Show Advanced Search


Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by journal section

Filter by science education

Adenosine Triphosphate: An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter.

What are Second Messengers?

JoVE 10720

Because many receptor binding ligands are hydrophilic, they do not cross the cell membrane and thus their message must be relayed to a second messenger on the inside. There are several second messenger pathways, each with their own way of relaying information. G-protein coupled receptors can activate both phosphoinositol and cyclic AMP (cAMP) second messenger pathways. The phosphoinositol path is active when the receptor induces phospholipase C to hydrolyze the phospholipid, phosphatidylinositol biphosphate (PIP2), into two second messengers: diacylglycerol (DAG) and inositol triphosphate (IP3). DAG remains near the cell membrane and activates protein kinase C (PKC). IP3 translocates to the endoplasmic reticulum (ER) and becomes the opening ligand for calcium ion channels on the ER membrane- releasing calcium into the cytoplasm. In the cAMP pathway, the activated receptor induces adenylate cyclase to produce multiple copies of cAMP from nearby adenosine triphosphate (ATP) molecules. cAMP can stimulate protein kinase A (PKA), open calcium ion channels, and initiate the enzyme- Exchange-protein activated by cAMP (Epac). Similar to cAMP, is cyclic guanosine monophosphate (cGMP). cGMP is synthesized from guanosine triphosphate (GTP) molecules when guanylyl cyclase is activated. As a second messenger, cGMP induces protein kinase G

 Core: Cell Signaling

Hydrolysis of ATP

JoVE 10732

The bonds of adenosine triphosphate (ATP) can be broken through the addition of water, releasing one or two phosphate groups in an exergonic process called hydrolysis. This reaction liberates the energy in the bonds for use in the cell—for instance, to synthesize proteins from amino acids.

If one phosphate group is removed, a molecule of ADP—adenosine diphosphate—remains, along with inorganic phosphate. ADP can be further hydrolyzed to AMP—adenosine monophosphate—by the removal of a second phosphate group. ATP consists of an adenine base, a ribose sugar, and three phosphate groups, with the latter attached to each other through high-energy phosphoanhydride bonds.

 Core: Metabolism

Cellular Respiration- Concept

JoVE 10567

Autotrophs and Heterotrophs

Living organisms require a continuous input of energy to maintain cellular and organismal functions such as growth, repair, movement, defense, and reproduction. Cells can only use chemical energy to fuel their functions, therefore they need to harvest energy from chemical bonds of biomolecules, such as sugars and lipids. Autotrophic organisms, namely…

 Lab Bio

The Calvin Cycle

JoVE 10753

Oxygenic photosynthesis converts approximately 200 billion tons of carbon dioxide (CO2) annually to organic compounds and produces approximately 140 billion tons of atmospheric oxygen (O2). Photosynthesis is the basis of all human food and oxygen needs.

The photosynthetic process can be divided into two sets of reactions that take place in different regions of plant chloroplasts: the light-dependent reaction and the light-independent or “dark” reactions. The light-dependent reaction takes place in the thylakoid membrane of the chloroplast. It converts light energy to chemical energy, stored as ATP and NADPH. This energy is then utilized in the stroma region of the chloroplast, to reduce atmospheric carbon dioxide into complex carbohydrates through the light-independent reactions of the Calvin-Benson cycle. The Calvin-Benson cycle represents the light-independent set of photosynthetic reactions. It uses the adenosine triphosphate (ATP) and nicotinamide-adenine dinucleotide phosphate (NADPH) generated during the light-dependent reactions to convert atmospheric CO2 into complex carbohydrates. The Calvin-Benson cycle also regenerates adenosine diphosphate (ADP) and NADP+ for the light-dependent reaction. At the start of the Calvin-Benson cycle, atmospheric CO2 enters the leaf throug

 Core: Photosynthesis


JoVE 10743

Oxidative phosphorylation is a highly efficient process that generates large amounts of adenosine triphosphate (ATP), the basic unit of energy that drives many processes in living cells. Oxidative phosphorylation involves two processes—electron transport and chemiosmosis. During electron transport, electrons are shuttled between large complexes on the inner mitochondrial membrane and protons (H+) are pumped across the membrane into the intermembrane space, creating an electrochemical gradient. In the next step, protons flow back down their gradient into the mitochondrial matrix via ATP synthase, a protein complex embedded within the inner membrane. This process, called chemiosmosis, uses the energy of the proton gradient to drive the synthesis of ATP from adenosine diphosphate (ADP). The electron transport chain is a series of complexes that transfer electrons from electron donors to electron acceptors via simultaneous reduction and oxidation reactions, otherwise known as redox reactions. At the end of the chain, electrons reduce molecular oxygen to produce water. The shuttling of electrons between complexes is coupled with proton transfer, whereby protons (H+ ions) travel from the mitochondrial matrix to the intermembrane space against their concentration gradient. Eventually, the high concentration of protons in the interm

 Core: Cellular Respiration

What is Cellular Respiration?

