Skip to content
Articles by Simon A. Walker in JoVE
Other articles by Simon A. Walker on PubMed
-
Analyzing the Role of the Putative Inositol 1,3,4,5-tetrakisphosphate Receptor GAP1IP4BP in Intracellular Ca2+ Homeostasis
The Journal of Biological Chemistry.
Dec, 2002 |
Pubmed ID: 12356770 Inositol 1,3,4,5-tetrakisphosphate (IP(4)) has been linked to a potential role in the regulation of intracellular free Ca(2+) concentration ([Ca(2+)](i)) following cellular stimulation with agonists that activate phosphoinositide-specific phospholipase C. However, despite many studies, the function of IP(4) remains unclear and indeed there is still some debate over whether it has a function at all. Here we have used various molecular approaches to address whether manipulation of the potential IP(4) receptor, GAP1(IP4BP), affects [Ca(2+)](i) following cellular stimulation. Using single cell imaging, we show that the overexpression of a constitutively active and a potential dominant negative form of GAP1(IP4BP) appear to have no effect on Ca(2+) mobilization or Ca(2+) entry following stimulation of HeLa cells with histamine. In addition, through the use of small interfering RNA duplexes, we have examined the effect of suppressing endogenous GAP1(IP4BP) production on [Ca(2+)](i). In HeLa cells in which the endogenous level of GAP1(IP4BP) has been suppressed by approximately 95%, we failed to observe any effect on Ca(2+) mobilization or Ca(2+) entry following histamine stimulation. Thus, using various approaches to manipulate the function of endogenous GAP1(IP4BP) in intact HeLa cells, we have been unable to observe any detectable effect of GAP1(IP4BP) on [Ca(2+)](i).
-
-
Identification of a Ras GTPase-activating Protein Regulated by Receptor-mediated Ca2+ Oscillations
The EMBO Journal.
Apr, 2004 |
Pubmed ID: 15057271 Receptor-mediated increases in the concentration of intracellular free calcium ([Ca2+]i) are responsible for controlling a plethora of physiological processes including gene expression, secretion, contraction, proliferation, neural signalling, and learning. Increases in [Ca2+]i often occur as repetitive Ca2+ spikes or oscillations. Induced by electrical or receptor stimuli, these repetitive Ca2+ spikes increase their frequency with the amplitude of the receptor stimuli, a phenomenon that appears critical for the induction of selective cellular functions. Here we report the characterisation of RASAL, a Ras GTPase-activating protein that senses the frequency of repetitive Ca2+ spikes by undergoing synchronous oscillatory associations with the plasma membrane. Importantly, we show that only during periods of plasma membrane association does RASAL inactivate Ras signalling. Thus, RASAL senses the frequency of complex Ca2+ signals, decoding them through a regulation of the activation state of Ras. Our data provide a hitherto unrecognised link between complex Ca2+ signals and the regulation of Ras.
-
Visualizing Ras Signalling in Real-time
Journal of Cell Science.
Jun, 2004 |
Pubmed ID: 15197243 Ras GTPases are universal molecular switches that act as kinetic timers of signal transduction events. They are post-translationally modified by the addition of lipid groups to their hypervariable carboxyl termini, which plug the proteins to membranes and influence their dynamic sorting and trafficking. For the past twenty years, the plasma membrane has been considered to be the predominant platform from which Ras operates. Recent work using live-cell imaging and novel probes to visualize where and when Ras is active has supported this long-held belief. However, an equally fascinating aspect of these imaging studies has been the discovery of dynamic Ras activity, as well as distinct signal output, from intracellular organelles. Activation of Ras on the Golgi exhibits kinetics different from Ras activation on the plasma membrane, and compartmentalized Ras signalling seems particularly prominent in lymphocytes. However, data on the spatial and temporal regulation of Ras activity has frequently differed depending on the nature of the probe, the cell type and the stimulus. Nevertheless, because Ras traffics through endomembranes en route to the plasma membrane, it seems likely that Ras can signal from such compartments. The burning question in this field concerns the significance of this observation for endogenous Ras signalling output.
