Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Chemistry

基于过滤器的表面增强拉曼光谱检测方法的化学污染物快速检测

Published: February 19, 2016 doi: 10.3791/53791

Summary

一种用于制造和执行增强拉曼光谱(SERS)法检测化学污染物如农药福美铁和氨苄青霉素)的基于过滤器表面的程序提出。

Introduction

表面增强拉曼光谱(SERS)是拉曼光谱与纳米技术相结合的技术。在贵金属的金属纳米表面分析物的拉曼散射的强度是由局域型表面等离子体共振大大增强。1银纳米颗粒(银纳米颗粒)是目前最广泛使用的SERS衬底 ​​,由于其高的增强能力。2截止到目前,银纳米颗粒的各种合成方法已被开发出来。3-6的Ag纳米颗粒可单独使用作为有效的SERS衬底 ​​,或与其它材料和结构组合,以提高其敏感性和/或功能性。7-11

SERS技术已经证明用于检测食品和环境样品的各种微量污染物的容量大12传统上,存在用于制备SERS样品两种常用方法:溶液和基于基片的方法13 基于溶液的方法具D使用NP胶体与样品混合。然后将NP-分析物复合使用离心收集,并沉积到干燥后的拉曼测定的固体载体上。基于基板的方法,通常是通过沉积液体试样的数微升到预制固体基材施加14然而,无论是这两种方法都是大量的样品体积的有效和适用的。所述SERS测定的几种修饰克服了体积限制,例如作为集成过滤器系统15-21的或微流体装置的掺入21-24的改性SERS测定表明,在灵敏度和可行性极大增强用于监测化学污染物在大型水样。

在这里,我们证明制造和注射过滤器基于SERS方法的应用程序的详细的协议来检测农药福美铁和抗生素氨苄青霉素的微量。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1.银纳米粒子合成15

  1. 溶解在100毫升的超纯水(18.2ΩU)和涡流18毫克硝酸银5秒。
  2. 溶解在1毫升水中并涡旋27毫克柠檬酸钠二水合物,持续5秒。
  3. 传输所有制备的硝酸银溶液到含有搅拌棒的锥形烧瓶中,并把该烧瓶上的磁热板上。加热在约350℃下用700rpm的搅拌速度在剧烈搅拌下将烧瓶(在板设定温度)。
  4. 当煮沸后,立即添加所有制备的柠檬酸钠溶液的锥形瓶中,并离开该溶液煮沸额外25分钟,直到溶液变成褐绿色,这表明银纳米颗粒的形成。
  5. 从热点板块中取出烧瓶,并把它放在另一个磁板(不加热),搅拌O / N在室温相同的搅拌速度,直到混合物达到一个稳定的状态,具有稳定的色彩和TRANsparency。使用紫外 - 可见分光计确定处理的银纳米粒子的吸光度如果必要的。
  6. 稀释用超纯水的最终混合物至100ml。
  7. 使用用Zetasizer根据制造商的协议,如果需要测量的Ag纳米颗粒的尺寸。
  8. 转移的Ag胶体到密封容器中,用铝箔避光。如果需要的胶体可以储存在冰箱中于4-7℃下2个月。

2. SERS有源滤波器膜的制备

  1. 在100ml水中溶解2.92克氯化钠(NaCl),以使的50mM NaCl溶液。
  2. 加入1ml的5mM的NaCl溶液加入到1毫升制备的Ag纳米颗粒的和在20rpm在章动混合器它们混合10分钟。这一步是聚集的Ag纳米颗粒成银纳米簇。
  3. 滤膜(PVDF,0.1微米孔径大小)放入一个过滤器保持器,其可附连到注射器中。较小的孔径的膜为FOUND比诱捕银纳米团簇,并产生一致的信号,较大孔径的膜即0.22微米)更有效。
  4. 负载2毫升制备的Ag纳米团簇到注射器过滤。过滤器保持器连接到注射器,并通过该膜以1滴/秒的流速手动传递的Ag团簇的整个体积。膜陷阱的Ag纳米簇,形成了SERS活性滤膜。
  5. 从分离的过滤器支架滤膜。用一对镊子的,以确保在膜没有损坏保持在所述外轮缘的膜时需要特别小心。空气干燥载玻片上约3分钟,并发生膜。
  6. 拉曼检测的SERS基质的
    1. 拉曼仪器设定为780nm的波长的激光与5毫瓦,的2.1秒和曝光数设置微观目标为10X曝光时间的激光功率。确保软件上的目标是相应地设置了。</ LI>
    2. 放置在顶部的膜的玻璃载片上的拉曼仪器的平台,并使用显微镜聚焦在膜的表面上。
    3. 随机选择从膜表面8-10点,仪器会自动按顺序收集它们。在制造商的软件进行分析开放光谱数据。

为了检测化学污染物3. SERS有源滤波器系统中的应用

  1. 准备一个10 ppb的福美铁的解决方案。
    注意:福美铁是极不稳定。使用注意事项(口罩,护目镜)称重固体时。
    1. 称量2mg的福美铁粉末和将其溶解在20毫升50%的乙腈(10毫升乙腈和10毫升水),以使储液(100 ppm的)。 VORTEX烧瓶,持续30秒。
    2. 取1毫升的100ppm福美铁溶液的试管中,并添加9毫升50%乙腈作10ppm的溶液。涡流管,持续5秒。
    3. 取1毫升的在试管中10ppm的溶液,并添加9毫升50%乙腈作1ppm的溶液。涡流管,持续5秒。
    4. 取1毫升1 ppm的溶液的试管中,并添加9毫升50%乙腈作为100ppb溶液。涡流管,持续5秒。
    5. 取1毫升100ppb的溶液的试管中,并添加9毫升50%乙腈作10ppb的溶液。涡流管,持续5秒。
  2. 准备1 ppm的氨苄青霉素的解决方案。
    1. 称重10毫克氨苄青霉素粉末和将其溶解在100毫升水至100 ppm的氨苄青霉素溶液。 VORTEX烧瓶,持续30秒。
    2. 取1毫升的100ppm溶液的试管中,并可加9个毫升水中做出10ppm的氨苄青霉素溶液。涡流管,持续5秒。
    3. 取1毫升10ppm的溶液的试管中,并可加9个毫升水中,制成1 ppm的氨苄青霉素溶液。涡流管,持续5秒。
  3. 把过滤膜回过滤器保持器,与NP涂覆面朝上。</ LI>
  4. 负载5毫升单样品到一个新的注射器,然后将其附加到与银涂覆的隔膜内的过滤器保持器。
  5. 手动穿过膜以1滴/秒的流速通过样品的整个体积。靶分子可以吸附并浓缩到涂在过滤器膜上的纳米颗粒。
  6. 分离从过滤器保持器,空气干燥滤膜约3分钟,并用使用相同的方法,在步骤2.6中所述的拉曼仪器测量的信号。
  7. 重复步骤2.2至2.6,制备另一银涂层的薄膜,并从步骤3.3用于检测其他样品的遵循。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

本实验的主要步骤的示意图图1)中被示出。 图2展示了重要性以使用在膜包衣AGNPS的优化量以达到最大化灵敏度。 1毫升的Ag纳米颗粒的使用福美铁时提供最强信号相比,至0.5毫升(涂层不足)或2毫升(太多涂层)。

我们能够为1ppm以极大的信号强度由开发基于滤波器的SERS测定( 图1)来检测在10 ppb级和氨苄青霉素福美铁。福美铁的SERS光谱在10ppb以下表现出明显的特征峰。在1386厘米峰值-1是选自CN和C = S的混合振动拉伸,和对称CH 3变形。在1516厘米-1峰用CH 3和CN拉伸有关。 561厘米高峰25-27中也清楚地检测到1ppm的氨苄青霉素的光谱。 1,594 -1和1447厘米峰值-1是从C = C分别拉伸和CH 3 / CH 2变形。在1001厘米的强峰-1是从苯环振动。 852 -1的峰与对称数控拉伸有关。28-29的实验时间为分析一个样品是小于20分钟,包括SERS活性滤膜与合成前的Ag纳米颗粒的制造。

随着样品体积,可以进一步提高检测限, 如图4。增加样本量时,我们观察到的峰强度的增加。这是在过滤器为基础的方法的优势,因为体积是可调的和检测的极限也是可调节的。

ether.within页=“1”> 图1
图1. 过滤器检测SERS的示意图。 请点击此处查看该图的放大版本。

图2
图2. SERS 5毫升100 ppb的光谱福美铁穿过由不同量的Ag纳米粒子的涂布膜从上至下:0.5毫升银胶体用0.5ml氯化钠加入1.0ml的Ag与1.0ml氯化钠,将1.5ml的Ag 1.5氯化钠毫升分别。 请点击此处查看该图的放大版本。

91 / 53791fig3.jpg“/>
图3. SERS福美铁和氨苄西林对Ag纳米颗粒涂层滤光膜的光谱从上到下:50%乙腈的控制权,为10ppb福美铁,控水,1ppm的氨苄西林,分别为。 请点击此处查看大图这个数字。

