SCIENCE EDUCATION > Engineering

生物医学工程

此集合描述了生物医学工程的核心概念,重点是可视化和检测医疗条件的成像技术、量化生物机械应变的方法以及模拟血流的计算建模。

  • Biomedical Engineering

    10:47
    使用光学和共聚焦显微镜成像生物样本

    资料来源:佩曼·沙贝吉-鲁德波什蒂和西娜·沙赫巴兹莫哈马迪,康涅狄格大学生物医学工程系,康涅狄格州斯托尔斯

    光学显微镜已经存在了几个世纪,虽然几十年前它们达到了分辨率的理论极限,但新的设备和技术,如共聚焦和数字图像处理,在光学领域创造了新的利基。成像。最好的光学显微镜在理想条件下的分辨率通常低于200nm。然而,光学显微镜受到波衍射的限制,波的波长函数为可见光约500nm。虽然光学显微镜的分辨率没有达到电子显微镜,但它们是生物宏观结构成像中最有价值的工具,是任何生物实验室的主食。

    在传统的光学显微镜中,从成像物体产生的信号来自标本的全部厚度,这不允许它的大部分被聚焦到观察者。这将导致图像具有"焦点外模糊"。另一方面,共聚焦显微镜通过针孔照亮样品,因此能够从物体焦点的上方和下方过滤出失焦光。

    本演示介绍了使用光学和共聚焦显微镜方法的图像采集。在这里,将研究一块被分割的老鼠大脑。

  • Biomedical Engineering

    09:01
    生物样品的SEM成像

    资料来源:佩曼·沙贝吉-鲁德波什蒂和西娜·沙赫巴兹莫哈马迪,康涅狄格大学生物医学工程系,康涅狄格州斯托尔斯

    扫描电子显微镜(SEM)是一种使用电子束进行无损成像和在真空中描述导电材料的仪器。打个比方,电子束是到SEM的,光是光学显微镜的。区别在于电子显微镜产生更高的分辨率和放大倍率的图像。最好的光学显微镜的分辨率通常低于 200 nm,而 SEM 通常要求分辨率为 0.5 nm。这是因为光学显微镜受到波衍射的限制,波的波长函数为可见光约500nm。相反,SEM 使用带电的电子束,其波长为 1 nm。这一特性使它们成为研究纳米和微观结构的可靠工具。电子显微镜还能够研究特征尺寸太小的生物样品,不适合光学显微镜。

    本演示介绍了使用扫描电子显微镜制备生物样品和初始图像采集的介绍。在这种情况下,将研究胶原蛋白-羟基磷灰石(HA)细胞支架。SEM

  • Biomedical Engineering

    13:28
    纳米药物载体的生物分布:SEM的应用

    资料来源: 佩曼·沙贝吉-鲁德波什蒂和西娜·沙赫巴兹莫哈马迪,康涅狄格大学生物医学工程系,康涅狄格州斯托尔斯

    纳米粒子已越来越多地用于靶向药物输送和控制药物释放的研究。虽然这些粒子大多因其生物相容性而发展为聚合物或脂质体颗粒,但目前研究使用金属和磁性纳米粒子的趋势。这些金属纳米粒子最初被用作成像中的造影剂,但最近的进步表明它们在药物和基因传递以及治疗中的重要性。金、银和顺磁纳米粒子在正在研究中所占份额最大。它们已被证明具有良好的生物相容性,某些品种的磁性纳米粒子已经开发并作为治疗靶向药物进行分发。

    这些重元素通常用于使用荧光来评估传递和分布的研究,但它们的原子重是使用扫描电子显微镜 (SEM) 增加反散射电子分析对比度的良好条件).能量分散X射线光谱,它使用电子束与样品相互作用时发射的特征X射线来识别化学成分,也可以与SEM一起使用。这些方法具有提高分辨率和增强检测信心的好处,因为 EDS

  • Biomedical Engineering

    14:19
    腹大塔的高频超声成像

    资料来源:阿米莉亚·阿德尔斯珀格、埃文·菲利普斯和克雷格·戈尔根,珀杜大学韦尔登生物医学工程学院,西拉斐特,印第安纳州

    高频超声系统用于获取高分辨率图像。在这里,将展示最先进的系统的使用,以成像在小鼠和大鼠中发现的小脉动动脉和静脉的形态和血液动力学。超声波是一种相对便宜、便携和通用的方法,用于对人类以及大型和小型动物的血管进行非侵入性评估。与其他技术(如计算机断层扫描 (CT)、磁共振成像 (MRI) 和近红外荧光断层扫描 (NIRF))相比,这些优势是超常提供的几种关键优势。CT 需要电离辐射,在某些情况下,MRI 可能非常昂贵,甚至不切实际。另一方面,NIRF 受到激发荧光造影剂所需的穿透深度的限制。