-
-
-
-
-
The Slow Wallerian Degeneration Protein, WldS, Binds Directly to VCP/p97 and Partially Redistributes It Within the Nucleus
Molecular Biology of the Cell.
Mar, 2006 |
Pubmed ID: 16371511 Slow Wallerian degeneration (Wld(S)) mutant mice express a chimeric nuclear protein that protects sick or injured axons from degeneration. The C-terminal region, derived from NAD(+) synthesizing enzyme Nmnat1, is reported to confer neuroprotection in vitro. However, an additional role for the N-terminal 70 amino acids (N70), derived from multiubiquitination factor Ube4b, has not been excluded. In wild-type Ube4b, N70 is part of a sequence essential for ubiquitination activity but its role is not understood. We report direct binding of N70 to valosin-containing protein (VCP; p97/Cdc48), a protein with diverse cellular roles including a pivotal role in the ubiquitin proteasome system. Interaction with Wld(S) targets VCP to discrete intranuclear foci where ubiquitin epitopes can also accumulate. Wld(S) lacking its N-terminal 16 amino acids (N16) neither binds nor redistributes VCP, but continues to accumulate in intranuclear foci, targeting its intrinsic NAD(+) synthesis activity to these same foci. Wild-type Ube4b also requires N16 to bind VCP, despite a more C-terminal binding site in invertebrate orthologues. We conclude that N-terminal sequences of Wld(S) protein influence the intranuclear location of both ubiquitin proteasome and NAD(+) synthesis machinery and that an evolutionary recent sequence mediates binding of mammalian Ube4b to VCP.
-
GAP1 Family Members Constitute Bifunctional Ras and Rap GTPase-activating Proteins
The Journal of Biological Chemistry.
Apr, 2006 |
Pubmed ID: 16431904 GAP1(IP4BP) is a member of the GAP1 family of Ras GTPase-activating proteins (Ras GAPs) that includes GAP1(m), CAPRI, and RASAL. Composed of a central Ras GAP domain, surrounded by amino-terminal C(2) domains and a carboxyl-terminal pleckstrin homology/Bruton's tyrosine kinase domain, GAP1(IP4BP) has previously been shown to possess an unexpected GAP activity on the Ras-related protein Rap, besides the predicted Ras GAP activity (Cullen, P. J., Hsuan, J. J., Truong, O., Letcher, A. J., Jackson, T. R., Dawson, A. P., and Irvine, R. F. (1995) Nature 376, 527-530). Here we have shown that GAP1(IP4BP) is indeed an efficient Ras/Rap GAP, having K(m)s of 213 and 42 microm and estimated k(cat)s of 48 and 16 s(-1) for Ras and Rap, respectively. For this dual activity, regions outside the Ras GAP domain are required, as the isolated domain (residues 291-569) retains a pronounced Ras GAP activity yet has very low activity toward Rap. Interestingly, mutagenesis of the Ras GAP arginine finger, and surrounding residues important in Ras binding, inhibit both Ras and Rap GAP activity of GAP1(IP4BP). Although the precise details by which GAP1(IP4BP) can function as a Rap GAP remain to be determined, these data are consistent with Rap associating with GAP1(IP4BP) through the Ras-binding site within the Ras GAP domain. Finally, we have established that such dual Ras/Rap GAP activity is not restricted to GAP1(IP4BP). Although GAP1(m) appears to constitute a specific Ras GAP, CAPRI and RASAL display dual activity. For CAPRI, its Rap GAP activity is modulated upon its Ca(2+)-induced association with the plasma membrane.
-
P-Rex2 Regulates Purkinje Cell Dendrite Morphology and Motor Coordination
Proceedings of the National Academy of Sciences of the United States of America.
Mar, 2008 |
Pubmed ID: 18334636 The small GTPase Rac controls cell morphology, gene expression, and reactive oxygen species formation. Manipulations of Rac activity levels in the cerebellum result in motor coordination defects, but activators of Rac in the cerebellum are unknown. P-Rex family guanine-nucleotide exchange factors activate Rac. We show here that, whereas P-Rex1 expression within the brain is widespread, P-Rex2 is specifically expressed in the Purkinje neurons of the cerebellum. We have generated P-Rex2(-/-) and P-Rex1(-/-)/P-Rex2(-/-) mice, analyzed their Purkinje cell morphology, and assessed their motor functions in behavior tests. The main dendrite is thinned in Purkinje cells of P-Rex2(-/-) pups and dendrite structure appears disordered in Purkinje cells of adult P-Rex2(-/-) and P-Rex1(-/-)/P-Rex2(-/-) mice. P-Rex2(-/-) mice show a mild motor coordination defect that progressively worsens with age and is more pronounced in females than in males. P-Rex1(-/-)/P-Rex2(-/-) mice are ataxic, with reduced basic motor activity and abnormal posture and gait, as well as impaired motor coordination even at a young age. We conclude that P-Rex1 and P-Rex2 are important regulators of Purkinje cell morphology and cerebellar function.
-
-
Severely Dystrophic Axons at Amyloid Plaques Remain Continuous and Connected to Viable Cell Bodies
Brain : a Journal of Neurology.
Feb, 2009 |
Pubmed ID: 19059977 Synapse loss precedes cell death in Alzheimer's disease, but the timing of axon degeneration relative to these events, and the causal relationships remain unclear. Axons become so severely dystrophic near amyloid plaques that their interruption, causing permanent loss of function, extensive synapse loss, and potentially cell death appears imminent. However, it remains unclear whether axons are truly interrupted at plaques and whether cell bodies fail to support their axons and dendrites. We traced TgCRND8 mouse axons longitudinally through, distal to, and proximal from dystrophic regions. The corresponding neurons not only survived but remained morphologically unaltered, indicating absence of axonal damage signalling or a failure to respond to it. Axons, no matter how dystrophic, remained continuous and initially morphologically normal outside the plaque region, reflecting support by metabolically active cell bodies and continued axonal transport. Immunochemical and ultrastructural studies showed dystrophic axons were tightly associated with disruption of presynaptic transmission machinery, suggesting local functional impairment. Thus, we rule out long-range degeneration axons or dendrites as major contributors to early synapse loss in this model, raising the prospect of a therapeutic window for functional rescue of individual neurons lasting months or even years after their axons become highly dystrophic. We propose that multi-focal pathology has an important role in the human disease in bringing about the switch from local, and potentially recoverable, synapse loss into permanent loss of neuronal processes and eventually their cell bodies.
-
Comparison of the T-tubule System in Adult Rat Ventricular and Atrial Myocytes, and Its Role in Excitation-contraction Coupling and Inotropic Stimulation
Cell Calcium.
Mar, 2010 |
Pubmed ID: 20106523 Narrow, tubular, inward projections of the sarcolemma ('T-tubules') are an established feature of adult mammalian ventricular myocytes that enables them to generate the whole-cell Ca2+ transients and produce coordinated contraction. Loss of T-tubules can occur during ageing and under pathological conditions, leading to altered cardiac excitation-contraction coupling. In contrast to adult ventricular cells, atrial myocytes do not generally express an extensive T-tubule system at any stage of development, and therefore rely on Ca2+ channels around their periphery for the induction of Ca2+ signalling and excitation-contraction coupling. Consequently, the characteristics of systolic Ca2+ signals in adult ventricular and atrial myocytes are temporally and spatially distinct. However, although atrial myocytes do not have the same regularly spaced convoluted T-tubule structures as adult ventricular cells, it has been suggested that a proportion of adult atrial cells have a more rudimentary tubule system. We examined the structure and function of these atrial tubules, and explored their impact on the initiation and recovery of Ca2+ signalling in electrically paced myocytes. The atrial responses were compared to those in adult ventricular cells that had intact T-tubules, or that had been chemically detubulated. We found that tubular structures were present in a significant minority of adult atrial myocytes, and were unlike the T-tubules in adult ventricular cells. In those cells where they were present, the atrial tubules significantly altered the on-set, amplitude, homogeneity and recovery of Ca2+ transients. The properties of adult atrial myocyte Ca2+ signals were different from those in adult ventricular cells, whether intact or detubulated. Excitation-contraction coupling in detubulated adult ventricular myocytes, therefore, does not approximate to atrial signalling, even though Ca2+ signals are initiated in the periphery of the cells in both of these situations. Furthermore, inotropic responses to endothelin-1 were entirely dependent on T-tubules in adult ventricular myocytes, but not in atrial cells. Our data reveal that that the T-tubules in atrial cells impart significant functional properties, but loss of these tubular membranes does not affect Ca2+ signalling as dramatically as detubulation in ventricular myocytes.