图4
图4. SERS对银纳米颗粒涂层滤光膜不同的卷100ppb的福美铁的光谱从上到下:3毫升福美铁,加入5ml福美铁,7毫升福美铁,9毫升福美铁,分别为。 请点击这里查看大图这一数字。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

其中一个在这个协议中的关键步骤是银纳米粒子合成,其中统一银纳米粒子是一致的结果的关键。加热时间和前体的浓度必须被精确地控制。此AGNPS制备的平均粒径为80纳米,它是由激光粒度仪测得的(数据未显示)。另一个关键步骤是该盐聚合,其中盐的浓度和聚合时间必须精确地控制。此外,膜的选择也是关键的,因为具有较小的孔径的膜被发现更有效的捕集的Ag纳米团簇。在这项研究中所用的特定的膜,有一个正面和背面,其中的前侧必须放置了在保持器连接的注射器。如果它被置于向下,该涂层是更有效的。通过膜时避免泡沫是另一个成功的关键涂层。

对于该测定的故障排除,下面的步骤建议。如果检测没有或几乎没有信号,检查是否有以下原因。主要原因可能是银纳米颗粒没有聚集足以被截留在过滤膜的孔。增加盐浓度和/或温育时间可以增强聚合。否则,检查过滤膜的背面朝上,且音量或样品浓度装载到膜也不算低。如果目标分子的信号并不一致,检查以下原因:银纳米粒子的大小分布可能过宽或纳米粒子不是均匀分布在膜,可能是由于纳米颗粒或过快过多聚集穿过膜。

与我们以前使用的Ag树突作为SERS衬底​​,30-31数据相比,该基于过滤器的SERS测定的灵敏度是福美铁检测高得多。这是由于基于过滤器系统的优点,它可以流动拉样品的RGE量,使更多的分析物分子被集中到SERS衬底。使用基于过滤器系统在基于溶液的方法的另一优点是易于操作和fieldable测量的,因为不需要离心收集NP-分析物复合物。该方法的限制是它不能被用于复杂液体基质如乳直接作为复合部件可以阻止膜孔。预处理需要通过膜前去除干扰成分。

总之,我们展示了一个简单和灵敏的基于过滤器的SERS测定法,可以适用于检测在液体食品基质和环境样品污染物或adulterations的。进一步推检测限,需要的参数,如NP尺寸和量,盐浓度,样品体积和仪器参数的优化。

Subscription Required. Please recommend JoVE to your librarian.

Materials

Name Company Catalog Number Comments
Ampicillin Fisher Scientific BP1760-5 N/A
Ferbam Chem Service N-11970-250MG 98+%
Silver nitrate Sigma Aldrich 209139 99.0+%
Sodium citrate dehydrate Sigma Aldrich W302600 99+%
Sodium chloride Sigma Aldrich S7653 99.5+%
EMD Millipore Durapore PVDF Membrane Filters Fisher Scientific VVLP01300 0.10 µm Pore Size, hydrophilic
Polycarbonate Filter Holders Cole-Parmer EW-29550-40 13 mm diameter
Analog Vortex Mixer Fisher Scientific 02-215-365 N/A
Nutating Mixers Fisher Scientific 05-450-213 N/A
DXR Raman spectroscope Thermo Scientific IQLAADGABFFAHCMAPB Laser power: 1 mW
Exposure time: 5 sec