    超声在成像深度方面有局限性;然而,这可以通过牺牲分辨率和使用低频传感器来克服。腹部气体和超重会严重降低图像质量。在第一种情况下,声波的传播是有限的,而在后一种情况下,它们被覆盖的组织,如脂肪和结缔组织衰减。因此,无法观察到对比度或微弱的对比度。最后,超

  • Biomedical Engineering

    10:23
    腹部主动脉瘤的定量应变图谱

    资料来源:汉娜·塞布尔1, 阿尔文·苏普里阿特纳1, 约翰·博伊尔2和克雷格·戈尔根1

    1韦尔登生物医学工程学院,普渡大学,拉斐特,印第安纳州

    2密苏里州圣路易斯华盛顿大学机械工程与材料科学

    软组织(如血管、皮肤、肌腱和其他器官)的机械行为受到弹性蛋白和胶原蛋白组成的强烈影响,后者提供弹性和强度。这些蛋白质的纤维方向取决于软组织的类型,范围从单一的首选方向到复杂的网状网络,在病变组织中可能发生变化。因此,软组织在细胞和器官水平上经常具有同一性,因此需要三维表征。开发一种可靠地估计复杂生物组织或结构中的应变场的方法,对于机械地描述和理解疾病非常重要。应变表示软组织如何随时间相对变形,并且可以通过各种估计进行数学描述。

    随着时间的推移获取图像数据,可以估计变形和应变。然而,所有医学成像方式都含有一定量

  • Biomedical Engineering

    08:38
    红外主塔中图像血液和脂质的光声断层扫描

    资料来源:古尔内特·桑加和克雷格·戈尔根,韦尔登生物医学工程学院,普渡大学,西拉斐特,印第安纳州

    光声断层扫描(PAT)是一种新兴的生物医学成像模式,它利用光产生的声波从组织获取组成信息。PAT 可用于成像血液和脂质成分,可用于各种应用,包括心血管和肿瘤成像。目前使用的成像技术有固有的限制,限制他们使用研究人员和医生。例如,采集时间长、成本高、使用有害对比度和极小到高侵入性都是限制实验室和诊所使用各种模式的因素。目前,唯一与PAT相媲美的成像技术是新兴的光学技术。但这些也有缺点,如渗透深度有限和需要外生造影剂。PAT 以快速、无创、无标签的方式提供有意义的信息。当与超声波结合时,PAT可用于从组织获得结构、血液动力学和成分信息,从而补充目前使用的成像技术。PAT

  • Biomedical Engineering

    11:37
    心脏磁共振成像

    资料来源:弗雷德里克·达门和克雷格·戈尔根,珀杜大学韦尔登生物医学工程学院,西拉斐特,印第安纳州

    在本视频中,通过生理监测,演示了高场、小孔磁共振成像(MRI),以获取鼠心血管系统的门控膜环。此过程为评估左心室功能、可视化血管网络和量化因呼吸引起的器官运动提供了基础。类似的小型动物心血管成像模式包括高频超声和微计算机断层扫描(CT);但是,每种模式都与应考虑的权衡相关。虽然超声波确实提供高空间和时间分辨率,但成像伪像很常见。例如,密集组织(即胸骨和肋骨)可以限制成像穿透深度,而气体和液体(即肺周围的胸膜)之间的超呼信号可以模糊附近组织的对比度。相比之下,微CT不会遭受尽可能多的平面内伪影,但具有较低的时间分辨率和有限的软组织对比度。此外,微型CT使用X射线辐射,并经常要求使用造影剂来可视化血管,这两种物质已知在高剂量下造成副作用,包括辐射损伤和肾损伤。心血管MRI通过否定电离辐射的需要和为用户提供无反光剂成像的能力(尽管造影剂常用于MRI),在这些技术之间提供了很好的

  • Biomedical Engineering

    12:38
    脑动脉瘤血流的计算流体动力学模拟

    资料来源:约瑟夫·穆斯凯特、维塔利·雷兹和克雷格·戈尔根,珀杜大学韦尔登生物医学工程学院,西拉斐特,印第安纳州

    本视频的目的是描述基于患者或动物特异性血管的计算流体动态 (CFD) 模拟的最新进展。在这里,创建了基于主题的容器分割,并使用开源和商业工具的组合,在流程模型中确定了高分辨率数值解决方案。大量研究表明,血管内的血管内血液动力学条件影响动脉粥样硬化、动脉瘤和其他周围动脉疾病的发展和进展;同时,在体内很难直接测量宫内压力、壁剪切应力(WSS)和粒子停留时间(PRT)。