-
The Autoimmunity-related GIMAP5 GTPase is a Lysosome-associated Protein
Self/nonself.
7, 2010 |
Pubmed ID: 21487483 A mutation in the rat GIMAP5 gene predisposes for autoimmunity, most famously in the BB rat model of autoimmune type 1 diabetes mellitus. This mutation is associated with severe peripheral T lymphopenia, as is mutation of the same gene in mice, but the mechanism by which GIMAP5 normally protects T cells from death is unknown. GIMAP5 is a putative small GTPase, a class of proteins which often fulfil their functions in the vicinity of cellular membranes. The objective of this study was to determine the normal intracellular location of GIMAP5 in lymphoid cells. Combining studies in rat, mouse and human systems, novel monoclonal antibodies (mAbs) were used to examine the localization of GIMAP5 and the closely-related protein, GIMAP1, in lymphoid cells by means of confocal microscopy and sub-cellular fractionation combined with immunoblotting. Additionally, human Jurkat T cells that inducibly express epitope-tagged GIMAP5 were established and used in electron microscopy (EM). Endogenous GIMAP5 was found to be located in a membraneous compartment/s which was also detected by established markers of lysosomes. GIMAP1, by contrast, was found to be located in the Golgi apparatus. EM studies of the inducible Jurkat T cells also found GIMAP5 in lysosomes and, in addition, in multivesicular bodies. This study establishes that the endogenous location of GIMAP5 is in lysosomes and related compartments and provides a clearer context for hypotheses about its mechanism of action.
-
-
Characteristics and Requirements of Basal Autophagy in HEK 293 Cells
Autophagy.
Jun, 2013 |
Pubmed ID: 23800949 Basal autophagy-here defined as macroautophagic activity during cellular growth in normal medium containing amino acids and serum-appears to be highly active in many cell types and in animal tissues. Here we characterized this pathway in mammalian HEK 293 cells. First, we examined, side by side, three compounds that are widely used to reveal basal autophagy by blocking maturation of autophagosomes: bafilomycin A 1 (BafA1), chloroquine and vinblastine. Only BafA1 appeared to be without complicating side effects. Chloroquine partially inhibited mechanistic target of rapamycin (MTOR) activity, which would induce autophagy induction as well as block autophagosome maturation. Vinblastine caused the distribution of early omegasome components into punctate phagophore assembly sites, and therefore it would also induce autophagy, complicating interpretation. Basal autophagy was significantly sensitive to inhibition by wortmannin, and therefore required formation of phosphatidylinositol 3-phosphate (PtdIns3P), but it was twice as resistant to wortmannin as starvation-induced autophagy. We also determined that basal autophagy was significantly suppressed by MTOR activation brought about by overexpression of RHEB or activated RAGs. Finally we investigated the spatial relationship of nascent autophagosomes to the endoplasmic reticulum (ER) or to mitochondria by live imaging experiments under conditions that reveal basal autophagy (with BafA1 treatment), or upon MTOR inactivation (which would result in autophagy induction). Side-by-side comparison showed that under both basal and induced autophagy, 100% of autophagosomes first appeared in close proximity to ER strands. In parallel measurements, 40% were in close proximity to mitochondria under both conditions. We concluded that in HEK 293 cells, basal autophagy is mechanistically similar to that induced by MTOR inactivation in all aspects examined.
Get cutting-edge science videos from JoVE sent straight to your inbox every month.