Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Chemistry

Separazione solfato da selettiva cristallizzazione con un legante bis-iminoguanidinium

Published: September 8, 2016 doi: 10.3791/54411

Summary

Un protocollo per la sintesi in situ acquosa di un bis (iminoguanidinium) ligando e il suo utilizzo nella separazione selettiva di solfato è presentato.

Introduction

La separazione selettiva di oxoanions idrofili (ad esempio, solfato, cromato, fosfato) da soluzioni acquose competitive rappresenta una sfida fondamentale rilevante di risanamento ambientale, produzione di energia, e la salute umana. 1,2 solfato, in particolare, è difficile da estrarre dall'acqua a causa della sua riluttanza intrinseca a spargere la sua sfera di idratazione e migrare in ambienti meno polari. 3 Fare estrazione di solfato acquoso più efficiente in genere richiede recettori complessi che sono difficili e noioso per sintetizzare e purificare, che spesso coinvolgono reagenti tossici e solventi. 4,5

Cristallizzazione selettiva offre una semplice alternativa ma efficace per solfato di separazione dall'acqua. 6-9 Sebbene alcuni cationi metallici quali Ba 2+, Pb 2+, o Ra 2+ forma solfati molto insolubili, il loro uso nella separazione solfato non è sempre pratico a causa della loro elevata toxicittà e talvolta-bassa selettività. Utilizzando leganti organici come precipitanti solfato sfrutta la diversità strutturale e subordinazione al caratteristico design di molecole organiche. Un legante organico ideale per acquosa cristallizzazione solfato deve essere solubile in acqua, ma formare un sale solfato insolubile o complessa in un tempo relativamente breve e in presenza di alte concentrazioni di ioni concorrenti. Inoltre, dovrebbe essere facile da sintetizzare e riciclare. Uno di questi un ligando, 1,4-benzene-bis (iminoguanidinium) (BBIG), auto-assemblati in situ da due precursori disponibili in commercio, terephthalaldehyde e cloruro aminoguanidinium, è stato recentemente scoperto di essere estremamente efficace nella acquosa separazione solfato. 10 Il legante è in forma di cloruro solubile in acqua, e cristallizza selettivamente con solfato in un sale estremamente insolubile che può essere facilmente rimosso dalla soluzione per semplice filtrazione. Il legante BBIG può quindi essere recuperato per deprotonazione conqueous NaOH e cristallizzazione del neutro bis-iminoguanidine, che può essere riconvertito in forma di cloruro con HCl acquoso, e riutilizzato in un altro ciclo di separazione. L'efficacia di questo ligando nel rimuovere solfato dall'acqua è così grande che il monitoraggio della concentrazione di solfato rimanente in soluzione non è un compito banale, che richiede una tecnica più avanzata che consente la misurazione accurata di tracce di anione. A questo scopo, radiomarcato 35 S solfato tracciante in combinazione con β conteggio in scintillazione liquida è stata impiegata una tecnica comunemente utilizzata in separazioni estrattive liquido-liquido, e recentemente dimostrato di essere efficace nel controllo solfato di cristallizzazione. 8

Questo protocollo dimostra la one-pot nella sintesi situ del ligando BBIG e la sua cristallizzazione come sale solfato da soluzioni acquose. La sintesi ex situ del legante 11 è presentato anche come un coMetodo nvenient per la produzione di grandi quantità di BBIG-Cl, che possono essere memorizzati in forma cristallina fino al momento dell'uso. rimozione solfato dall'acqua di mare utilizzando il preparato in precedenza ligando BBIG-CL è quindi dimostrata. Infine, è dimostrato l'uso di 35 S-etichettati solfato e β conteggio in scintillazione liquida per misurare la concentrazione di solfato in acqua di mare. Questo protocollo è destinato a fornire un tutorial per quelli ampiamente interessati ad esplorare l'uso di cristallizzazione selettiva per acquosa separazione anione.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1. Sintesi di 1,4-Benzene-bis (iminoguanidinium) cloruro (BBIG-Cl)