DOWNLOAD MATERIALS LIST

References

  1. Albrecht, M. G., Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99 (15), 5215-5217 (1977).
  2. Schatz, G. C., Young, M. A., Van Duyne, R. P. Electromagnetic mechanism of SERS. Surface-enhanced Raman scattering. , Springer Berlin Heidelberg. 19-45 (2006).
  3. Matijevic, E. Preparation and properties of uniform size colloids. Chem. Mater. 5 (4), 412-426 (1993).
  4. Nickel, U., zu Castell, A., Pöppl, K., Schneider, S. A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy. Langmuir. 16 (23), 9087-9091 (2000).
  5. Khanna, P. K., Subbarao, V. V. V. S. Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium. Mater. Lett. 57 (15), 2242-2245 (2003).
  6. Henglein, A., Giersig, M. Formation of colloidal silver nanoparticles: capping action of citrate. J. Phys. Chem. B. 103 (44), 9533-9539 (1999).
  7. Sun, X., Li, Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Edit. 43 (5), 597-601 (2004).
  8. Lu, L., et al. Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. Chem. Commun. (2), 144-145 (2002).
  9. Aslan, K., Wu, M., Lakowicz, J. R., Geddes, C. D. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc. 129 (6), 1524-1525 (2007).
  10. Lu, Y., Yin, Y., Li, Z. Y., Xia, Y. Synthesis and self-assembly of Au@ SiO2 core-shell colloids. Nano. Lett. 2 (7), 785-788 (2002).
  11. Link, S., Wang, Z. L., El-Sayed, M. A. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B. 103 (18), 3529-3533 (1999).
  12. He, L., et al. Rapid Detection of Ricin in Milk Using Immunomagnetic Separation Combined with Surface Enhanced Raman Spectroscopy. J. Food. Sci. 76 (5), N49-N53 (2011).
  13. Zheng, J., He, L. Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food. Compr. Rev. Food. Sci. F. 13 (3), 317-328 (2014).
  14. He, L., Haynes, C. L., Diez-Gonzalez, F., Labuza, T. P. Rapid detection of a foreign protein in milk using IMS-SERS. J. Raman. Spectrosc. 42 (6), 1428-1434 (2011).
  15. Wei, W. Y., White, I. M. A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst. 137 (5), 1168-1173 (2012).
  16. Cheng, M. L., Tsai, B. C., Yang, J. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal. Chim. Acta. 708 (1), 89-96 (2011).
  17. Fierro-Mercado, P. M., Hernández-Rivera, S. P. Highly sensitive filter paper substrate for SERS trace explosives detection. Int. J. Spectrosc. 2012, 716527 (2012).
  18. Tran, C. D. Subnanogram detection of dyes on filter paper by surface-enhanced Raman scattering spectrometry. Anal. Chem. 56 (4), 824-826 (1984).
  19. Wu, D., Fang, Y. The adsorption behavior of p-hydroxybenzoic acid on a silver-coated filter paper by surface enhanced Raman scattering. J. Colloid Interface Sci. 265 (2), 234-238 (2003).
  20. Wigginton, K. R., Vikesland, P. J. Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection. Analyst. 135 (6), 1320-1326 (2010).
  21. Berthod, A., Laserna, J. J., Winefordner, J. D. Analysis by surface enhanced Raman spectroscopy on silver hydrosols and silver coated filter papers. J Pharm Biomed Anal. 6 (6), 599-608 (1988).
  22. Ackermann, K. R., Henkel, T., Popp, J. Quantitative Online Detection of Low-Concentrated Drugs via a SERS Microfluidic System. ChemPhysChem. 8 (18), 2665-2670 (2007).
  23. Walter, A., März, A., Schumacher, W., Rösch, P., Popp, J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab. Chip. 11 (6), 1013-1021 (2011).
  24. Lee, S., et al. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor. Anal. Chim. Acta. 590 (2), 139-144 (2007).
  25. Guo, H., et al. Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS). Environ. Sci. Technol. 49 (7), 4317-4324 (2015).
  26. Narayanan, V. A., Begun, G. M., Stokes, D. L., Sutherland, W. S., Vo-Dinh, T. Normal Raman and surface enhanced Raman scattering (SERS) spectra of some fungicides and related chemical compounds. J. Raman. Spectrosc. 23 (5), 281-286 (1992).
  27. Kang, J. S., Hwang, S. Y., Lee, C. J., Lee, M. S. SERS of dithiocarbamate pesticides adsorbed on silver surface; thiram. Bull. Korean. Chem. Soc. 23 (11), 1604-1610 (2002).
  28. Li, Y. T., et al. Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 43, 94-100 (2013).
  29. Clarke, S. J., Littleford, R. E., Smith, W. E., Goodacre, R. Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy. Analyst. 130 (7), 1019-1026 (2005).
  30. Zheng, J., Pang, S., Labuza, T. P., He, L. Semi-quantification of surface-enhanced Raman scattering using a handheld Raman spectrometer: a feasibility study. Analyst. 138 (23), 7075-7078 (2013).
  31. Zheng, J., Pang, S., Labuza, T. P., He, L. Evaluation of surface-enhanced Raman scattering detection using a handheld and a bench-top Raman spectrometer: A comparative study. Talanta. 129, 79-85 (2014).

Tags

化学,第108,银纳米粒子表面增强拉曼光谱,过滤注射器,福美铁,氨苄青霉素
基于过滤器的表面增强拉曼光谱检测方法的化学污染物快速检测
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Gao, S., Glasser, J., He, L. AMore

Gao, S., Glasser, J., He, L. A Filter-based Surface Enhanced Raman Spectroscopic Assay for Rapid Detection of Chemical Contaminants. J. Vis. Exp. (108), e53791, doi:10.3791/53791 (2016).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter