Show Advanced Search

REFINE YOUR SEARCH:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by journal section

Filter by science education

 
 
Surface Plasmon Resonance: A biosensing technique in which biomolecules capable of binding to specific analytes or ligands are first immobilized on one side of a metallic film. Light is then focused on the opposite side of the film to excite the surface plasmons, that is, the oscillations of free electrons propagating along the film's surface. The refractive index of light reflecting off this surface is measured. When the immobilized biomolecules are bound by their ligands, an alteration in surface plasmons on the opposite side of the film is created which is directly proportional to the change in bound, or adsorbed, mass. Binding is measured by changes in the refractive index. The technique is used to study biomolecular interactions, such as antigen-antibody binding.

Surface Plasmon Resonance (SPR)

JoVE 5697

Surface plasmon resonance (SPR) is the underlying optical phenomenon behind label-free biosensors to evaluate the molecular affinity, kinetics, specificity, and concentration of biomolecules. In SPR, biomolecular interactions occur on a biosensor made of a thin layer of metal on a prism. Real-time interactions of biomolecules can be monitored by measuring the changes of light reflected off the …

 Biochemistry

Optical Biosensing

JoVE 5795

Optical biosensors utilize light to detect the binding of a target molecule. These sensors can utilize a label molecule, which produces a measurable signal such as fluorescence. Or these sensors can be label-free, and use the changes in optical properties, such as refractive index, to sense for the binding of the target molecule. This video introduces both label and…

 Bioengineering

Covalent Immobilization of Proteins for the Single Molecule Force Spectroscopy

1Center for Applied Tissue Engineering and Regenerative Medicine, Munich University of Applied Sciences, 2FG Protein Biochemistry & Cellular Microbiology, Munich University of Applied Sciences, 3Center for Nano Science, Ludwig-Maximilians-Universität München, 4Klinik für Unfallchirurgie, Orthopädie und Plastische Chirurgie, University Medical Center Göttingen

JoVE 58167

 Biochemistry

Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization

1School of Geography, Earth and Environmental Sciences, University of Birmingham, 2Analytical Science, National Physical Laboratory, 3INAC-LCIB, Université Grenoble Alpes, 4CEA, INAC-SyMMES, 5NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 6Chemical, Medical and Environmental Science, National Physical Laboratory, 7BAM Division 6.1 'Surface Analysis and Interfacial Chemistry', BAM Federal Institute for Materials Research and Testing, 8Fraunhofer Institute for Ceramic Technologies and Systems

JoVE 56074

 Environment

DNA Origami-Mediated Substrate Nanopatterning of Inorganic Structures for Sensing Applications

1Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 2University of Jyväskylä, Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 3University of Jyväskylä, Nanoscience Center, Department of Physics, University of Jyväskylä, 4HYBER Center of Excellence, Department of Applied Physics, Aalto University

JoVE 60313

 Chemistry

Label-Free Imaging of Single Proteins Secreted from Living Cells via iSCAT Microscopy

1Max Planck Institute for the Science of Light (MPL), 2Area of Scientific Learning, Milligan College, 3Department of Physics, Friedrich Alexander University Erlangen-Nuremberg, 4Department of Internal Medicine 5, Hematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU), University Hospital Erlangen

JoVE 58486

 Engineering

Combined Near-infrared Fluorescent Imaging and Micro-computed Tomography for Directly Visualizing Cerebral Thromboemboli

1Molecular Imaging and Neurovascular Research Laboratory, Dongguk University College of Medicine, 2Biomedical Research Center, Korea Institute of Science and Technology, 3Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, 4Departments of Radiology and Cancer Systems Imaging, University of Texas M.D. Anderson Cancer Center

JoVE 54294

 Medicine

Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell

1Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 2Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 3Charles Perkins Centre, The University of Sydney, 4Institute of Biophysics, Laboratory of RNA Biology, Chinese Academy of Sciences, 5University of Chinese Academy of Sciences, 6School of Medicine and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University

JoVE 52975

 Bioengineering

SUMO-Binding Entities (SUBEs) as Tools for the Enrichment, Isolation, Identification, and Characterization of the SUMO Proteome in Liver Cancer

1Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 2Proteomics Platforms, CIC bioGUNE, 3Advanced Technology Institute in Life Sciences (ITAV)-CNRS-IPBS, UbiCARE

Video Coming Soon

JoVE 60098

 JoVE In-Press

Using Nanoplasmon-Enhanced Scattering and Low-Magnification Microscope Imaging to Quantify Tumor-Derived Exosomes

1Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, 2Virginia G. Piper Biodesign Center for Personalized Diagnostics, The Biodesign Institute, Arizona State University, 3School of Biological and Health Systems Engineering, Arizona State University, 4Department of Electrical and Computer Engineering, North Dakota State University

JoVE 59177

 Bioengineering

Experimental Methods for Efficient Solar Hydrogen Production in Microgravity Environment

1Division of Chemistry and Chemical Engineering, California Institute of Technology, 2European Space Agency/ ESTEC, 3Department of Physics, Freie Universitat Berlin, 4Applied Physics and Sensors, Brandenburg University of Technology Cottbus, 5Resnick Sustainability Institute, California Institute of Technology, 6NG Next, Northrop Grumman Corporation, 7Division of Engineering and Applied Science and Joint Center for Artificial Photosynthesis, California Institute of Technology, 8International Academy of Optoelectronics at Zhaoqing, South China Normal University

Video Coming Soon

JoVE 59122

 JoVE In-Press

Dissipative Microgravimetry to Study the Binding Dynamics of the Phospholipid Binding Protein Annexin A2 to Solid-supported Lipid Bilayers Using a Quartz Resonator

1Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, 2Institute of Biochemistry, University of Münster, 3Cluster of Excellence 'Cells in Motion', University of Münster

JoVE 58224

 Biochemistry

Development of an Electrochemical DNA Biosensor to Detect a Foodborne Pathogen

1Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 2Laboratory of Functional Device, Institute of Advanced Technology, Universiti Putra Malaysia, 3Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 4La Trobe Institute for Molecular Science, La Trobe University

JoVE 56585

 Bioengineering
123
More Results...