  1. In Situ sintesi del 1,4-Benzene-bis (iminoguanidinium) Cloruro Ligand (BBIG-Cl) e la sua cristallizzazione con solfato
    1. Aggiungere 0,067 g di terephthalaldehyde e 2,2 ml di una soluzione acquosa 0,5 M di cloruro aminoguanidinium a 10 ml di acqua deionizzata in un 25 ml pallone da fondo dotati di ancoretta magnetica.
    2. Agitare la soluzione magneticamente per quattro ore a 20 ° C. Ciò produrrà una soluzione leggermente giallo BBIG-Cl.
    3. Aggiungere 0,5 ml di una soluzione acquosa 1 M di solfato di sodio. Ciò comporta la precipitazione istante di BBIG-SO 4 come solido cristallino bianco.
    4. Filtrare il filtrazione sotto vuoto usando solido di recuperare BBIG-SO 4. Lavare il solido sul filtro di carta cinque volte con 5 ml aliquote di acqua per ottenere il sale solfato puro.
    5. Controllare la purezza fase del cristallino BBIG-SO 12. Confronto con il modello mostrato in figura 1.
  2. Ex Situ Sintesi di 1,4-benzene-bis (iminoguanidinium) Cloruro 11
    1. Aggiungere 4 g di terephthalaldehyde e 7,26 g di cloruro di aminoguanidinium a 20 ml di etanolo in 50 ml pallone da fondo dotato di ancoretta magnetica.
    2. Riscaldare la soluzione a 60 ° C con una piastra, e mescolate con un ancoretta magnetica per 2 ore. Raffreddare la soluzione a 20 ° C e lasciate riposare per 3 ore, poi raccoglie il solido per filtrazione sotto vuoto attraverso un imbuto Buchner carta filtro attrezzato.
    3. Sospendere solido ottenuto in 20 mi di etanolo e di calore su una piastra riscaldante fino bollente. Se il solido non va completamente nella soluzione a questo punto, aggiungere piccole aliquote (1 ml) di etanolo, consentendo ogni volta la soluzione per raggiungere la temperatura di ebollizione, finché tutto solido viene sciolto.
    4. Lasciare raffreddare il pallone a camera temperi, poi posto in un congelatore C 0 ° durante la notte. Raccogliere il solido per filtrazione attraverso un filtro di carta attrezzato Büchner mediante filtrazione sotto vuoto.
    5. Confermare l'identità e la purezza del BBIG-Cl da 1 H spettroscopia NMR 13. Confronto con lo spettro illustrato nella figura 2.

2. Separazione solfato da acqua di mare

  1. Cristallizzazione solfato come BBIG-SO 4
    NOTA: La quantità di BBIG-Cl necessario rimuovere il solfato dipende l'esatta quantità di solfato nell'acqua di mare. Si è constatato che con 1,5 equivalenti di BBIG-Cl rispetto ai risultati solfato di rimozione 99% di solfato. L'acqua di mare utilizzata in questo protocollo ha una concentrazione di 30 mM solfato, come determinato mediante titolazione con BaCl 2.
    1. Filtrare l'acqua di mare con un filtro siringa da 0,22 micron o membrana filtrante con di piccola dimensione dei pori per rimuovere le particelle in sospensione e organismi biologici.
    2. Fare un 30soluzione mM di BBIG-Cl con acqua deionizzata e solido BBIG-Cl preparato come descritto nella sezione precedente.
    3. Aggiungere la soluzione BBIG-Cl all'acqua di mare in 1.5: (v / v) proporzione 1.
    4. Mescolare la miscela per alcune ore per garantire (> 99%) rimozione quantitativa di solfato.
    5. Raccogliere il solido per filtrazione attraverso un filtro di carta attrezzato Büchner mediante filtrazione sotto vuoto. Lavare il solido sul filtro di carta per cinque volte con aliquote di 5 ml di acqua.
    6. Asciugare il solido isolato sotto vuoto e pesare per determinare la resa.
  2. ligand recupero
    1. Aggiungere 53,1 mg di BBIG-SO 4 Ad una soluzione di NaOH (10%) 2 ml in un flaconcino 20 ml scintillazione munito di ancoretta magnetica.
    2. Mescolare la miscela per due ore a 20 ° C. Un precipitato leggermente giallo si formerà.
    3. Filtrare il solido attraverso un filtro di carta attrezzato Büchner imbuto con filtrazione a vuoto. Lavare il solido sul filtro di carta con 0.2ml di acqua, e asciugare sotto vuoto.
    4. Caratterizzare il solido recuperato mediante NMR 13 di confermare la sua identità come il bis (guanidina) base libera. Confronto con lo spettro NMR mostrato in figura 3.
  3. Determinazione della quantità di solfato Rimosso dal acqua di mare da ß scintillazione liquida conteggio
    ATTENZIONE: Questa tecnica prevede l'utilizzo di radioisotopi, che pongono una diversa classe di pericoli di quello che viene normalmente incorrono nella maggior parte dei laboratori. Attrezzature speciali di protezione dalle radiazioni è di solito necessario quando si maneggiano i radionuclidi. Pertanto, è essenziale che la procedura è seguita con attenzione e che un responsabile della sicurezza è consultato per consulenza e orientamento.
    1. Calcolare il volume della soluzione di riserva dello zolfo-35 radioisotopi (5 mCi / ml) utilizzato per assicurarsi che ci sia più di 5 milioni di conteggi per minuto (cpm) per millilitro di soluzione di acqua di mare, utilizzando le seguenti equazioni (cpm e curie (Ci ) sono entrambe le unità di misura fo radioattività):
      Equazione 1
      Equazione 2
      Equazione 3
    2. Spike 25 ml di acqua di mare con 0,0112 ml di 5,0 / ml soluzione mCi di 35 S radiomarcato soluzione di solfato di sodio.
    3. Preparare 0, 15, 30, 33, 45, e 60 mM di soluzioni BBIG-Cl in acqua deionizzata e combinare 0.750 ml di queste soluzioni con un volume uguale di solfato di 35 S-radiomarcato spillo acqua marina in una provetta da centrifuga da 2 ml.
    4. Mescolare la miscela tramite una ruota girevole o vortice in un / air-box incubatore mantenuto ad una temperatura costante di 25 ± 0,2 ° C per 24 ore.
    5. Centrifugare le soluzioni a 1.500 xg per 10 min a 25 ° C.
    6. Dopo la centrifugazione, rimuovere 1,2 ml di ciascuna soluzione con una siringa, poi filtrare attraverso un filtro a siringa da 0,22 micron per rimuovere la sospensione precipitato. Pipettare 1,0 ml di ognuna di queste soluzioni in 20 ml di cocktail di scintillazione in fiale di scintillazione polipropilene. La soluzione non contenente BBIG-Cl (la soluzione di controllo) devono essere diluiti dieci volte con acqua deionizzata prima dell'aggiunta al cocktail di scintillazione.
    7. Posizionare le fiale di scintillazione contenenti i campioni e il cocktail di scintillazione su un contatore a scintillazione liquido e lasciate riposare per 1 ora prima di contare fino a consentire ai campioni di dark-adattamento.
      NOTA: Prima di contare i campioni, calibrare lo strumento e consentire ogni campione di contare per 30 min. Contare fiale aggiuntivo contenente solo cocktail di scintillazione per consentire una correzione del fondo che viene utilizzato per determinare le concentrazioni di solfato in soluzione.
    8. Determinare la quantità di solfato rimossa, utilizzando le seguenti equazioni:
      Equazione 4
      54411 / 54411eq5.jpg "/>
      equazione 6

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

La polvere a raggi X diffrazione di BBIG-SO 4 (Figura 1) permette la conferma inequivocabile l'identità del solido cristallizzato. Nel confrontare il pattern ottenuto contro quella di riferimento, l'intensità di picco importa meno di posizionamento picco. Tutti i picchi forti indicati in riferimento dovrebbero essere presenti nel campione ottenuto. La comparsa di forti picchi del campione che sono assenti nel modello di riferimento indica la presenza di impurità.