    差价合约允许非侵入性评估此类变量。此外,CFD还用于模拟手术技术,为医生提供术后流动状况的更好预见性。磁共振成像 (MRI) 中的两种方法,即具有飞行时间 (TOF-MRA) 或对比度增强 MRA (CE-MRA) 和相位对比 (PC-MRI) 的磁共振血管造影 (MRA), 使我们能够获得容器几何和时间解析的三维速度场分别。TOF-MRA

  • Biomedical Engineering

    10:11
    腹主动脉瘤的近红外荧光成像

    资料来源:阿尔文·苏普里阿特纳1号、凯尔西·布林斯2号、克雷格·戈尔根1号

    1韦尔登生物医学工程学院,普渡大学,拉斐特,印第安纳州

    2普渡大学生物化学系,拉斐特,印第安纳州

    近红外荧光 (NIRF) 成像是一种令人兴奋的光学技术,它利用荧光探针来可视化组织中的复杂生物分子组件。与传统的非侵入性成像方法相比,NIRF成像具有许多优点。与单光子发射计算机断层扫描 (SPECT) 和正电子发射断层扫描 (PET) 不同,NIRF

  • Biomedical Engineering

    09:30
    非侵入性血压测量技术

    资料来源:哈姆娜·库雷希和克雷格·戈尔根,珀杜大学韦尔登生物医学工程学院,西拉斐特,印第安纳州

    在这里,我们将强调人类和啮齿动物之间非侵入性血压测量技术的主要相似性和差异,并研究控制血压的工程原理。还将讨论控制当前袖口技术以获得收缩和舒张压力的原理。

    与移动设备连接的商用袖口通常结构紧凑且便携,因此几乎可以在任何地方进行测量。非侵入性便携式血压袖口对于高血压和其他心血管问题患者特别有用,需要仔细监测和及早发现血压的任何变化。

    同样,非侵入性血压测量系统也可用于啮齿动物。该技术用于实验室设置,并可用于在整个研究中监测动物健康。虽然放射性遥测是啮齿动物血压测量的黄金标准,但这种技术具有侵入性,如果操作不当,可能导致动物死亡。因此,非侵入性方法便于在动物身上进行测量,因为它们可以提供有价值的数据,而无需植入设备。一个商用系统将被用来演示如何在临床环境以外的人身上测量血压。这种技术允许患者定期监测自己的血压,而不必每次需要进行这些测

  • Biomedical Engineering

    11:16
    心电图(心电图)信号的采集与分析

    资料来源:佩曼·沙贝吉-鲁德波什蒂和西娜·沙赫巴兹莫哈马迪,康涅狄格大学生物医学工程系,康涅狄格州斯托尔斯

    心电图是记录患者躯干电极之间发生电势变化以显示心脏活动的图形。心电图信号跟踪心脏节律和许多心脏疾病,如血液流向心脏和结构异常。心脏壁收缩产生的作用潜能会将来自心脏的电流扩散到全身。扩散电流在身体各点产生不同的电位,这些电位可以通过放置在皮肤上的电极来感应。电极是金属和盐制成的生物传感器。实际上,10个电极连接到身体上的不同点。有一个标准程序来获取和分析心电图信号。健康个体的典型心电图波如下:

    图 1.心电图波。

    "P"波对应于心房收缩,而"QRS"复杂对应于心室收缩。"QRS"复合体比"P"波大得多,因为心肌质量相对发泡,掩盖了心房的放松。心室的松弛可以以"T"波的形式看到。

    有三个主要引线负责测量手臂和腿之间的电势差,如图 2 所示。在此演示中,将检查其中一条肢体引线,引线 I,并记录两个臂之间的电势差。与所有

  • Biomedical Engineering

    10:08
    可吸收生物材料的拉伸强度

    资料来源:佩曼·沙贝吉-鲁德波什蒂和西娜·沙赫巴兹莫哈马迪,康涅狄格大学生物医学工程系,康涅狄格州斯托尔斯

    4000多年来,缝合线一直被用作医疗干预。最早的记录表明亚麻是首选的生物材料。据报道,在公元150年左右,Catgut仍在使用,用于治疗角斗士。今天,有许多材料被用于缝合。缝合按其组成(天然或合成)及其吸收(不可吸收或可吸收)进行分类。

