Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Hemoglobin A: Normal adult human hemoglobin. The globin moiety consists of two alpha and two beta chains.

Ion-Exchange Chromatography

JoVE 10269

Source: Laboratory of Dr. B. Jill Venton - University of Virginia

Ion-exchange chromatography is a type of chromatography that separates analytes based on charge. A column is used that is filled with a charged stationary phase on a solid support, called an ion-exchange resin. Strong cation-exchange chromatography preferentially separates out cations by using a negatively-charged resin while strong anion-exchange chromatography preferentially selects out anions by using a positively-charged resin. This type of chromatography is popular for sample preparation, for example in the cleanup of proteins or nucleic acid samples. Ion-exchange chromatography is a two-step process. In the first step, the sample is loaded onto the column in a loading buffer. The binding of the charged sample to the column resin is based on ionic interactions of the resin to attract the sample of the opposite charge. Thus, charged samples of opposite polarity to the resin are strongly bound. Other molecules that are not charged or are of the opposite charge are not bound and are washed through the column. The second step is to elute the analyte that is bound to the resin. This is accomplished with a salt gradient, where the amount of salt in the buffer is slowly increased. Fractions are collected at the end of the column as


 Analytical Chemistry

Synthesis of an Oxygen-Carrying Cobalt(II) Complex

JoVE 10430

Source: Deepika Das, Tamara M. Powers, Department of Chemistry, Texas A&M University

Bioinorganic chemistry is the field of study that investigates the role that metals play in biology. Approximately half of all proteins contain metals and it is estimated that up to one third of all proteins rely on metal-containing active sites to function. Proteins that feature metals, called metalloproteins, play a vital role in a variety of cell functions that are necessary for life. Metalloproteins have intrigued and inspired synthetic inorganic chemists for decades, and many research groups have dedicated their programs to modeling the chemistry of metal-containing active sites in proteins through the study of coordination compounds. The transport of O2 is a vital process for living organisms. O2-transport metalloproteins are responsible for binding, transporting, and releasing oxygen, which can then be used for life processes such as respiration. The oxygen-carrying cobalt coordination complex, [N,N'-bis(salicylaldehyde)ethylenediimino]cobalt(II) [Co(salen)]2 has been studied extensively to gain understanding about how metal complexes reversibly bind O2.1 In this experiment, we will synthesize [Co


 Inorganic Chemistry

Coordination Chemistry Complexes

JoVE 10179

Source: Laboratory of Dr. Neal Abrams — SUNY College of Environmental Science and Forestry

Transition metals are found everywhere from vitamin supplements to electroplating baths. Transition metals also make up the pigments in many paints and compose all minerals. Typically, transition metals are found in the cationic form since they readily oxidize, or lose electrons, and are surrounded by electron donors called ligands. These ligands do not form ionic or covalent bonds with the metal center, rather they take on a third type of bond known as coordinate-covalent. The coordinate-covalent bond between a ligand and a metal is dynamic, meaning that ligands are continuously exchanging and re-coordinating around the metal center. The identities of both the metal and the ligand dictates which ligands will bond preferentially over another. In addition, color and magnetic properties are also due to the types of complexes that are formed. The coordination compounds that form are analyzed using a variety of instruments and tools. This experiment explores why so many complexes are possible and uses a spectrochemical (color and chemical) method to help identify the type of coordination complex that forms.


 General Chemistry

More Results...