1 H-NMR di BBIG-Cl ed il legante recuperato (figure 2 e 3) consentire una valutazione sia l'identità dei composti e la loro purezza a circa il 5%. Confronto con questi aiuto spettri per garantire che il ligando è completamente formato e che eventuali impurità erano adeguatamente rimosso durante le filtrazioni e / o ricristallizzazioni. Nel confronto tra il OBTspettro ained rispetto al riferimento, è importante assicurarsi che tutti i picchi sono presenti nelle esatte posizioni indicate. Utilizzare gli stessi solventi utilizzati negli spettri di riferimento in modo che lo spostamento relativa dei picchi non cambiano.

I risultati di separazione solfato dall'acqua marina sono mostrati nella tabella 1, con oltre il 99% del solfato di essere rimossa utilizzando solo 1,5 equivalenti molari di BBIG-Cl. Questo rappresenta rimozione pressoché quantitativa di solfato dall'acqua di mare, nonostante l'elevata forza ionica del mezzo, dimostrando l'efficacia della tecnica descritto.

BBIG-Cl è stato ottenuto in una resa del 70% tramite il metodo ex situ, mentre BBIG-SO 4 è stato ottenuto con una resa 86% mediante la sintesi in situ di BBIG-Cl. La resa di recupero ligando è stata del 93%. Tutte le reazioni organiche effettuate in questa procedura sono ad alto rendimento e funzionalmente semplice, rendendo lacomposti facilmente accessibile anche ad un chimico novizio.

Figura 1
Figura 1:. Polvere X-ray diffrazione di BBIG-SO 4 Il modello è stato ottenuto con una polvere diffrattometro a raggi X utilizzando un campione di fase piatta in modo di riflessione. I picchi più forti sono segnati in rosso. Cliccate qui per vedere una versione più grande di questa figura.

figura 2
Figura 2:.. 1 H-NMR spettro di BBIG-Cl Lo spettro è stata presa in DMSO d 6 con uno strumento NMR 400 MHz Si prega di cliccare qui pervisualizzare una versione più grande di questa figura.

Figura 3
Figura 3:.. 1 H-NMR del legante BBIG recuperato Lo spettro è stata presa in Meod con uno strumento NMR 400 MHz Si prega di cliccare qui per vedere una versione più grande di questa figura.

Tabella 1:. Risultati rappresentativi di separazione solfato dall'acqua marina I dati mostrano rimozione fino al 99% di solfato dall'acqua di mare usando solo 1,5 M equivalenti di BBIG-Cl. La concentrazione di solfato iniziale in acqua di mare è stato di 30 mm.

Subscription Required. Please recommend JoVE to your librarian.

Discussion

Questa tecnica è piuttosto tollerante a molte deviazioni dalla procedura scritta, il che rende abbastanza robusto. Ci sono però due passaggi critici che devono essere seguite. Innanzitutto, il ligando BBIG-Cl deve essere il più puro possibile. Le impurezze non solo influenzerà la cristallizzazione e la solubilità del sale solfato risultante, ma sarà anche rendere difficile calcolare la quantità necessaria per la rimozione solfato quantitativa dalla soluzione. In secondo luogo, hanno bisogno di tutti i passaggi nella sezione conteggio in scintillazione liquida β essere seguita meticolosamente, come questa tecnica può essere molto sensibile ai cambiamenti sottili.

Data la semplicità della tecnica di cristallizzazione, molto probabilmente non essere necessario individuare un problema. Alcuni problemi comuni sono discussi di seguito. Nel caso in cui il ligando BBIG-Cl non sembra essere rimuovendo il solfato presente in soluzione, uno dei due problemi è la causa più probabile. Se si utilizza la ex situ sintetizzato BBIG-Cl, Confermare la sua identità e la purezza. Prendere una 1 H-NMR del materiale di partenza e confrontarlo con lo spettro di riferimento nella figura 2. Un'altra causa comune di questo problema è il pH della soluzione. Se sintetizzare il ligando BBIG-Cl in situ, assicurarsi che il pH della soluzione è leggermente acida (pH = 5-6). A causa del fatto che le specie attive è il ligando protonata, il metodo è sensibile al pH della soluzione. Le soluzioni di base saranno deprotonate i gruppi guanidinio, ottenendo un legante neutro che non è in grado di cristallizzare solfato. Se il pH è essenziale, una semplice regolazione con HCl fino ad un pH di circa 5-6 fornirà le condizioni ottimali per la rimozione solfato quantitativa. Questo problema mette in evidenza una delle principali limitazioni di questa tecnica, in quanto è in grado di rimuovere il solfato di soluzioni di base. Tuttavia, il ligando BBIG è abbastanza stabile agli acidi, quindi regolando il pH della soluzione fornisce un semplice rimedio a questo problema. un'altra variabileche possono influenzare l'efficienza di cristallizzazione solfato è la forza ionica della soluzione. Mentre separazione solfato dall'acqua marina dimostrato molto efficiente, è possibile il rendimento della separazione solfato essere inferiore quando questo metodo viene applicato a soluzioni con elevata forza ionica.

La tecnica illustrata in questo protocollo è estremamente efficiente, selettiva, verde, e conveniente. In confronto, i metodi di rimozione solfato alternativi coinvolgono le membrane costosi e di alta manutenzione o colonne a scambio ionico con una bassa selettività di separazione. 3 Inoltre, rispetto ai metodi esistenti, la tecnica qui presentata è molto semplice e richiede poca conoscenza tecnica ed esperienza nel campo della chimica di separazione.

Questa tecnica di cristallizzazione offre un approccio generale alla rimozione quantitativa di solfato da soluzioni acquose. Mentre l'acqua di mare è stato utilizzato in questo protocollo per dimostrare la tecnica, questo metodo di cristallizzazionenon è limitato all'acqua di mare, e potrebbe essere utilizzato per la rimozione solfato praticamente da qualsiasi soluzioni acquose. Poiché la classe di bis (iminoguanidinium) leganti impiegati può essere facilmente sintetizzato in un passo da precursori dialdeide e aminoguanidinium prontamente disponibili, ci sono potenzialmente molte altre combinazioni semplici che possono comportare un agente efficace per precipitazione di solfato o di altri oxoanions. Così, padronanza delle tecniche presentate in questo protocollo permetterà uno a sviluppare il / la propria ligando cristallizzazione con potenzialmente ancora migliore selettività e l'efficacia rispetto al ligando BBIG qui presentata.

Subscription Required. Please recommend JoVE to your librarian.

Materials

BBIG equiv [Solfato] sinistra (mm) Solfato rimosso (%)
1 3.5 88
1.1 1.6 95
1.5 0.3 99
2 0.3 99
Name Company Catalog Number Comments
Terephthalaldehyde Sigma T2207
Aminoguanidinium Chloride Sigma #396494
Sodium Sulfate Sigma #239313
Barium Chloride Sigma #342920 Highly Toxic
Ethanol Any Reagent Grade (190 proof)
Sodium Hydroxide EMD SX0590-1
Hydrochloric Acid Sigma #258148
Filter Paper Any - Any qualitative or analytical filter paper will work
Syringe Filter (0.22 μm) Any - Nylon filter
35S Labeled Sulfate Perkin Elmer NEX041005MC
Ultima Gold Scintillation Cocktail Perkin Elmer #6013329
Polypropylene Vials  Any -
Disposable Syringe (2-3 ml) Any - Any disposable plastic syringe works