    可吸收(或可吸收)缝合线通过酶降解或由水与聚合物链中特定组相互作用引起的程序化降解在体内降解。这些缝合线通常是由合成材料(如聚甘油酸、聚二恶英和多碳酸酮)或天然生物材料(如丝绸)产生的。它们通常用于某些内部程序,如普通手术。可治愈的缝合线将伤口保持一段时间,足够长的时间愈合,但随后它们最终被身体分解。另一方面,不可吸收的缝合不会降解,必须提取。它们通常源自聚丙烯、尼龙和不锈钢。这些缝合线通常用于骨科和心脏手术,并要求医疗专业人员在以后将其移除。

    在这里,两种可吸收缝

  • Biomedical Engineering

    11:18
    小鼠脊髓的微CT成像

    资料来源:佩曼·沙贝吉-鲁德波什蒂和西娜·沙赫巴兹莫哈马迪,康涅狄格大学生物医学工程系,康涅狄格州斯托尔斯

    一个鲜为人知的事实是,X射线的发现和(无意)使用获得了有史以来第一个诺贝尔物理学奖。1895年,伦特根博士妻子手的著名X射线图像在科学界掀起了冲击波,看起来就像大多数现代的2D医学X射线图像。虽然它不是最新的技术,X射线吸收成像是一个不可或缺的工具,可以发现在世界顶级的研发和大学实验室,医院,机场,其他地方。可以说,X射线吸收成像的最高级用途包括获得像2D医学X射线中那样的信息,但通过计算机断层扫描(CT或微CT)在3D中实现。通过采用一系列 2D X 射线投影,高级软件能够重建数据以形成 3D 体积。3D

  • Biomedical Engineering

    11:08
    大鼠非侵入性ACL损伤后膝关节退化的可视化

    资料来源:林赛·莱普利1,2, 史蒂文 M. 达维1,蒂莫西 A. 巴特菲尔德3,4和西娜沙赫巴兹莫哈马迪5,

    1康涅狄格大学运动学系,斯托尔斯,CT;2康涅狄格大学健康中心骨科外科系,法明顿,CT;3肯塔基大学康复科学系,列克星敦,肯塔基州;4肯塔基大学生理学系肌肉生物学中心,列克星敦,肯塔基州;L损伤对PTOA的发病和影响。ACL损伤应用最广泛的模型是ACL分型,这是一种在手术上破坏关节稳定的急性模型。虽然实用,该模型并不忠实地模仿人类ACL伤害,由于侵入性和非生理伤害程序,掩盖了原生生物对伤害的反应。为了改进结果的临床翻译,我们最近开发了一种新的非侵入性ACL损伤模型,其中ACL通过单负荷的tibial压缩破裂。这种损伤与人类相关的损伤情况密切相关,并且具有很高的可重复性。 通过微计算机断层扫描 (μCT) 实现关节退化的可视化,与传统 OA 染色技术相比,提供了几大进步,包括整个关节退化的快速、高分辨率、非破坏性的 3D 成像。本演示的目的是在啮齿动物模型中引入最先进的非侵入性 ACL 损伤,并使用 _CT 量化膝关节退化。

  • Biomedical Engineering

    09:07
    结合 SPECT 和 CT 成像,使心脏功能可视化

    资料来源:阿莉西亚·伯曼、詹姆斯·沙伯和克雷格·戈尔根,珀杜大学韦尔登生物医学工程学院,西拉斐特,印第安纳州

    在这里,我们将演示使用小鼠的单光子发射计算机断层扫描/计算机断层扫描 (SPECT/CT) 成像的基本原理。该技术包括将放射性核素注入鼠标,在动物分布在全身后成像,然后重建生成的图像以创建体积数据集。这可以提供有关解剖学、生理学和新陈代谢的信息,以改善疾病诊断并监测其进展。

    在收集的数据方面,SPECT/CT 提供与正电子发射断层扫描 (PET)/CT 类似的信息。然而,这两种技术的基本原理根本不同,因为PET需要检测两个伽马光子,它们以相反的方向发射。相比之下,SPECT成像通过伽马相机直接测量辐射。因此,SPECT 成像的空间分辨率低于 PET。然而,它的成本也较低,因为SPECT放射性同位素更容易获得。SPECT/CT

JoVE IN THE CLASSROOM

PROVIDE STUDENTS WITH THE TOOLS TO HELP THEM LEARN.

JoVE IN THE CLASSROOM