JoVE 10976

Organisms harvest energy from food, but this energy cannot be directly used by cells. Cells convert the energy stored in nutrients into a more usable form: adenosine triphosphate (ATP).

ATP stores energy in chemical bonds that can be quickly released when needed. Cells produce energy in the form of ATP through the process of cellular respiration. Although much of the energy from cellular respiration is released as heat, some of it is used to make ATP. During cellular respiration, several oxidation-reduction (redox) reactions transfer electrons from organic molecules to other molecules. Here, oxidation refers to electron loss and reduction to electron gain. The electron carriers NAD+ and FAD—and their reduced forms, NADH and FADH2, respectively—are essential for several steps of cellular respiration. Some prokaryotes use anaerobic respiration, which does not require oxygen. Most organisms use aerobic (oxygen-requiring) respiration, which produces much more ATP. Aerobic respiration generates ATP by breaking down glucose and oxygen into carbon dioxide and water. Both aerobic and anaerobic respiration begin with glycolysis, which does not require oxygen. Glycolysis breaks down glucose into pyruvate, yielding ATP. In the absence of oxygen, pyruvate ferments, producing NAD+ for continued glycoly

 Core: Cellular Respiration

What is Glycolysis?

JoVE 10737

Cells make energy by breaking down macromolecules. Cellular respiration is the biochemical process that converts “food energy” (from the chemical bonds of macromolecules) into chemical energy in the form of adenosine triphosphate (ATP). The first step of this tightly regulated and intricate process is glycolysis. The word glycolysis originates from Latin glyco (sugar) and lysis (breakdown). Glycolysis serves two main intracellular functions: generate ATP and intermediate metabolites to feed into other pathways. The glycolytic pathway converts one hexose (six-carbon carbohydrate such as glucose), into two triose molecules (three-carbon carbohydrate) such as pyruvate, and a net of two molecules of ATP (four produced, two consumed) and two molecules of nicotinamide adenine dinucleotide (NADH). Did you know that glycolysis was the first biochemical pathway discovered? In the mid-1800s, Louis Pasteur determined that microorganisms cause the breakdown of glucose in the absence of oxygen (fermentation). In 1897, Eduard Buchner found that fermentation reactions can still be carried out in cell-free yeast extracts, achieved by breaking open the cell and collecting the cytoplasm which contains the soluble molecules and organelles. Shortly thereafter in 1905, Arthur Harden and William Young discovered that the rate of fermentation decreases wit

 Core: Cellular Respiration

What is an Electrochemical Gradient?

JoVE 10699

Adenosine triphosphate, or ATP, is considered the primary energy source in cells. However, energy can also be stored in the electrochemical gradient of an ion across the plasma membrane, which is determined by two factors: its chemical and electrical gradients.

The chemical gradient relies on differences in the abundance of a substance on the outside versus the inside of a cell and flows from areas of high to low ion concentration. In contrast, the electrical gradient revolves around an ion’s electrical charge and the overall charges of the intracellular and extracellular environments. The electrical gradient of a positively-charged ion flows from positive to negative regions, while the reverse is true for negatively-charged ions. It is the combined action of these electrical and chemical factors that determine the ultimate direction of an electrochemical gradient. When an ion moves along this path, down its electrochemical gradient, energy is freed that can then power diverse biological processes.

 Core: Membranes and Cellular Transport

What is Biology?

JoVE 10647

Biology is the natural science that focuses on the study of life and living organisms, including their structure, function, development, interactions, evolution, distribution, and taxonomy. The scope of the field is extensive and is divided into several specialized disciplines, such as anatomy, physiology, ethology, genetics, and many more.

All living things share a few key traits: cellular organization, heritable genetic material and the ability to adapt/evolve, metabolism to regulate energy needs, the ability to interact with the environment, maintain homeostasis, reproduce, and the ability to grow and change. Despite its complexity, life is organized and structured. The cell theory in biology states that all living organisms are composed of one or more cells. The cell is the basic unit of life, and all cells arise from previously existing cells. Even single-celled organisms, such as bacteria, have structures that allow them to carry out essential functions, such as interacting with the environment and carry out chemical reactions that maintain life, or metabolism. In multicellular organisms, cells work together to form tissues, organs, organ systems, and finally, entire organisms. This hierarchical organization can extend further into populations, communities, ecosystems, and the biosphere. An organism’s genetic material, the biologi

 Core: Scientific Inquiry

Cell Structure- Concept

JoVE 10587


Cells represent the most basic biological units of all organisms, whether it be simple, single-celled organisms like bacteria, or large, multicellular organisms like elephants and giant redwood trees. In the mid 19th century, the Cell Theory was proposed to define a cell, which states:

Every living organism is made up of one or more cells.
The cells…

 Lab Bio

Energy Dynamics- Concept

JoVE 10577

The Food Chain

Energy is one of the most important abiotic factors in an ecosystem and organisms in an ecosystem are connected by the flow of energy and matter among one another. Since energy can be neither created nor destroyed, it can only change form or be transferred to the next organism in a food chain. For example, every time a cow grazes on grass or an osprey hunts and…

 Lab Bio

Photosynthesis- Concept

JoVE 10565


Almost all living organisms on Earth depend on photosynthesis, which is the process that converts sunlight energy into a simple sugar called glucose. This molecule can be used as a short-term energy source or to build more complex carbohydrates like starches for long-term energy storage. Autotrophs are organisms that capture light energy using photosynthesis. Also known …

 Lab Bio

The ATP Bioluminescence Assay

JoVE 5653

In fireflies, the luciferase enzyme converts a compound called luciferin into oxyluciferin, and produces light or “luminescence” as a result. This reaction requires energy derived from ATP in order to proceed, so researchers have exploited the luciferase-luciferin interaction to gauge ATP levels in cells. Given ATP’s role as the cell’s currency of…

 Cell Biology

An Introduction to Cell Metabolism

JoVE 5652

In cells, critical molecules are either built by joining together individual units like amino acids or nucleotides, or broken down into smaller components. Respectively, the reactions responsible for this are referred to as anabolic and catabolic. These reactions require or produce energy typically in the form of a “high-energy” molecule called ATP. Together,…

 Cell Biology

Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers

1Department of Orthopaedic Surgery, University of Michigan Medical School, 2Department of Molecular & Integrative Physiology, University of Michigan Medical School, 3Department of Biomedical Engineering, University of Michigan Medical School, 4Department of Surgery, Section of Plastic Surgery, University of Michigan Medical School

JoVE 52695


In Vitro Biochemical Assays using Biotin Labels to Study Protein-Nucleic Acid Interactions

1State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 2The Affiliated Hospital of Hangzhou Normal University, 3School of Life Science and Technology, ShanghaiTech University, 4Department of Tissue and Embryology, School of Basic Medical Sciences, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University

JoVE 59830


Target Cell Pre-enrichment and Whole Genome Amplification for Single Cell Downstream Characterization

1Institute of Cell Biology, Histology and Embryology, Medical University of Graz, 2Institute of Pathology, Medical University of Graz, 3Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 4Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 5Sahlgrenska Cancer Center, University of Gothenburg

JoVE 56394

 Cancer Research

Real-time Live-cell Flow Cytometry to Investigate Calcium Influx, Pore Formation, and Phagocytosis by P2X7 Receptors in Adult Neural Progenitor Cells

1Griffith Institute for Drug Discovery, Griffith University, 2Australian Institute for Bioengineering and Nanotechnology, University of Queensland, 3Discipline of Anatomy and Histology, School of Medical Science, University of Sydney, 4Bosch Institute, University of Sydney, 5Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent's Centre for Applied Medical Research, 6School of Medical Sciences, The University of New South Wales (UNSW) Medicine, Sydney, New South Wales, 7School of Environment and Science, Griffith University, Brisbane, Queensland, 8Florey Institute of Neuroscience and Mental Health, University of Melbourne

JoVE 59313

 Developmental Biology

Generation of Microtumors Using 3D Human Biogel Culture System and Patient-derived Glioblastoma Cells for Kinomic Profiling and Drug Response Testing

1Biomedical Engineering, University of Alabama at Birmingham, 2Radiation Oncology, University of Alabama at Birmingham, 3Neurosurgery, University of Alabama at Birmingham, 4Vivo Biosciences, Inc.

JoVE 54026


NMR-Based Activity Assays for Determining Compound Inhibition, IC50 Values, Artifactual Activity, and Whole-Cell Activity of Nucleoside Ribohydrolases

1Department of Chemistry, Adelphi University, 2Department of Chemistry, Washington University in St. Louis, 3Department of Chemistry, Boston University

JoVE 59928


Semi-quantitative Assessment Using [18F]FDG Tracer in Patients with Severe Brain Injury

1Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 2Division of PET imaging, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3Tokyo Nuclear Services Co. Ltd., 4Department of Neurological Surgery, Graduate School of Medicine, Chiba University

JoVE 58641


Measurement of Energy Metabolism in Explanted Retinal Tissue Using Extracellular Flux Analysis

1Division of Metabolism, Endocrinology and Lipid Research, Department of Medicine, Washington University School of Medicine, 2Department of Biomedical Engineering, Washington University in Saint Louis, 3Department of Ophthalmology and Visual Science, Washington University School of Medicine

JoVE 58626

More Results...