DOWNLOAD MATERIALS LIST

References

  1. Langton, M. L., Serpell, C. J., Beer, P. D. Anion Recognition in Water: Recent Advances from Supramolecular and Macromolecular Perspective. Angew. Chem. Int. Ed. 55, 1974-1987 (2016).
  2. Busschaert, N., Caltagirone, C., Van Rossom, W., Gale, P. A. Applications of Supramolecular Anion Recognition. Chem. Rev. 115, 8038-8155 (2015).
  3. Moyer, B. A., Custelcean, R., Hay, B. P., Sessler, J. L., Bowman-James, K., Day, V. W., Sung-Ok, K. A Case for Molecular Recognition in Nuclear Separations: Sulfate Separation from Nuclear Wastes. Inorg. Chem. 52, 3473-3490 (2013).
  4. Kim, S. K., Lee, J., Williams, N. J., Lynch, V. M., Hay, B. P., Moyer, B. A., Sessler, J. L. Bipyrrole-Strapped Calix[4]pyrroles: Strong Anion Receptors That Extract the Sulfate Anion. J. Am. Chem. Soc. 136, 15079-15085 (2014).
  5. Jia, C., Wu, B., Li, S., Huang, X., Zhao, Q., Li, Q., Yang, X. Highly Efficient Extraction of Sulfate Ions with a Tripodal Hexaurea Receptor. Angew. Chem. Int. Ed. 50, 486-490 (2011).
  6. Rajbanshi, A., Moyer, B. A., Custelcean, R. Sulfate Separation from Aqueous Alkaline Solutions by Selective Crystallization of Alkali Metal Coordination Capsules. Cryst. Growth Des. 11, 2702-2706 (2011).
  7. Custelcean, R. Urea-Functionalized Crystalline Capsules for Recognition and Separation of Tetrahedral Oxoanions. Chem. Commun. 49, 2173-2182 (2013).
  8. Custelcean, R., Sloop, F. V. Jr, Rajbanshi, A., Wan, S., Moyer, B. A. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization. Cryst. Growth Des. 15, 517-522 (2015).
  9. Custelcean, R., Williams, N. J., Seipp, C. A. Aqueous Sulfate Separation by Crystallization of Sulfate-Water Clusters. Angew. Chem. Int. Ed. 54, 10525-10529 (2015).
  10. Custelcean, R., Williams, N. J., Seipp, C. A., Ivanov, A. S., Bryantsev, V. S. Aqueous Sulfate Separation by Sequestration of [(SO4)(H2O)4]4- Clusters within Highly Insoluble Imine-Linked Bis-Guanidinium Crystals. Chem. Eur. J. 22, 1997-2003 (2016).
  11. Khownium, K., Wood, S. J., Miller, K. A., Balakrishna, R., Nguyen, T. B., Kimbrell, M. R., Georg, G. I., David, S. A. Novel Endotoxin-Sequestering Compounds with Terephthaldehyde-bis-guanylhydrazone Scaffolds. Bioorg. Med. Chem. Lett. 16, 1305-1308 (2006).
  12. Pecharsky, V. K., Zavalij, P. Y. Fundamentals of Powder Diffraction and Structural Characterization of Materials. , Springer. (2005).
  13. Goldenberg, D. P. Principles of NMR Spectroscopy: An Illustrated Guide. , 3rd, University Science Books. (2016).

Tags

Chimica Numero 115, separazioni Guanidinium auto-assemblaggio solfato Acqua
Separazione solfato da selettiva cristallizzazione con un legante bis-iminoguanidinium
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Seipp, C. A., Williams, N. J.,More

Seipp, C. A., Williams, N. J., Custelcean, R. Sulfate Separation by Selective Crystallization with a Bis-iminoguanidinium Ligand. J. Vis. Exp. (115), e54411, doi:10.3791/54411 (2016).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter