Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

12.12: Plasticity

TABLE OF
CONTENTS
JoVE Core
Physics

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Education
Plasticity
 
TRANSCRIPT

12.12: Plasticity

Plasticity is the property where an object loses its elasticity and undergoes irreversible deformation, even after the deformation forces are eliminated. If a material deforms irreversibly without increasing stress or load, then this is called ideal plasticity. For example, when a force is applied to an aluminum rod, it changes its shape, but it does not return to its original shape once the force is removed. Plastic deformation or ductility is thus a permanent deformation or change in the shape of a solid caused by continuous force.

Once a material goes beyond its elasticity limit and experiences plastic deformation, it remains plastically deformed until the stress reaches the fracture point (breaking point). The value of stress at the fracture point is called breaking stress (or ultimate stress). Materials with similar properties, such as two metals, can have very different breaking stresses. For example, the ultimate stress for aluminum is far lower than that of steel. Beyond the fracture point, the body is fractured into pieces.

Table 1. Approximate breaking stresses of various materials
 

Materials Breaking Stress
(Pa or N/m2)
Aluminum 2.2× 108
Brass 4.7 × 108
Glass 10.0 × 108
Iron 3.0 × 108
Steel 20.0 × 108

This text is adapted from Openstax, University Physics Volume 1, Section 12.4: Elasticity and Plasticity.


Suggested Reading

Tags

Plasticity Elasticity Deformation Irreversible Ideal Plasticity Material Aluminum Rod Shape Change Original Shape Plastic Deformation Ductility Solid Continuous Force Elasticity Limit Fracture Point Breaking Stress Ultimate Stress Metals Breaking Stresses Aluminum Brass Glass Iron Steel

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter