Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section

 
 
Evolution, Chemical: Chemical and physical transformation of the biogenic elements from their nucleosynthesis in stars to their incorporation and subsequent modification in planetary bodies and terrestrial biochemistry. It includes the mechanism of incorporation of biogenic elements into complex molecules and molecular systems, leading up to the origin of life.

Techniques for the Evolution of Robust Pentose-fermenting Yeast for Bioconversion of Lignocellulose to Ethanol

1Bioenergy Research Unit, National Center for Agricultural Utilization Research, 2Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, 3Chemical Engineering and Material Science, Great Lakes Bioenergy Center, Michigan State University

JoVE 54227


 Bioengineering

In Situ Neutron Powder Diffraction Using Custom-made Lithium-ion Batteries

1School of Chemistry, University of Sydney, 2Institute for Superconducting & Electronic Materials, University of Wollongong, 3Australian Synchrotron, 4Australian Nuclear Science and Technology Organisation, 5School of Mechanical, Materials, and Mechatronic Engineering, University of Wollongong, 6School of Chemistry, University of New South Wales

JoVE 52284


 Engineering

Determining Rate Laws and the Order of Reaction

JoVE 10193

Source: Laboratory of Dr. Neal Abrams — SUNY College of Environmental Science and Forestry

All chemical reactions have a specific rate defining the progress of reactants going to products. This rate can be influenced by temperature, concentration, and the physical properties of the reactants. The rate also includes the intermediates and transition states that are formed but are neither the reactant nor the product. The rate law defines the role of each reactant in a reaction and can be used to mathematically model the time required for a reaction to proceed. The general form of a rate equation is shown below:     where A and B are concentrations of different molecular species, m and n are reaction orders, and k is the rate constant. The rate of nearly every reaction changes over time as reactants are depleted, making effective collisions less likely to occur. The rate constant, however, is fixed for any single reaction at a given temperature. The reaction order illustrates the number of molecular species involved in a reaction. It is very important to know the rate law, including rate constant and reaction order, which can only be deter


 Essentials of General Chemistry

Transplantation of Zebrafish Pediatric Brain Tumors into Immune-competent Hosts for Long-term Study of Tumor Cell Behavior and Drug Response

1Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, 2Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City

JoVE 55712


 Cancer Research

Next Generation Sequencing for the Detection of Actionable Mutations in Solid and Liquid Tumors

1Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 2Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, 3Abramson Cancer Center

JoVE 52758


 Cancer Research

Conducting Miller-Urey Experiments

1School of Chemistry and Biochemistry, Georgia Institute of Technology, 2Earth-Life Science Institute, Tokyo Institute of Technology, 3Institute for Advanced Study, 4Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, 5Goddard Center for Astrobiology, NASA Goddard Space Flight Center, 6Geosciences Research Division, Scripps Institution of Oceanography, University of California at San Diego

JoVE 51039


 Chemistry

Establishment of Cancer Stem Cell Cultures from Human Conventional Osteosarcoma

1Department of Surgery and Translational Medicine (DCMT), University of Florence, 2Neurofarba Department, University of Florence, 3Department of Traumatology and General Orthopedics, Azienda Ospedaliera Universitaria Careggi

JoVE 53884


 Cancer Research

PTR-ToF-MS Coupled with an Automated Sampling System and Tailored Data Analysis for Food Studies: Bioprocess Monitoring, Screening and Nose-space Analysis

1Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach (FEM), 2Faculty of Science and Technology, Free University of Bolzano, 3Department of Agriculture, Food and Environmental Sciences, University of Foggia, 4Institute of Analytical Chemistry & Radiochemistry, Leopold-Franzens Universität Innsbruck, 5Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck

JoVE 54075


 Chemistry

Methodology for the Study of Horizontal Gene Transfer in Staphylococcus aureus

1Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 2Department of Basic Biomedical Science, Universidad Europea de Madrid, 3Human Biology Program, School of Integrative and Global Majors, University of Tsukuba, 4Laboratory of Nosocomial Infections, Department of Bacteriology, Centro Nacional de MicrobiologÍa, Instituto de Salud Carlos III, 5Division of Microbiology, Department of Medicine, School of Medicine, Universidad Complutense, 6Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur, Paris, France, 7ERL3526, CNRS, Paris, France

JoVE 55087


 Immunology and Infection

12345678958
More Results...