In JoVE (1)

Other Publications (43)

Articles by Martin Parent in JoVE

Other articles by Martin Parent on PubMed

Jules Bernard Luys: a Singular Figure of 19th Century Neurology

The Canadian Journal of Neurological Sciences. Le Journal Canadien Des Sciences Neurologiques. Aug, 2002  |  Pubmed ID: 12195620

Jules Bernard Luys was a highly industrious and dedicated French investigator who made important contributions to the fields of neuroanatomy and neuropsychiatry in the second half of the 19th century. His name is still eponymically attached to the subthalamic nucleus and the centre médian nucleus, two structures that are at the center of our current thinking about the functional organization of the basal ganglia and the pathophysiology of Parkinson's disease. While developing a highly original view of the anatomical and functional organization of the human brain, Luys contributed significantly to our knowledge of the neuropathological and clinical aspects of mental illnesses. Luys devoted the last part of his career to hysteria and hypnosis, engaging himself in experiments as extravagant as the action of medication at distance. In doing so, he became perhaps the most highly caricatured example of the fascination that hysteria exerted upon various renowned neurologists at the end of the 19th century. This paper briefly summarizes the contribution of this remarkable figure of the history of neurology.

The Pallidofugal Motor Fiber System in Primates

Parkinsonism & Related Disorders. Jun, 2004  |  Pubmed ID: 15120094

The organization of the pallidofugal fiber system originating from the internal segment of the globus pallidus (GPi) in cynomolgus monkeys (Macaca fascicularis) was studied by means of a single-axon tracing method. The primate GPi is composed of a majority of neurons endowed with a highly collateralized axon that projects to the premotor neurons located in the ventral tier thalamic nuclei, the center-médian/parafascicular thalamic complex and the brainstem pedunculopontine nucleus. These axons often follow a long and tortuous course within the GPi and then emerge either through the ansa lenticularis (AL) or the lenticular fasciculus (LF), irrespective of the location of their parent cell body in the GPi. Other pallidofugal axons exit through the medial pole of the GPi, at various distances between the AL ventrally and the LF dorsally. Virtually all pallidofugal axons course through Forel's field H, on their way to the thalamus and brainstem. They emit numerous short collaterals and boutons en passant in this sector of the subthalamic region, which stands out as a major target of GPi axons. Our results indicate that AL and LF do not form separate anatomical entities, each carrying axons originating from distinct functional pallidal territories, as commonly believed. Instead, these two fascicles form the ventral and dorsal borders of a morphological continuum that harbors a multitude of pallidofugal axons arising from all sectors of the GPi. This type of information should be taken into account when interpreting data from deep brain stimulation applied to pallidal and subthalamic regions in Parkinson's disease.

Single-axon Tracing and Three-dimensional Reconstruction of Centre Median-parafascicular Thalamic Neurons in Primates

The Journal of Comparative Neurology. Jan, 2005  |  Pubmed ID: 15558721

The axonal projections from the centre median (CM)/parafascicular (Pf) thalamic complex in squirrel monkeys were studied after microiontophoretic injections of biotinylated dextran amine under electrophysiological guidance. A total of 29 axons connected to their parent cell body were entirely reconstructed from serial sections with a camera lucida. Our investigation shows that the CM and Pf nuclei in primates comprise three types of projection neurons: (1) neurons that innervate densely and focally the striatum; (2) neurons that arborize diffusely in the cerebral cortex; and (3) neurons that innervate both striatum and cerebral cortex. Striatal innervation of CM origin consists of dense clusters of axon terminals exhibiting pedunculated varicosities and forming oblique bands in the dorsolateral sector of putamen (sensorimotor striatal territory). The same type of striatal innervation occurs in the head of caudate nucleus (associative striatal territory) in cases of Pf-labeled neurons. The CM neurons that target cerebral cortex arborize principally in motor and premotor areas, whereas Pf neurons innervate chiefly prefrontal areas. Cortical innervation from both nuclei is much more profuse in layers V and VI than in layer I. Our three-dimensional reconstruction studies show that dendritic and axonal arborizations of CM neurons extend essentially along the sagittal plane. These results revealed that, in contrast to rodents where virtually all Pf neurons project to both striatum and cortex, the primate CM/Pf complex harbors several types of highly patterned projection neurons. As such, this complex might be considered as an integral part of the widely distributed basal ganglia neuronal system.

Single-axon Tracing Study of Corticostriatal Projections Arising from Primary Motor Cortex in Primates

The Journal of Comparative Neurology. May, 2006  |  Pubmed ID: 16538675

The axonal projections arising from the forelimb area of the primary motor cortex (M1) in cynomolgus monkeys (Macaca fascicularis) were studied following microiontophoretic injections of biotinylated dextran amine under electrophysiological guidance. The microinjections were centered on layer V, and 42 anterogradely labeled corticofugal axons were reconstructed from serial frontal or sagittal sections with a camera lucida. Our investigation shows that the primate striatum receives both direct and indirect projections from M1. The direct corticostriatal projection is formed by axons that remain uniformly thin and unbranched throughout their sinuous trajectory to the ipsilateral striatum. They divide as they enter the dorsolateral sector of the post-commissural putamen, the so-called sensorimotor striatal territory. The indirect corticostriatal projection derives from a thin collateral emitted within the corona radiata by thick, long-range fibers that descend toward the brainstem. The collateral enters the putamen dorsomedially and remains unbranched until it reaches the dorsolateral sector of the putamen, where it breaks out into two to four axonal branches displaying small and equally spaced varicosities. Both direct and indirect corticostriatal axons branch moderately but occupy vast rostrocaudal striatal territories, where they appear to contact en passant several widely distributed striatal neurons. These findings reveal that, in contrast to current beliefs, the primate motor corticostriatal system is not exclusively formed by axons dedicated solely to the striatum. It also comprises collaterals from long-range corticofugal axons, which can thus provide to the striatum a copy of the neural information that is being conveyed to the brainstem and/or spinal cord.

Computational Analysis of Subthalamic Nucleus and Lenticular Fasciculus Activation During Therapeutic Deep Brain Stimulation

Journal of Neurophysiology. Sep, 2006  |  Pubmed ID: 16738214

The subthalamic nucleus (STN) is the most common target for the treatment of Parkinson's disease (PD) with deep brain stimulation (DBS). DBS of the globus pallidus internus (GPi) is also effective in the treatment of PD. The output fibers of the GPi that form the lenticular fasciculus pass in close proximity to STN DBS electrodes. In turn, both STN projection neurons and GPi fibers of passage represent possible therapeutic targets of DBS in the STN region. We built a comprehensive computational model of STN DBS in parkinsonian macaques to study the effects of stimulation in a controlled environment. The model consisted of three fundamental components: 1) a three-dimensional (3D) anatomical model of the macaque basal ganglia, 2) a finite element model of the DBS electrode and electric field transmitted to the tissue medium, and 3) multicompartment biophysical models of STN projection neurons, GPi fibers of passage, and internal capsule fibers of passage. Populations of neurons were positioned within the 3D anatomical model. Neurons were stimulated with electrode positions and stimulation parameters defined as clinically effective in two parkinsonian monkeys. The model predicted axonal activation of STN neurons and GPi fibers during STN DBS. Model predictions regarding the degree of GPi fiber activation matched well with experimental recordings in both monkeys. Only axonal activation of the STN neurons showed a statistically significant increase in both monkeys when comparing clinically effective and ineffective stimulation. Nonetheless, both neural targets may play important roles in the therapeutic mechanisms of STN DBS.

The Microcircuitry of Primate Subthalamic Nucleus

Parkinsonism & Related Disorders. 2007  |  Pubmed ID: 18267252

Single-cell labeling experiments in cynomolgus monkeys have revealed that the subthalamic nucleus (STN) harbors several subtypes of projection neurons, each endowed with a highly patterned set of axon collaterals. This organizational feature allows single STN neurons to act directly upon the two major output structures of the basal ganglia--the substantia nigra pars reticulata and the internal pallidum--and, at the same time, to exert a multifarious effect upon the external pallidum with which the STN is reciprocally connected. These findings have clarified the role of the STN in basal ganglia organization and led to the elaboration of more accurate computational models of deep brain stimulation, a therapeutic approach currently used to alleviate the motor symptoms of Parkinson's Disease.

Hippocampal Atrophy and Abnormal Brain Development Following a Prolonged Hyperthermic Seizure in the Immature Rat with a Focal Neocortical Lesion

Neurobiology of Disease. Oct, 2008  |  Pubmed ID: 18678257

In rats subjected to a focal cortical lesion soon after birth, hyperthermia at P10 induces a prolonged epileptic seizure, often followed by temporal lobe epilepsy in the adult. To determine whether brain damage and notably hippocampal atrophy occur early on in this model, whole brain as well as hemispheric, cortical, subcortical and hippocampal volumes was measured in non-lesioned and lesioned rat pups, 2 days (P12) and 12 days (P22) after the hyperthermic seizure. All pups with a cortical lesion showed reductions in whole brain and in ipsilateral hemispheric, cortical and hippocampal volumes at P12, which persisted at P22 in pups having also sustained a prolonged hyperthermic seizure at P10. Limiting the duration of the seizure with Diazepam prevented the hippocampal atrophy. Thus, a prolonged hyperthermic seizure in immature brain with a subtle neocortical lesion impairs normal brain development, and the duration of the seizure appears to be a key factor in generating hippocampal atrophy.

Acetylcholine Innervation of the Adult Rat Thalamus: Distribution and Ultrastructural Features in Dorsolateral Geniculate, Parafascicular, and Reticular Thalamic Nuclei

The Journal of Comparative Neurology. Dec, 2008  |  Pubmed ID: 18924144

The acetylcholine (ACh) innervation of thalamus arises mainly from the brainstem pedunculopontine and laterodorsal tegmental nuclei. By using immunocytochemistry with a monoclonal antibody against whole rat choline acetyltransferase (ChAT), we quantified the distribution and characterized the ultrastructural features of these nerve terminals (axon varicosities) in the dorsolateral geniculate (DLG), parafascicular (PF), and reticular thalamic (Rt) nuclei of adult rat. The regional density of ACh innervation was the highest in PF (2.1 x 10(6) varicosities/mm(3)), followed by Rt (1.7 x 10(6)) and DLG (1.3 x 10(6)). In single thin sections, ChAT-immunostained varicosity profiles appeared comparable in shape and content in the three nuclei, but significantly larger in PF than in DLG and Rt. The number of these profiles displaying a synaptic junction was also much higher in PF than in DLG and Rt, indicating that all ChAT-immunostained varicosities in PF were synaptic, but only 39% in DLG and 33% in Rt. The hypothesis that glutamate corelease might account for the maintenance of the entirely synaptic ACh innervation in PF was refuted by the lack of colocalization of ChAT and vesicular glutamate transporter 2 (VGLUT2) in PF axon varicosities after dual immunolabeling. These data suggest that diffuse as well as synaptic transmission convey modulatory effects of the ACh input from brainstem to DLG and Rt during waking. In contrast, the entirely synaptic ACh input to PF should allow for a direct relaying of the information from brainstem, affecting basal ganglia function as well as perceptual awareness, including attention and pain perception.

Alcohol Dependence-related Increase of Glial Cell Density in the Anterior Cingulate Cortex of Suicide Completers

Journal of Psychiatry & Neuroscience : JPN. Jul, 2009  |  Pubmed ID: 19568479

Suicide is the most serious consequence of major depressive disorder (MDD). Although the anterior cingulate cortex (ACC; Brodmann area [BA] 24) has been increasingly investigated for its role in the etiology of MDD, there is surprisingly very little information about the possible implication of this brain region in suicide. We hypothesized that changes in BA24 cell densities occur in depressed individuals who commit suicide, possibly reflecting an altered state of cortical plasticity that is thought to occur in depression.

Distribution and Ultrastructural Features of the Serotonin Innervation in Rat and Squirrel Monkey Subthalamic Nucleus

The European Journal of Neuroscience. Apr, 2010  |  Pubmed ID: 20345924

The main purpose of this light and electron microscopic immunocytochemical study was to characterize and compare the serotonin (5-HT) innervation of the subthalamic nucleus (STN) in rats and squirrel monkeys (Saimiri sciureus) following labeling with an antibody against the 5-HT transporter (SERT). Unbiased counts of SERT+ axon varicosities revealed an average density of 5-HT innervation higher in monkeys (1.52 x 10(6) varicosities/mm3) than rats (1.17 x 10(6)), particularly in the anterior half of the nucleus (1.70 x 10(6)). As measured by electron microscopy, SERT+ axon varicosity profiles in the STN of both species were smaller than unlabeled profiles. The number of SERT+ profiles displaying a synaptic junction indicated that, in both rat and monkey STN, approximately half of 5-HT axon varicosities were asynaptic. In monkeys, all synaptic junctions made by SERT+ varicosities were asymmetrical, as opposed to only 77% in rats. Despite the higher density of 5-HT innervation in the anterior half of monkey STN, the ultrastructural features of its SERT+ varicosities, including synaptic incidence, did not significantly differ from those in its posterior half. These findings suggest that, throughout the rat and monkey STN, 5-HT afferents may exert their influence via both synaptic delivery and diffusion of 5-HT, and that an ambient level of 5-HT maintained in STN by these two modes of transmission might also modulate neuronal activity and influence motor behavior. A better understanding of the factors governing the complex interplay between these signaling processes would greatly improve our knowledge of the physiopathology of the STN.

Substantia Nigra and Parkinson's Disease: a Brief History of Their Long and Intimate Relationship

The Canadian Journal of Neurological Sciences. Le Journal Canadien Des Sciences Neurologiques. May, 2010  |  Pubmed ID: 20481265

The substantia nigra was discovered in 1786 by Félix Vicq d'Azyr, but it took more than a century before Paul Blocq and Georges Marinesco alluded to a possible link between this structure and Parkinson's disease. The insight came from the study of a tuberculosis patient admitted in Charcot's neurology ward at la Salpêtrière because he was suffering from unilateral parkinsonian tremor. At autopsy, Blocq and Marinesco discovered an encapsulated tumor confined to the substantia nigra, contralateral to the affected side, and concluded that tremor in that particular case resulted from a midbrain lesion. This pioneering work, published in 1893, led Edouard Brissaud to formulate, in 1895, the hypothesis that the substantia nigra is the major pathological site in Parkinson's disease. Brissaud's hypothesis was validated in 1919 by Constantin Trétiakoff in a remarkable thesis summarizing a post-mortem study of the substantia nigra conducted in Marinesco's laboratory. Despite highly convincing evidence of nigral cell losses in idiopathic and post-encephalitic Parkinsonism, Trétiakoff's work raised considerable doubts among his colleagues, who believed that the striatum and pallidum were the preferential targets of parkinsonian degeneration. Trétiakoff's results were nevertheless confirmed by detailed neuropathological studies undertaken in the 1930s and by the discovery, in the 1960s, of the dopaminergic nature of the nigrostriatal neurons that degenerate in Parkinson's disease. These findings have strengthened the link between the substantia nigra and Parkinson's disease, but modern research has uncovered the multifaceted nature of this neurodegenerative disorder by identifying other brain structures and chemospecifc systems involved in its pathogenesis.

Maladaptive Plasticity of Serotonin Axon Terminals in Levodopa-induced Dyskinesia

Annals of Neurology. Nov, 2010  |  Pubmed ID: 20882603

Striatal serotonin projections have been implicated in levodopa-induced dyskinesia by providing an unregulated source of dopamine release. We set out to determine whether these projections are affected by levodopa treatment in a way that would favor the occurrence of dyskinesia.

Intense Dopamine Innervation of the Subventricular Zone in Huntington's Disease

Neuroreport. Dec, 2010  |  Pubmed ID: 20926973

Dopamine exerts a robust promoting effect on adult neurogenesis. Here, we report the presence of an intense dopamine (tyrosine hydroxylase immunoreactive) zone along the ventricular border of the caudate nucleus in patients with Huntington's disease, but not in age-matched controls. This thin (150-400 microm) paraventricular zone was composed of numerous small and densely packed dopamine axon varicosities and overlapped the deep layers of the subventricular zone. Immunoreactivity in the paraventricular zone was 50% higher than in adjacent striatal areas. This intense dopamine zone concurs with the striking increase of neurogenesis noted in the subventricular zone of Huntington's disease patients and indicates that dopamine might play a crucial role in intrinsic mechanisms designed to compensate for the massive striatal neuronal losses that occur in Huntington's disease.

Jules Bernard Luys in Charcot's Penumbra

Frontiers of Neurology and Neuroscience. 2011  |  Pubmed ID: 20938152

Jules Bernard Luys (1828-1897) is a relatively unknown figure in 19th century French neuropsychiatry. Although greatly influenced by Jean-Martin Charcot (1825-1893), Luys worked in the shadow of the 'master of La Salpêtrière' for about a quarter of a century. When he arrived at this institution in 1862, he used microscopy and photomicrography to identify pathological lesions underlying locomotor ataxia and progressive muscular atrophy. He later made substantial contributions to our knowledge of normal human brain anatomy, including the elucidation of thalamic organization and the discovery of the subthalamic nucleus. Luys's name has long been attached to the latter structure (corps de Luys), which is at the center of our current thinking about the functional organization of basal ganglia and the physiopathology of Parkinson's disease. As head of the Maison de santé d'Ivry, Luys developed a highly original view of the functional organization of the normal human brain, while improving our understanding of the neuropathological and clinical aspects of mental illnesses. In 1886, Luys left La Salpêtrière and became chief physician at La Charité hospital. Following Charcot, whom he considered as the father of scientific hypnotism, Luys devoted the last part of his career to hysteria and hypnosis. However, Luys ventured too deeply into the minefield of hysteria. He initiated experiments as unconventional as the distant action of medication, and became one of the most highly caricatured examples of the fascination that hysteria exerted upon neurologists as well as laypersons at the end of the 19th century.

Serotonin Innervation of Human Basal Ganglia

The European Journal of Neuroscience. Apr, 2011  |  Pubmed ID: 21375599

This study aimed to provide a first detailed description of the serotonin (5-hydroxytryptamine, 5-HT) innervation of the human basal ganglia under nonpathological conditions. We applied an immunohistochemical approach to postmortem human brain material with antibodies directed against the 5-HT transporter and the 5-HT-synthesizing enzyme (tryptophane hydroxylase) to visualize 5-HT axons and cell bodies, respectively. Adjacent sections were immunostained for tyrosine hydroxylase to compare the distribution of 5-HT axons with that of dopamine axons. Human basal ganglia are innervated by 5-HT axons that emerge chiefly from the dorsal and, less abundantly, from the median raphe nuclei. These axons form thick ascending fascicles that fragment themselves as they penetrate the decussation of the superior cerebellar peduncle. They regroup within the ventral tegmental area and ascend along the medial forebrain bundle, immediately beneath the dopamine ascending fibers. At regular intervals along their course, 5-HT axons detach themselves from the medial forebrain bundle and sweep laterally to arborize within all basal ganglia components, where they display highly variable densities and patterns of innervation. The substantia nigra is the most densely innervated component of the basal ganglia, whereas the caudate nucleus is more heterogeneously innervated than the putamen and pallidum. The subthalamic nucleus harbors 5-HT-immunoreactive fibers that display a mediolateral-decreasing gradient. The fact that all components of human basal ganglia receive a dense 5-HT input indicates that, in concert with dopamine, 5-HT plays a crucial role in the functional organization of these motor-related structures, which are often targeted in neurodegenerative diseases.

Brain 5-HT(2A) Receptors in MPTP Monkeys and Levodopa-induced Dyskinesias

The European Journal of Neuroscience. May, 2011  |  Pubmed ID: 21501255

Levodopa-induced dyskinesias (LIDs) are abnormal involuntary movements induced by the chronic use of levodopa (l-Dopa) limiting the quality of life of Parkinson's disease (PD) patients. We evaluated changes of the serotonin 5-HT(2A) receptors in control monkeys, in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys and in l-Dopa-treated MPTP monkeys, without or with adjunct treatments to inhibit the expression of LID: CI-1041, a selective NR1A/2B subunit antagonist of glutamate N-methyl-d-aspartic acid (NMDA) receptor, or Cabergoline, a long-acting dopamine D(2) receptor agonist. All treatments were administered for 1 month and animals were killed 24 h after the last dose of l-Dopa. Striatal concentrations of serotonin were decreased in all MPTP monkeys investigated, as measured by high-performance liquid chromatography. [(3) H]Ketanserin-specific binding to 5-HT(2A) receptors was measured by autoradiography. l-Dopa treatment that induced dyskinesias increased 5-HT(2A) receptor-specific binding in the caudate nucleus and the anterior cingulate gyrus (AcgG) compared with control monkeys. Moreover, [(3) H]Ketanserin-specific binding was increased in the dorsomedial caudate nucleus in l-Dopa-treated MPTP monkeys compared with saline-treated MPTP monkeys. Nondyskinetic monkeys treated with CI-1041 or Cabergoline showed low 5-HT(2A) -specific binding in the posterior dorsomedial caudate nucleus and the anterior AcgG compared with dyskinetic monkeys. No significant difference in 5-HT(2A) receptor binding was observed in any brain regions examined in saline-treated MPTP monkeys compared with control monkeys. These results confirm the involvement of serotonergic pathways and the glutamate/serotonin interactions in LID. They also support targeting 5-HT(2A) receptors as a potential treatment for LID.

