization reveals that these neurons are exclusively GABAergic. Transgenic and conventional tract tracing show that α5(GFP) neurons in the IP project principally to the MnR/PMnR and DTg/interfascicular dorsal raphe, both areas rich in serotonergic neurons. The α5(GFP) neurons in the IP are located in a region that receives cholinergic fiber inputs from the ventral MHb, and optogenetically assisted circuit mapping demonstrates a monosynaptic connection between these cholinergic neurons and α5(GFP) IP neurons. Selective inhibitors of both α4β2- and α3β4-containing nicotinic receptors were able to reduce nicotine-evoked inward currents in α5(GFP) neurons in the IP, suggesting a mixed nicotinic receptor profile in these cells. Together, these findings show that the α5-GABAergic interneurons form a link from the MHb to serotonergic brain centers, which is likely to mediate some of the behavioral effects of nicotine.
-
Systematic Comparison of Adeno-associated Virus and Biotinylated Dextran Amine Reveals Equivalent Sensitivity Between Tracers and Novel Projection Targets in the Mouse Brain
The Journal of Comparative Neurology.
|
Pubmed ID: 24639291 As an anterograde neuronal tracer, recombinant adeno-associated virus (AAV) has distinct advantages over the widely used biotinylated dextran amine (BDA). However, the sensitivity and selectivity of AAV remain uncharacterized for many brain regions and species. To validate this tracing method further, AAV (serotype 1) was systematically compared with BDA as an anterograde tracer by injecting both tracers into three cortical and 15 subcortical regions in C57BL/6J mice. Identical parameters were used for our sequential iontophoretic injections, producing injections of AAV that were more robust in size and in density of neurons infected compared with those of BDA. However, these differences did not preclude further comparison between the tracers, because the pairs of injections were suitably colocalized and contained some percentage of double-labeled neurons. A qualitative analysis of projection patterns showed that the two tracers behave very similarly when injection sites are well matched. Additionally, a quantitative analysis of relative projection intensity for cases targeting primary motor cortex (MOp), primary somatosensory cortex (SSp), and caudoputamen (CP) showed strong agreement in the ranked order of projection intensities between the two tracers. A detailed analysis of the projections of two brain regions (SSp and MOp) revealed many targets that have not previously been described in the mouse or rat. Minor retrograde labeling of neurons was observed in all cases examined, for both AAV and BDA. Our results show that AAV has actions equivalent to those of BDA as an anterograde tracer and is suitable for analysis of neural circuitry throughout the mouse brain.
-
-
Scalable Control of Mounting and Attack by Esr1+ Neurons in the Ventromedial Hypothalamus
Nature.
|
Pubmed ID: 24739975 Social behaviours, such as aggression or mating, proceed through a series of appetitive and consummatory phases that are associated with increasing levels of arousal. How such escalation is encoded in the brain, and linked to behavioural action selection, remains an unsolved problem in neuroscience. The ventrolateral subdivision of the murine ventromedial hypothalamus (VMHvl) contains neurons whose activity increases during male-male and male-female social encounters. Non-cell-type-specific optogenetic activation of this region elicited attack behaviour, but not mounting. We have identified a subset of VMHvl neurons marked by the oestrogen receptor 1 (Esr1), and investigated their role in male social behaviour. Optogenetic manipulations indicated that Esr1(+) (but not Esr1(-)) neurons are sufficient to initiate attack, and that their activity is continuously required during ongoing agonistic behaviour. Surprisingly, weaker optogenetic activation of these neurons promoted mounting behaviour, rather than attack, towards both males and females, as well as sniffing and close investigation. Increasing photostimulation intensity could promote a transition from close investigation and mounting to attack, within a single social encounter. Importantly, time-resolved optogenetic inhibition experiments revealed requirements for Esr1(+) neurons in both the appetitive (investigative) and the consummatory phases of social interactions. Combined optogenetic activation and calcium imaging experiments in vitro, as well as c-Fos analysis in vivo, indicated that increasing photostimulation intensity increases both the number of active neurons and the average level of activity per neuron. These data suggest that Esr1(+) neurons in VMHvl control the progression of a social encounter from its appetitive through its consummatory phases, in a scalable manner that reflects the number or type of active neurons in the population.
-
Virtual Finger Boosts Three-dimensional Imaging and Microsurgery As Well As Terabyte Volume Image Visualization and Analysis
Nature Communications.
|
Pubmed ID: 25014658 Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.