Serotonin Innervation of Basal Ganglia in Monkeys and Humans

Journal of Chemical Neuroanatomy. Jul, 2011  |  Pubmed ID: 21664455

This review paper summarizes our previous contributions to the study of serotonin (5-hydroxytryptamine; 5-HT) innervation of basal ganglia in human and nonhuman primates under normal conditions. We have visualized the 5-HT neuronal system in squirrel monkey (Saimiri sciureus) and human postmortem materials with antibodies directed against either 5-HT, 5-HT transporter (SERT) or 5-HT synthesizing enzyme tryptophan hydroxylase (TPH). Confocal microscopy was used to compare the distribution of 5-HT and dopamine (DA; tyrosine hydroxylase-immunolabeled) axons in human, while the ultrastructural features of 5-HT axon terminals in monkey subthalamic nucleus were characterized at electron microscopic level. In monkeys and humans, midbrain raphe neurons emit axons that traverse the brainstem via the transtegmental system, ascend within the medial forebrain bundle and reach their targets by coursing along the major output pathways of the basal ganglia. These 5-HT axons arborize in virtually all basal ganglia components with the substantia nigra receiving the densest innervation and the striatum the most heterogeneous one. Although the striatum - the major basal ganglia input structure - appears to be a common termination site for many of 5-HT ascending axons, our results reveal that the widely distributed 5-HT neuronal system can also act directly upon neurons located within the two major output structures of the basal ganglia, namely the internal pallidum and the substantia nigra pars reticulata in monkeys and humans. This system also has a direct access to neurons of the DA nigrostriatal pathway, a finding that underlines the importance of the 5-HT/DA interactions in the physiopathology of basal ganglia.

Serotonin and Dopamine Striatal Innervation in Parkinson's Disease and Huntington's Chorea

Parkinsonism & Related Disorders. Sep, 2011  |  Pubmed ID: 21664855

In contrast to our vast knowledge of the dopamine (DA) system, much less is known about the involvement of serotonin (5-HT) in neurodegenerative diseases affecting the basal ganglia. Therefore, we designed a study that aimed at characterizing the status of the striatal DA and 5-HT systems in patients who suffered from either Parkinson's (PD) or Huntington's disease (HD), compared to age-matched controls. Antibodies against tyrosine hydroxylase (TH) and 5-HT transporter (SERT) were used as markers of DA and 5-HT axonal profiles, respectively. The density and pattern of TH+ and SERT + innervation were determined by optical density measurements as well as by direct stereological estimates of labeled axon varicosities. The results reveal a significant decrease in TH immunoreactivity and TH + axon terminals throughout the striatum in both PD and HD, whereas the intensity of SERT immunostaining and the density of SERT + axon varicosities were found to be slightly increased in the striatum of PD and HD patients compared to controls. These findings reveal that the nigrostriatal DA system is significantly impaired in both PD and HD compared to the striatal 5-HT innervation, which is slightly increased in these two conditions. The striatal 5-HT augmentation observed in PD might be the result of a neural mechanism designed to compensate for DA denervation, whereas the marked atrophy of the striatum might explain the increase in the 5-HT innervation noted in HD. These findings underline the importance of the complex interplay between DA and 5-HT striatal afferents in the elaboration of appropriate motor behaviour.

Evidence for Altered Basal Ganglia-brainstem Connections in Cervical Dystonia

PloS One. 2012  |  Pubmed ID: 22384048

There has been increasing interest in the interaction of the basal ganglia with the cerebellum and the brainstem in motor control and movement disorders. In addition, it has been suggested that these subcortical connections with the basal ganglia may help to coordinate a network of regions involved in mediating posture and stabilization. While studies in animal models support a role for this circuitry in the pathophysiology of the movement disorder dystonia, thus far, there is only indirect evidence for this in humans with dystonia.

Effect of Chronic L-DOPA Treatment on 5-HT(1A) Receptors in Parkinsonian Monkey Brain

Neurochemistry International. Dec, 2012  |  Pubmed ID: 22940695

After chronic use of l-3,4-dihydroxyphenylalanine (l-DOPA), most Parkinson's disease (PD) patients suffer from its side effects, especially motor complications called l-DOPA-induced dyskinesia (LID). 5-HT(1A) agonists were tested to treat LID but many were reported to worsen parkinsonism. In this study, we evaluated changes in concentration of serotonin and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) and of 5-HT(1A) receptors in control monkeys, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkeys, dyskinetic MPTP monkeys treated chronically with l-DOPA, low dyskinetic MPTP monkeys treated with l-DOPA and drugs of various pharmacological activities: Ro 61-8048 (an inhibitor of kynurenine hydroxylase) or docosahexaenoic acid (DHA) and dyskinetic MPTP monkeys treated with l-DOPA+naltrexone (an opioid receptor antagonist). Striatal serotonin concentrations were reduced in MPTP monkeys compared to controls. Higher striatal 5-HIAA/serotonin concentration ratios in l-DOPA-treated monkeys compared to untreated monkeys suggest an intense activity of serotonin axon terminals but this value was similar in dyskinetic and nondyskinetic animals treated with or without adjunct treatment with l-DOPA. As measured by autoradiography with [(3)H]8-hydroxy-2-(di-n-propyl) aminotetralin (8-OH-DPAT), a decrease of 5-HT(1A) receptor specific binding was observed in the posterior/dorsal region of the anterior cingulate gyrus and posterior/ventral area of the superior frontal gyrus of MPTP monkeys compared to controls. An increase of 5-HT(1A) receptor specific binding was observed in the hippocampus of MPTP monkeys treated with l-DOPA regardless to their adjunct treatment. Cortical 5-HT(1A) receptor specific binding was increased in the l-DOPA-treated MPTP monkeys alone or with DHA or naltrexone and this increase was prevented in low dyskinetic MPTP monkeys treated with l-DOPA and Ro 61-8048. These results highlight the importance of 5-HT(1A) receptor alterations in treatment of PD with l-DOPA.

Potentiation of Response to Low Doses of Levodopa in MPTP-injected Monkeys by Chemical Unilateral Subthalamotomy

Journal of Neurosurgery. Jan, 2013  |  Pubmed ID: 23082890

Subthalamotomy is a stereotactic surgery performed in patients with disabling dyskinesias due to Parkinson disease. The authors set out to model this human condition in MPTP monkeys and determine if subthalamotomy allowed a reduction of levodopa for similar benefit.

Striatal Allografts in Patients with Huntington's Disease: Impact of Diminished Astrocytes and Vascularization on Graft Viability

Brain : a Journal of Neurology. Feb, 2013  |  Pubmed ID: 23378216

Neuronal transplantation has been proposed as a potential therapy to replace lost neurons in Huntington's disease. Transplant vascularization and trophic support are important for graft survival. However, very few studies have specifically addressed graft vascularization in patients with neurological disorders. In the present study, we analysed the vasculature of the host putamen and solid grafts of foetal striatal tissue transplanted into patients with Huntington's disease 9 and 12 years previously. Grafts were characterized by a significantly reduced number of large calibre blood vessels in comparison with the host brain. There were also significantly fewer astrocytes and gap junctions, suggesting a lack of functional blood-brain barrier components within the grafted tissue. Additionally, grafts demonstrated a nearly complete absence of pericytes (compared with the striatum) that are considered important for vascular stabilization and angiogenesis. Finally, the host striatum had a marked increase in atrophic astrocytes in comparison with controls and grafts. The extent to which the lower number of large calibre vessels and astrocytes within the transplants contributed to suboptimal graft survival is unknown. The marked increase in atrophic astrocytes in the host brain surrounding the grafts suggests that reduced host trophic support may also contribute to poor graft survival in Huntington's disease. A better understanding of the way in which these components support allografted tissue is critical to the future development of cell-based therapies for the treatment of Huntington's disease.

Quantitative and Ultrastructural Study of Serotonin Innervation of the Globus Pallidus in Squirrel Monkeys

The European Journal of Neuroscience. May, 2013  |  Pubmed ID: 23432025

The present immunohistochemical study was aimed at characterizing the serotonin (5-HT) innervation of the internal (GPi) and external (GPe) pallidal segments in the squirrel monkey (Saimiri sciureus) with an antibody against the 5-HT transporter (SERT). At the light microscopic level, unbiased counts of SERT+ axon varicosities showed that the density of innervation is similar in the GPi (0.57 ± 0.03 × 10(6)  varicosities/mm(3) of tissue) and the GPe (0.60 ± 0.04 × 10(6) ), with the anterior half of both segments being more densely innervated than the posterior half. Dorsoventral and mediolateral decreasing gradients of SERT varicosities occur in both pallidal segments, but are statistically significant only in the GPi. The neuronal density being significantly greater in the GPe (3.41 ± 0.23 × 10(3)  neurons/mm(3) ) than in the GPi (2.90 ± 0.11 × 103), the number of 5-HT axon varicosities per pallidal neuron was found to be superior in the GPi (201 ± 27) than in the GPe (156 ± 26). At the electron microscopic level, SERT+ axon varicosities are comparable in size and vesicular content in GPi and GPe, where they establish mainly asynaptic contacts with unlabeled profiles. Less than 25% of SERT+ varicosities display a synaptic specialization, which is of the symmetrical or asymmetrical type and occurs exclusively on pallidal dendrites. No SERT+ axo-axonic synapses are present, suggesting that 5-HT exerts its well-established modulatory action upon various pallidal afferents mainly through diffuse transmission, whereas its direct control of pallidal neurons results from both volumic and synaptic release of the transmitter.

Basal Ganglia Serotonin 1B Receptors in Parkinsonian Monkeys with L-DOPA-induced Dyskinesia

Biochemical Pharmacology. Oct, 2013  |  Pubmed ID: 23954709

L-DOPA-induced dyskinesias (LID)s are abnormal involuntary movements limiting the chronic use of L-DOPA, the main pharmacological treatment of Parkinson's disease (PD). Serotonin receptors are thought to contribute to LID but serotonin 1B (5-HT1B) receptors have never been investigated in any primate models of PD and LID. Therefore, we measured 5-HT1B receptors with [(3)H]GR 125743 autoradiography in controls, MPTP-lesioned monkeys, and L-DOPA-treated MPTP monkeys, with or without Ro 61-8048 treatment, a kynurenine hydroxylase inhibitor alleviating LID. In normal condition, 5-HT1B receptor specific binding was highest in the substantia nigra pars reticulata (SNr), high in the globus pallidus (GP), nucleus accumbens and substantia innominata and lower in the caudate nucleus and putamen. 5-HT1B receptors were increased in caudate nucleus, putamen and SNr of MPTP monkeys compared to controls. L-DOPA-treated MPTP monkeys had elevated 5-HT1B receptor specific binding in caudate nucleus, putamen, SNr and internal GP. In all these brain regions, increases were prevented by co-administration of Ro 61-8048. No effect of MPTP lesion or treatment was observed for 5-HT1B specific binding in the external GP, nucleus accumbens and substantia innominata. This study is the first description in primates of altered brain 5-HT1B receptors associated with prevention of LID.

Dopaminergic Innervation of the Human Subventricular Zone: a Comparison Between Huntington's Chorea and Parkinson's Disease

American Journal of Neurodegenerative Disease. 2013  |  Pubmed ID: 24093085

The subventricular zone retains its neurogenic capacity throughout life and, as such, is often considered a potential source for endogenous repair in neurodegenerative disorders. Because dopamine is believed to stimulate adult neurogenesis, we looked for possible variations in the dopaminergic innervation of the subventricular zone between cases of Huntington's chorea and Parkinson's diseases. Antibodies against tyrosine hydroxylase (TH) and proliferating cell nuclear antigen (PCNA) were used as specific markers of dopaminergic axons and cell proliferating activity, respectively. The immunohistochemical approach was applied to postmortem tissue from 2 Parkinson's disease cases, 4 Huntington's disease cases, along with age-matched controls. The immunostaining was revealed with either diaminobenzidine or fluorescent-conjugated secondary antibodies. Optical density measurements were made along the entire dorso-ventral extent of the caudate nucleus. An intense TH+ zone was detected along the ventricular border of the caudate nucleus in Huntington's disease cases, but not in patients with Parkinson's disease or age-matched controls. This thin (287±38 μm) paraventricular zone was composed of numerous small and densely packed dopamine axon varicosities and overlapped the deep layers of the subventricular zone. Its immunoreactivity was 47±8% more intense than that of adjacent striatal areas. The dopamine innervation of the subventricular zone is strikingly massive in Huntington's chorea compared to Parkinson's disease, a finding that concurs with the marked increase in neurogenesis noted in the subventricular zone of Huntington's disease patients. This finding suggests that dopamine plays a crucial role in mechanisms designed to compensate for the massive striatal neuronal losses that occur in Huntington's disease.

Distribution of VGLUT3 in Highly Collateralized Axons from the Rat Dorsal Raphe Nucleus As Revealed by Single-neuron Reconstructions

PloS One. 2014  |  Pubmed ID: 24504335

This study aimed at providing the first detailed morphological description, at the single-cell level, of the rat dorsal raphe nucleus neurons, including the distribution of the VGLUT3 protein within their axons. Electrophysiological guidance procedures were used to label dorsal raphe nucleus neurons with biotinylated dextran amine. The somatodendritic and axonal arborization domains of labeled neurons were reconstructed entirely from serial sagittal sections using a computerized image analysis system. Under anaesthesia, dorsal raphe nucleus neurons display highly regular (1.72 ± 0.50 Hz) spontaneous firing patterns. They have a medium size cell body (9.8 ± 1.7 µm) with 2-4 primary dendrites mainly oriented anteroposteriorly. The ascending axons of dorsal raphe nucleus are all highly collateralized and widely distributed (total axonal length up to 18.7 cm), so that they can contact, in various combinations, forebrain structures as diverse as the striatum, the prefrontal cortex and the amygdala. Their morphological features and VGLUT3 content vary significantly according to their target sites. For example, high-resolution confocal analysis of the distribution of VGLUT3 within individually labeled-axons reveals that serotonin axon varicosities displaying VGLUT3 are larger (0.74 ± 0.03 µm) than those devoid of this protein (0.55 ± 0.03 µm). Furthermore, the percentage of axon varicosities that contain VGLUT3 is higher in the striatum (93%) than in the motor cortex (75%), suggesting that a complex trafficking mechanism of the VGLUT3 protein is at play within highly collateralized axons of the dorsal raphe nucleus neurons. Our results provide the first direct evidence that the dorsal raphe nucleus ascending projections are composed of widely distributed neuronal systems, whose capacity to co-release serotonin and glutamate varies from one forebrain locus to the other.

Distribution and Morphological Characteristics of Striatal Interneurons Expressing Calretinin in Mice: a Comparison with Human and Nonhuman Primates

Journal of Chemical Neuroanatomy. Sep, 2014  |  Pubmed ID: 24960462

Striatal interneurons display a morphological and chemical heterogeneity that has been particularly well characterized in rats, monkeys and humans. By comparison much less is known of striatal interneurons in mice, although these animals are now widely used as transgenic models of various neurodegenerative diseases. The present immunohistochemical study aimed at characterizing striatal interneurons expressing calretinin (CR) in mice compared to those in squirrel monkeys and humans. The mouse striatum contains both small (9-12 μm) and medium-sized (15-20 μm) CR+ cells. The small cells are intensely stained with a single, slightly varicose and moderately arborized process. They occur throughout the striatum (77±9 cells/mm(3)), but prevail in the area of the subventricular zone and subcallosal streak, with statistically significant anteroposterior and dorsoventral decreasing gradients. The medium-sized cells are less intensely immunoreactive and possess 2-3 long, slightly varicose and poorly branched dendrites. They are rather uniformly scattered throughout the striatum and three times more numerous (224±31 cells/mm(3)) than the smaller CR+ cells. Double immunostaining experiments with choline acetyltransferase (ChAT) as a cholinergic marker in normal and Drd1a-tdTomato/Drd2-EGFP double transgenic mice reveal that none of the small or medium-sized CR+ cells express ChAT or D1 and D2 dopamine receptors. In contrast, the striatum in human and nonhuman primates harbors small and medium-sized CR+/ChAT- cells, as well as large CR+/ChAT+ interneurons that are absent in mice. Such a difference between rodents and primates must be taken into consideration if one hopes to better understand the striatal function in normal and pathological conditions.

The Role of Dopamine in Huntington's Disease

Progress in Brain Research. 2014  |  Pubmed ID: 24968783

Alterations in dopamine (DA) neurotransmission in Parkinson's disease are well known and widely studied. Much less is known about DA changes that accompany and underlie some of the symptoms of Huntington's disease (HD), a dominant inherited neurodegenerative disorder characterized by chorea, cognitive deficits, and psychiatric disturbances. The cause is an expansion in CAG (glutamine) repeats in the HTT gene. The principal histopathology of HD is the loss of medium-sized spiny neurons (MSNs) and, to a lesser degree, neuronal loss in cerebral cortex, thalamus, hippocampus, and hypothalamus. Neurochemical, electrophysiological, and behavioral studies in HD patients and genetic mouse models suggest biphasic changes in DA neurotransmission. In the early stages, DA neurotransmission is increased leading to hyperkinetic movements that can be alleviated by depleting DA stores. In contrast, in the late stages, DA deficits produce hypokinesia that can be treated by increasing DA function. Alterations in DA neurotransmission affect glutamate receptor modulation and could contribute to excitotoxicity. The mechanisms of DA dysfunction, in particular the increased DA tone in the early stages of the disease, are presently unknown but may include initial upregulation of DA neuron activity caused by the genetic mutation, reduced inhibition resulting from striatal MSN loss, increased excitation from cortical inputs, and DA autoreceptor dysfunction. Targeting both DA and glutamate receptor dysfunction could be the best strategy to treat HD symptoms.

Cholinergic Neurons Intrinsic to the Primate External Pallidum

Synapse (New York, N.Y.). Aug, 2015  |  Pubmed ID: 25967898

We report the presence of a small population of cholinergic neurons closely intermingled with external pallidal neurons in cynomolgus monkeys (Macaca fascicularis). The majority of these cholinergic pallidal neurons are devoid of Nerve Growth Factor receptor (NGFr), which sets them apart from the population of corticopetal NGFr-rich neurons of the nucleus basalis of Meynert and its ectopic elements that impinge dorsally upon the pallidum via the medullary laminae.

Aberrant Lipid Metabolism in the Forebrain Niche Suppresses Adult Neural Stem Cell Proliferation in an Animal Model of Alzheimer's Disease

Cell Stem Cell. Oct, 2015  |  Pubmed ID: 26321199

Lipid metabolism is fundamental for brain development and function, but its roles in normal and pathological neural stem cell (NSC) regulation remain largely unexplored. Here, we uncover a fatty acid-mediated mechanism suppressing endogenous NSC activity in Alzheimer's disease (AD). We found that postmortem AD brains and triple-transgenic Alzheimer's disease (3xTg-AD) mice accumulate neutral lipids within ependymal cells, the main support cell of the forebrain NSC niche. Mass spectrometry and microarray analyses identified these lipids as oleic acid-enriched triglycerides that originate from niche-derived rather than peripheral lipid metabolism defects. In wild-type mice, locally increasing oleic acid was sufficient to recapitulate the AD-associated ependymal triglyceride phenotype and inhibit NSC proliferation. Moreover, inhibiting the rate-limiting enzyme of oleic acid synthesis rescued proliferative defects in both adult neurogenic niches of 3xTg-AD mice. These studies support a pathogenic mechanism whereby AD-induced perturbation of niche fatty acid metabolism suppresses the homeostatic and regenerative functions of NSCs.

Morphological Evidence for Dopamine Interactions with Pallidal Neurons in Primates

Frontiers in Neuroanatomy. 2015  |  Pubmed ID: 26321923

The external (GPe) and internal (GPi) segments of the primate globus pallidus receive dopamine (DA) axonal projections arising mainly from the substantia nigra pars compacta and this innervation is here described based on tyrosine hydroxylase (TH) immunohistochemical observations gathered in the squirrel monkey (Saimiri sciureus). At the light microscopic level, unbiased stereological quantification of TH positive (+) axon varicosities reveals a similar density of innervation in the GPe (0.19 ± 0.02 × 10(6) axon varicosities/mm(3) of tissue) and GPi (0.17 ± 0.01 × 10(6)), but regional variations occur in the anteroposterior and dorsoventral axes in both GPe and GPi and along the mediolateral plane in the GPe. Estimation of the neuronal population in the GPe (3.47 ± 0.15 × 10(3) neurons/mm(3)) and GPi (2.69 ± 0.18 × 10(6)) yields a mean ratio of, respectively, 28 ± 3 and 68 ± 15 TH+ axon varicosities/pallidal neuron. At the electron microscopic level, TH+ axon varicosities in the GPe appear significantly smaller than those in the GPi and very few TH+ axon varicosities are engaged in synaptic contacts in the GPe (17 ± 3%) and the GPi (15 ± 4%) compared to their unlabeled counterparts (77 ± 6 and 50 ± 12%, respectively). Genuine synaptic contacts made by TH+ axon varicosities in the GPe and GPi are of the symmetrical and asymmetrical type. Such synaptic contacts together with the presence of numerous synaptic vesicles in all TH+ axon varicosities observed in the GPe and GPi support the functionality of the DA pallidal innervation. By virtue of its predominantly volumic mode of action, DA appears to exert a key modulatory effect upon pallidal neurons in concert with the more direct GABAergic inhibitory and glutamatergic excitatory actions of the striatum and subthalamic nucleus. We argue that the DA pallidal innervation plays a major role in the functional organization of the primate basal ganglia under both normal and pathological conditions.

Corrigendum: Morphological Evidence for Dopamine Interactions with Pallidal Neurons in Primates

Frontiers in Neuroanatomy. 2015  |  Pubmed ID: 26483643

[This corrects the article on p. 111 in vol. 9, PMID: 26321923.].

Asynaptic Feature and Heterogeneous Distribution of the Cholinergic Innervation of the Globus Pallidus in Primates

Brain Structure & Function. Mar, 2016  |  Pubmed ID: 25523104

The internal (GPi) and external (GPe) segments of the primate globus pallidus receive a significant cholinergic (ACh) innervation from the brainstem pedunculopontine tegmental nucleus. The present immunohistochemical study describes this innervation in the squirrel monkey (Saimiri sciureus), as visualized with an antibody raised against choline acetyltransferase (ChAT). At the light microscopic level, unbiased stereological quantification of ChAT positive (+) axon varicosities reveals a significantly lower density of innervation in GPi (0.26 ± 0.03 × 10(6)) than in GPe (0.47 ± 0.07 × 10(6) varicosities/mm(3) of tissue), with the anterior half of both segments more densely innervated than the posterior half. Neuronal density of GPi (3.00 ± 0.13 × 10(3) neurons/mm(3)) and GPe (3.62 ± 0.22 × 10(3) neurons/mm(3)) yields a mean ratio of ChAT+ axon varicosities per pallidal neuron of 74 ± 10 in the GPi and 128 ± 28 in the GPe. At the electron microscopic level, the pallidal ChAT+ axon varicosities are significantly smaller than their unlabeled counterparts, but are comparable in size and shape in the two pallidal segments. Only a minority of ChAT+ varicosities displays a synaptic specialization (12 % in the GPi and 17 % in the GPe); these scarce synaptic contacts are mostly of the symmetrical type and occur exclusively on pallidal dendrites. No ChAT+ axo-axonic synaptic contacts are observed, suggesting that ACh exerts its modulatory action on pallidal afferents through diffuse transmission, whereas pallidal neurons may be influenced by both volumic and synaptic delivery of ACh.

Serotonin Hyperinnervation of the Striatum with High Synaptic Incidence in Parkinsonian Monkeys

Brain Structure & Function. Sep, 2016  |  Pubmed ID: 26462663

The chronic use of L-Dopa for alleviating the motor symptoms of Parkinson's disease often produces adverse effects such as dyskinesia. Unregulated release of dopamine by serotonin axons following L-Dopa administration is a major presynaptic determinant of these abnormal involuntary movements. The present study was designed to characterize the reorganization of serotonin striatal afferents following dopaminergic denervation in a primate model of Parkinson's disease. Our sample comprised eight cynomolgus monkeys: four that were rendered parkinsonian following MPTP administration and four controls. The state of striatal serotonin and dopamine innervation was evaluated by means of immunohistochemistry with antibodies against serotonin transporter (SERT) and tyrosine hydroxylase. A detailed stereological investigation revealed a significant increase in the number of serotonin axon varicosities in the striatum of MPTP-intoxicated monkeys. This increase is particularly pronounced in the sensorimotor territory of the striatum, where the dopamine denervation is the most severe. Electron microscopic examinations indicate that, in contrast to the nucleus accumbens where the dopamine innervation is preserved, the SERT+ axon varicosities observed in the sensorimotor territory of the putamen establish twice as many synaptic contacts in MPTP-intoxicated monkeys than in controls. These findings demonstrate the highly plastic nature of the serotonin striatal afferent projections, a feature that becomes particularly obvious in the absence of striatal dopamine. Although the number of dorsal raphe serotonin neurons remains constant in parkinsonian monkeys, as shown in the present study, their ascending axonal projections undergo marked proliferative and synaptic adaptive changes that might play a significant role in the potential unregulated and ectopic release of dopamine by serotonin axons after L-Dopa treatment of Parkinson's disease.

Internalization of Targeted Quantum Dots by Brain Capillary Endothelial Cells in Vivo

Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism. Apr, 2016  |  Pubmed ID: 26661181

Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor. Specific transferrin receptor-mediated endocytosis of Ri7-quantum dots was first confirmed in N2A and bEnd5 cells. After intravenous injection in mice, Ri7-quantum dots exhibited a fourfold higher volume of distribution in brain tissues, compared to controls. Immunofluorescence analysis showed that Ri7-quantum dots were sequestered throughout the cerebral vasculature 30 min, 1 h, and 4 h post injection, with a decline of signal intensity after 24 h. Transmission electron microscopic studies confirmed that Ri7-quantum dots were massively internalized by brain capillary endothelial cells, averaging 37 ± 4 Ri7-quantum dots/cell 1 h after injection. Most quantum dots within brain capillary endothelial cells were observed in small vesicles (58%), with a smaller proportion detected in tubular structures or in multivesicular bodies. Parenchymal penetration of Ri7-quantum dots was extremely low and comparable to control IgG. Our results show that systemically administered Ri7-quantum dots complexes undergo extensive endocytosis by brain capillary endothelial cells and open the door for novel therapeutic approaches based on brain endothelial cell drug delivery.

Chemical Anatomy of Pallidal Afferents in Primates

Brain Structure & Function. Dec, 2016  |  Pubmed ID: 27028222

Neurons of the globus pallidus receive massive inputs from the striatum and the subthalamic nucleus, but their activity, as well as those of their striatal and subthalamic inputs, are modulated by brainstem afferents. These include serotonin (5-HT) projections from the dorsal raphe nucleus, cholinergic (ACh) inputs from the pedunculopontine tegmental nucleus, and dopamine (DA) afferents from the substantia nigra pars compacta. This review summarizes our recent findings on the distribution, quantitative and ultrastructural aspects of pallidal 5-HT, ACh and DA innervations. These results have led to the elaboration of a new model of the pallidal neuron based on a precise knowledge of the hierarchy and chemical features of the various synaptic inputs. The dense 5-HT, ACh and DA innervations disclosed in the associative and limbic pallidal territories suggest that these brainstem inputs contribute principally to the planification of motor behaviors and the regulation of attention and mood. Although 5-HT, ACh and DA inputs were found to modulate pallidal neurons and their afferents mainly through asynaptic (volume) transmission, genuine synaptic contacts occur between these chemospecific axon varicosities and pallidal dendrites, revealing that these brainstem projections have a direct access to pallidal neurons, in addition to their indirect input through the striatum and subthalamic nucleus. Altogether, these findings reveal that the brainstem 5-HT, ACh and DA pallidal afferents act in concert with the more robust GABAergic inhibitory striatopallidal and glutamatergic excitatory subthalamopallidal inputs. We hypothesize that a fragile equilibrium between forebrain and brainstem pallidal afferents plays a key role in the functional organization of the primate basal ganglia, in both health and disease.

A Descending Dopamine Pathway Conserved from Basal Vertebrates to Mammals

Proceedings of the National Academy of Sciences of the United States of America. Apr, 2016  |  Pubmed ID: 27071118

Dopamine neurons are classically known to modulate locomotion indirectly through ascending projections to the basal ganglia that project down to brainstem locomotor networks. Their loss in Parkinson's disease is devastating. In lampreys, we recently showed that brainstem networks also receive direct descending dopaminergic inputs that potentiate locomotor output. Here, we provide evidence that this descending dopaminergic pathway is conserved to higher vertebrates, including mammals. In salamanders, dopamine neurons projecting to the striatum or brainstem locomotor networks were partly intermingled. Stimulation of the dopaminergic region evoked dopamine release in brainstem locomotor networks and concurrent reticulospinal activity. In rats, some dopamine neurons projecting to the striatum also innervated the pedunculopontine nucleus, a known locomotor center, and stimulation of the dopaminergic region evoked pedunculopontine dopamine release in vivo. Finally, we found dopaminergic fibers in the human pedunculopontine nucleus. The conservation of a descending dopaminergic pathway across vertebrates warrants re-evaluating dopamine's role in locomotion.

Remodeling of Lipid Bodies by Docosahexaenoic Acid in Activated Microglial Cells

Journal of Neuroinflammation. 2016  |  Pubmed ID: 27220286

Organelle remodeling processes are evolutionarily conserved and involved in cell functions during development, aging, and cell death. Some endogenous and exogenous molecules can modulate these processes. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, has mainly been considered as a modulator of plasma membrane fluidity in brain development and aging, while DHA's role in organelle remodeling in specific neural cell types at the ultrastructural level remains largely unexplored. DHA is notably incorporated into dynamic organelles named lipid bodies (LBs). We hypothesized that DHA could attenuate the inflammatory response in lipopolysaccharide (LPS)-activated microglia by remodeling LBs and altering their functional interplay with mitochondria and other associated organelles.

The Number of Striatal Cholinergic Interneurons Expressing Calretinin is Increased in Parkinsonian Monkeys

Neurobiology of Disease. Nov, 2016  |  Pubmed ID: 27388937

The most abundant interneurons in the primate striatum are those expressing the calcium-binding protein calretinin (CR). The present immunohistochemical study provides detailed assessments of their morphological traits, number, and topographical distribution in normal monkeys (Macaca fascicularis) and in monkeys rendered parkinsonian (PD) by MPTP intoxication. In primates, the CR+ striatal interneurons comprise small (8-12μm), medium (12-20μm) and large-sized (20-45μm) neurons, each with distinctive morphologies. The small CR+ neurons were 2-3 times more abundant than the medium-sized CR+ neurons, which were 20-40 times more numerous than the large CR+ neurons. In normal and PD monkeys, the density of small and medium-sized CR+ neurons was twice as high in the caudate nucleus than in the putamen, whereas the inverse occurred for the large CR+ neurons. Double immunostaining experiments revealed that only the large-sized CR+ neurons expressed choline acetyltransferase (ChAT). The number of large CR+ neurons was found to increase markedly (4-12 times) along the entire anteroposterior extent of both the caudate nucleus and putamen of PD monkeys compared to controls. Comparison of the number of large CR-/ChAT+ and CR+/ChAT+ neurons together with experiments involving the use of bromo-deoxyuridine (BrdU) as a marker of newly generated cells showed that it is the expression of CR by the large ChAT+ striatal interneurons, and not their absolute number, that is increased in the dopamine-depleted striatum. These findings reveal the modulatory role of dopamine in the phenotypic expression of the large cholinergic striatal neurons, which are known to play a crucial role in PD pathophysiology.

Lmx1a and Lmx1b Regulate Mitochondrial Functions and Survival of Adult Midbrain Dopaminergic Neurons

Proceedings of the National Academy of Sciences of the United States of America. Jul, 2016  |  Pubmed ID: 27407143

The LIM-homeodomain transcription factors Lmx1a and Lmx1b play critical roles during the development of midbrain dopaminergic progenitors, but their functions in the adult brain remain poorly understood. We show here that sustained expression of Lmx1a and Lmx1b is required for the survival of adult midbrain dopaminergic neurons. Strikingly, inactivation of Lmx1a and Lmx1b recreates cellular features observed in Parkinson's disease. We found that Lmx1a/b control the expression of key genes involved in mitochondrial functions, and their ablation results in impaired respiratory chain activity, increased oxidative stress, and mitochondrial DNA damage. Lmx1a/b deficiency caused axonal pathology characterized by α-synuclein(+) inclusions, followed by a progressive loss of dopaminergic neurons. These results reveal the key role of these transcription factors beyond the early developmental stages and provide mechanistic links between mitochondrial dysfunctions, α-synuclein aggregation, and the survival of dopaminergic neurons.

Exosome Secretion is a Key Pathway for Clearance of Pathological TDP-43

Brain : a Journal of Neurology. Dec, 2016  |  Pubmed ID: 27679482

Cytoplasmic TDP-43 aggregation is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Here we investigated the role of exosomes in the secretion and propagation of TDP-43 aggregates. TDP-43 was detected in secreted exosomes from Neuro2a cells and primary neurons but not from astrocytes or microglia. Evidence is presented that protein aggregation and autophagy inhibition are factors that promote exosomal secretion of TDP-43. We also report that levels of exosomal TDP-43 full length and C-terminal fragment species are upregulated in human amyotrophic lateral sclerosis brains. Exposure of Neuro2a cells to exosomes from amyotrophic lateral sclerosis brain, but not from control brain, caused cytoplasmic redistribution of TDP-43, suggesting that secreted exosomes might contribute to propagation of TDP-43 proteinopathy. Yet, inhibition of exosome secretion by inactivation of neutral sphingomyelinase 2 with GW4869 or by silencing RAB27A provoked formation of TDP-43 aggregates in Neuro2a cells. Moreover, administration of GW4869 exacerbated the disease phenotypes of transgenic mice expressing human TDP-43(A315T) mutant. Thus, even though results suggest that exosomes containing pathological TDP-43 may play a key role in the propagation of TDP-43 proteinopathy, a therapeutic strategy for amyotrophic lateral sclerosis based on inhibition of exosome production would seem inappropriate, as in vivo data suggest that exosome secretion plays an overall beneficial role in neuronal clearance of pathological TDP-43.

A Dense Cluster of D1 + Cells in the Mouse Nucleus Accumbens

Synapse (New York, N.Y.). Jan, 2017  |  Pubmed ID: 27785835

The striatum is known to be largely composed of intermingled medium-sized projection neurons expressing either the D1 or the D2 dopamine receptors. In the present study, we took advantage of the double BAC Drd1a-TdTomato/Drd2-GFP (D1 /D2 ) transgenic mice to reveal the presence of a peculiar cluster of densely-packed D1 + cells located in the shell compartment of the nucleus accumbens. This spherical cluster has a diameter of 110 µm and is exclusively composed by D1 + cells, which are all immunoreactive for the neuronal nuclear marker (NeuN). However, in contrast to other D1 + or D2 + striatal cells, those that form the accumbens cluster are devoid of calbindin (CB) and DARPP-32, two faithful markers for striatal projection neurons. Using GAD-GFP transgenic mice, we confirm the GABAergic nature of the D1 + clustered neurons. Intracellular injections from fixed brain slices indicate that these neurons are endowed with distinctive morphological features, including a small (5-6 µm), round cell body giving rise to a single primary dendrite that branches into two secondary processes. Single-neuronal injections combined to electron microscopy reveal the existence of GAP junctions linking these D1 + cells. Based on their location, morphological characteristics and neurochemical phenotype, we conclude that the D1 + accumbens cluster form a highly compact group of small neurons distinct from the larger and more diffusely distributed D1 + or D2 + striatal projection neurons that surround it. This remarkable nucleus might play a crucial role in the limbic function of the murine striatum.

The calretinin Interneurons of the Striatum: Comparisons Between Rodents and Primates Under Normal and Pathological Conditions

Journal of Neural Transmission (Vienna, Austria : 1996). Feb, 2017  |  Pubmed ID: 28168621

This paper reviews the major organizational features of calretinin interneurons in the dorsal striatum of rodents and primates, with some insights on the state of these neurons in Parkinson's disease and Huntington's chorea. The rat striatum harbors medium-sized calretinin-immunoreactive (CR(+)) interneurons, whereas the mouse striatum is pervaded by medium-sized CR(+) interneurons together with numerous small and highly immunoreactive CR(+) cells. The CR interneuronal network is even more elaborated in monkey and human striatum where, in addition to the small- and medium-sized CR(+) interneurons, a set of large CR(+) interneurons occurs. The majority of these giant CR(+) interneurons, which are unique to the primate striatum, also display immunoreactivity for choline acetyltransferase (ChAT), a faithful marker of cholinergic neurons. The expression of CR and/or ChAT by the large striatal interneurons appears to be seriously compromised in Parkinson's disease and Huntington's chorea. The species differences noted above have to be considered to better understand the role of CR interneurons in striatal organization in both normal and pathological conditions.

Waiting
simple hit counter