-
-
-
-
-
-
-
-
-
-
-
Organization of the Connections Between Claustrum and Cortex in the Mouse
The Journal of Comparative Neurology.
|
Pubmed ID: 27223051 The connections between the claustrum and the cortex in mouse are systematically investigated with adeno-associated virus (AAV), an anterograde viral tracer. We first define the boundary and the three-dimensional structure of the claustrum based on a variety of molecular and anatomical data. From AAV injections into 42 neocortical and allocortical areas, we conclude that most cortical areas send bilateral projections to the claustrum, the majority being denser on the ipsilateral side. This includes prelimbic, infralimbic, medial, ventrolateral and lateral orbital, ventral retrosplenial, dorsal and posterior agranular insular, visceral, temporal association, dorsal and ventral auditory, ectorhinal, perirhinal, lateral entorhinal, and anteromedial, posteromedial, lateroposterior, laterointermediate, and postrhinal visual areas. In contrast, the cingulate and the secondary motor areas send denser projections to the contralateral claustrum than to the ipsilateral one. The gustatory, primary auditory, primary visual, rostrolateral visual, and medial entorhinal cortices send projections only to the ipsilateral claustrum. Primary motor, primary somatosensory and subicular areas barely send projections to either ipsi- or contralateral claustrum. Corticoclaustral projections are organized in a rough topographic manner, with variable projection strengths. We find that the claustrum, in turn, sends widespread projections preferentially to ipsilateral cortical areas with different projection strengths and laminar distribution patterns and to certain contralateral cortical areas. Our quantitative results show that the claustrum has strong reciprocal and bilateral connections with prefrontal and cingulate areas as well as strong reciprocal connections with the ipsilateral temporal and retrohippocampal areas, suggesting that it may play a crucial role in a variety of cognitive processes. J. Comp. Neurol. 525:1317-1346, 2017. © 2016 Wiley Periodicals, Inc.
-
-
-
-
-
Layer-specific Chromatin Accessibility Landscapes Reveal Regulatory Networks in Adult Mouse Visual Cortex
ELife.
|
Pubmed ID: 28112643 Mammalian cortex is a laminar structure, with each layer composed of a characteristic set of cell types with different morphological, electrophysiological, and connectional properties. Here, we define chromatin accessibility landscapes of major, layer-specific excitatory classes of neurons, and compare them to each other and to inhibitory cortical neurons using the Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq). We identify a large number of layer-specific accessible sites, and significant association with genes that are expressed in specific cortical layers. Integration of these data with layer-specific transcriptomic profiles and transcription factor binding motifs enabled us to construct a regulatory network revealing potential key layer-specific regulators, including,,,, and. This dataset is a valuable resource for identifying candidate layer-specific cis-regulatory elements in adult mouse cortex.
-
-
Specific Connections of the Interpeduncular Subnuclei Reveal Distinct Components of the Habenulopeduncular Pathway
The Journal of Comparative Neurology.
|
Pubmed ID: 28387937 The habenulopeduncular pathway consists of the medial habenula (MHb), its output tract, the fasciculus retroflexus, and its principal target, the interpeduncular nucleus (IP). Several IP subnuclei have been described, but their specific projections and relationship to habenula inputs are not well understood. Here we have used viral, transgenic, and conventional anterograde and retrograde tract-tracing methods to better define the relationship between the dorsal and ventral MHb, the IP, and the secondary efferent targets of this system. Although prior studies have reported that the IP has ascending projections to ventral forebrain structures, we find that these projections originate almost entirely in the apical subnucleus, which may be more appropriately described as part of the median raphe system. The laterodorsal tegmental nucleus receives inhibitory inputs from the contralateral dorsolateral IP, and mainly excitatory inputs from the ipsilateral rostrolateral IP subnucleus. The midline central gray of the pons and nucleus incertus receive input from the rostral IP, which contains a mix of inhibitory and excitatory neurons, and the dorsomedial IP, which is exclusively inhibitory. The lateral central gray of the pons receives bilateral input from the lateral IP, which in turn receives bilateral input from the dorsal MHb. Taken together with prior studies of IP projections to the raphe, these results form an emerging map of the habenulopeduncular system that has significant implications for the proposed function of the IP in a variety of behaviors, including models of mood disorders and behavioral responses to nicotine.
-
Identification of Preoptic Sleep Neurons Using Retrograde Labelling and Gene Profiling
Nature.
|
Pubmed ID: 28514446 In humans and other mammalian species, lesions in the preoptic area of the hypothalamus cause profound sleep impairment, indicating a crucial role of the preoptic area in sleep generation. However, the underlying circuit mechanism remains poorly understood. Electrophysiological recordings and c-Fos immunohistochemistry have shown the existence of sleep-active neurons in the preoptic area, especially in the ventrolateral preoptic area and median preoptic nucleus. Pharmacogenetic activation of c-Fos-labelled sleep-active neurons has been shown to induce sleep. However, the sleep-active neurons are spatially intermingled with wake-active neurons, making it difficult to target the sleep neurons specifically for circuit analysis. Here we identify a population of preoptic area sleep neurons on the basis of their projection target and discover their molecular markers. Using a lentivirus expressing channelrhodopsin-2 or a light-activated chloride channel for retrograde labelling, bidirectional optogenetic manipulation, and optrode recording, we show that the preoptic area GABAergic neurons projecting to the tuberomammillary nucleus are both sleep active and sleep promoting. Furthermore, translating ribosome affinity purification and single-cell RNA sequencing identify candidate markers for these neurons, and optogenetic and pharmacogenetic manipulations demonstrate that several peptide markers (cholecystokinin, corticotropin-releasing hormone, and tachykinin 1) label sleep-promoting neurons. Together, these findings provide easy genetic access to sleep-promoting preoptic area neurons and a valuable entry point for dissecting the sleep control circuit.
-
-
An R-CaMP1.07 Reporter Mouse for Cell-type-specific Expression of a Sensitive Red Fluorescent Calcium Indicator
PloS One.
|
Pubmed ID: 28640817 Genetically encoded calcium indicators (GECIs) enable imaging of in vivo brain cell activity with high sensitivity and specificity. In contrast to viral infection or in utero electroporation, indicator expression in transgenic reporter lines is induced noninvasively, reliably, and homogenously. Recently, Cre/tTA-dependent reporter mice were introduced, which provide high-level expression of green fluorescent GECIs in a cell-type-specific and inducible manner when crossed with Cre and tTA driver mice. Here, we generated and characterized the first red-shifted GECI reporter line of this type using R-CaMP1.07, a red fluorescent indicator that is efficiently two-photon excited above 1000 nm. By crossing the new R-CaMP1.07 reporter line to Cre lines driving layer-specific expression in neocortex we demonstrate its high fidelity for reporting action potential firing in vivo, long-term stability over months, and versatile use for functional imaging of excitatory neurons across all cortical layers, especially in the previously difficult to access layers 4 and 6.
-
Neuronal Cell-type Classification: Challenges, Opportunities and the Path Forward
Nature Reviews. Neuroscience.
|
Pubmed ID: 28775344 Neurons have diverse molecular, morphological, connectional and functional properties. We believe that the only realistic way to manage this complexity - and thereby pave the way for understanding the structure, function and development of brain circuits - is to group neurons into types, which can then be analysed systematically and reproducibly. However, neuronal classification has been challenging both technically and conceptually. New high-throughput methods have created opportunities to address the technical challenges associated with neuronal classification by collecting comprehensive information about individual cells. Nonetheless, conceptual difficulties persist. Borrowing from the field of species taxonomy, we propose principles to be followed in the cell-type classification effort, including the incorporation of multiple, quantitative features as criteria, the use of discontinuous variation to define types and the creation of a hierarchical system to represent relationships between cells. We review the progress of classifying cell types in the retina and cerebral cortex and propose a staged approach for moving forward with a systematic cell-type classification in the nervous system.
-
-
-
-
-
-
-
A Cre-dependent GCaMP3 Reporter Mouse for Neuronal Imaging in Vivo
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience.
Feb, 2012 |
Pubmed ID: 22378886 Fluorescent calcium indicator proteins, such as GCaMP3, allow imaging of activity in genetically defined neuronal populations. GCaMP3 can be expressed using various gene delivery methods, such as viral infection or electroporation. However, these methods are invasive and provide inhomogeneous and nonstationary expression. Here, we developed a genetic reporter mouse, Ai38, which expresses GCaMP3 in a Cre-dependent manner from the ROSA26 locus, driven by a strong CAG promoter. Crossing Ai38 with appropriate Cre mice produced robust GCaMP3 expression in defined cell populations in the retina, cortex, and cerebellum. In the primary visual cortex, visually evoked GCaMP3 signals showed normal orientation and direction selectivity. GCaMP3 signals were rapid, compared with virally expressed GCaMP3 and synthetic calcium indicators. In the retina, Ai38 allowed imaging spontaneous calcium waves in starburst amacrine cells during development, and light-evoked responses in ganglion cells in adult tissue. Our results show that the Ai38 reporter mouse provides a flexible method for targeted expression of GCaMP3.
-
-
-
Transgenic Mice for Intersectional Targeting of Neural Sensors and Effectors with High Specificity and Performance
Neuron.
Mar, 2015 |
Pubmed ID: 25741722 An increasingly powerful approach for studying brain circuits relies on targeting genetically encoded sensors and effectors to specific cell types. However, current approaches for this are still limited in functionality and specificity. Here we utilize several intersectional strategies to generate multiple transgenic mouse lines expressing high levels of novel genetic tools with high specificity. We developed driver and double reporter mouse lines and viral vectors using the Cre/Flp and Cre/Dre double recombinase systems and established a new, retargetable genomic locus, TIGRE, which allowed the generation of a large set of Cre/tTA-dependent reporter lines expressing fluorescent proteins, genetically encoded calcium, voltage, or glutamate indicators, and optogenetic effectors, all at substantially higher levels than before. High functionality was shown in example mouse lines for GCaMP6, YCX2.60, VSFP Butterfly 1.2, and Jaws. These novel transgenic lines greatly expand the ability to monitor and manipulate neuronal activities with increased specificity.
-
-
Resolution of High-Frequency Mesoscale Intracortical Maps Using the Genetically Encoded Glutamate Sensor IGluSnFR
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience.
Jan, 2016 |
Pubmed ID: 26818514 Wide-field-of-view mesoscopic cortical imaging with genetically encoded sensors enables decoding of regional activity and connectivity in anesthetized and behaving mice; however, the kinetics of most genetically encoded sensors can be suboptimal for in vivo characterization of frequency bands higher than 1-3 Hz. Furthermore, existing sensors, in particular those that measure calcium (genetically encoded calcium indicators; GECIs), largely monitor suprathreshold activity. Using a genetically encoded sensor of extracellular glutamate and in vivo mesoscopic imaging, we demonstrate rapid kinetics of virally transduced or transgenically expressed glutamate-sensing fluorescent reporter iGluSnFR. In both awake and anesthetized mice, we imaged an 8 × 8 mm field of view through an intact transparent skull preparation. iGluSnFR revealed cortical representation of sensory stimuli with rapid kinetics that were also reflected in correlation maps of spontaneous cortical activities at frequencies up to the alpha band (8-12 Hz). iGluSnFR resolved temporal features of sensory processing such as an intracortical reverberation during the processing of visual stimuli. The kinetics of iGluSnFR for reporting regional cortical signals were more rapid than those for Emx-GCaMP3 and GCaMP6s and comparable to the temporal responses seen with RH1692 voltage sensitive dye (VSD), with similar signal amplitude. Regional cortical connectivity detected by iGluSnFR in spontaneous brain activity identified functional circuits consistent with maps generated from GCaMP3 mice, GCaMP6s mice, or VSD sensors. Viral and transgenic iGluSnFR tools have potential utility in normal physiology, as well as neurologic and psychiatric pathologies in which abnormalities in glutamatergic signaling are implicated.
-
-
Integration of Autopatching with Automated Pipette and Cell Detection in Vitro
Journal of Neurophysiology.
Oct, 2016 |
Pubmed ID: 27385800 Patch clamp is the main technique for measuring electrical properties of individual cells. Since its discovery in 1976 by Neher and Sakmann, patch clamp has been instrumental in broadening our understanding of the fundamental properties of ion channels and synapses in neurons. The conventional patch-clamp method requires manual, precise positioning of a glass micropipette against the cell membrane of a visually identified target neuron. Subsequently, a tight "gigaseal" connection between the pipette and the cell membrane is established, and suction is applied to establish the whole cell patch configuration to perform electrophysiological recordings. This procedure is repeated manually for each individual cell, making it labor intensive and time consuming. In this article we describe the development of a new automatic patch-clamp system for brain slices, which integrates all steps of the patch-clamp process: image acquisition through a microscope, computer vision-based identification of a patch pipette and fluorescently labeled neurons, micromanipulator control, and automated patching. We validated our system in brain slices from wild-type and transgenic mice expressing channelrhodopsin 2 under the Thy1 promoter (line 18) or injected with a herpes simplex virus-expressing archaerhodopsin, ArchT. Our computer vision-based algorithm makes the fluorescent cell detection and targeting user independent. Compared with manual patching, our system is superior in both success rate and average trial duration. It provides more reliable trial-to-trial control of the patching process and improves reproducibility of experiments.
-
-
Aberrant Cortical Activity in Multiple GCaMP6-Expressing Transgenic Mouse Lines
ENeuro.
Sep-Oct, 2017 |
Pubmed ID: 28932809 Transgenic mouse lines are invaluable tools for neuroscience but, as with any technique, care must be taken to ensure that the tool itself does not unduly affect the system under study. Here we report aberrant electrical activity, similar to interictal spikes, and accompanying fluorescence events in some genotypes of transgenic mice expressing GCaMP6 genetically encoded calcium sensors. These epileptiform events have been observed particularly, but not exclusively, in mice with Emx1-Cre and Ai93 transgenes, of either sex, across multiple laboratories. The events occur at >0.1 Hz, are very large in amplitude (>1.0 mV local field potentials, >10% df/f widefield imaging signals), and typically cover large regions of cortex. Many properties of neuronal responses and behavior seem normal despite these events, although rare subjects exhibit overt generalized seizures. The underlying mechanisms of this phenomenon remain unclear, but we speculate about possible causes on the basis of diverse observations. We encourage researchers to be aware of these activity patterns while interpreting neuronal recordings from affected mouse lines and when considering which lines to study.
Get cutting-edge science videos from JoVE sent straight to your inbox every month.