Summary

Påvisning af toksin translokation i værtslandet cytosolen af ​​overflade plasmon resonans

Published: January 03, 2012
doi:

Summary

I denne rapport beskriver vi, hvordan overfladen plasmon resonans bruges til at påvise toksinet indrejse i værten cytosol. Denne meget følsom metode kan give kvantitative data om mængden af ​​cytosole toksin, og det kan anvendes til en række af toksiner.

Abstract

AB toksiner består af en enzymatisk A subunit og en celle-bindende B subunit 1. Disse giftstoffer udskilles i det ekstracellulære miljø, men de handler på mål inden for eukaryote cytosolen. Nogle AB toksiner rejse med Blære luftfartsselskaber fra cellens overflade til det endoplasmatiske reticulum (ER), inden de kommer ind i cytosolen 2-4. I ER, at den katalytiske En kæde dissocieres fra resten af toksinet og bevæger sig igennem en protein-ledende kanal nå sit cytosolisk mål 5. De omplantes, cytosole En kæde er svær at opdage, fordi toksin menneskehandel til skadestuen er en yderst ineffektiv proces: De fleste internaliserede toksin er dirigeres til lysosomerne for nedbrydning, så kun en lille brøkdel af overflade-bundet toksin når Golgi apparatet og ER 6 -12.

At overvåge toksin translokation fra ER til cytosolen i dyrkede celler, vi kombinerede en subcellulære fraktioner protokol med highly følsom påvisningsmetode af overflade plasmon resonans (SPR) 13-15. Plasma membran af toksin-behandlede celler er selektivt permeabilized med digitonin, så samling af et cytosol fraktion, som efterfølgende perfunderet over en SPR sensor belagt med et anti-toksin A kæde antistof. Den antistof-belagt sensor kan fange og afsløre pg / mL mængder af cytosolisk toksin. Med denne protokol, er det muligt at følge kinetikken af ​​toksin indtræden i cytosolen og at beskrive hæmmende på translokation begivenhed. Koncentrationen af ​​cytosole toksin kan også beregnes ud fra en standardkurve genereret med kendte mængder af en kæde standarder, der er blevet perfunderet over sensoren. Vores metode er en hurtig, følsom, og kvantitative detektion system, der ikke kræver radioaktiv mærkning eller andre ændringer til målet toksin.

Protocol

1. Udarbejdelse af digitonin Tilsæt 500 μL af 100% ethanol til et mikrocentrifugerør og læg den i en varmeblok indstillet til 80 ° C i 10 min. Opløs 2,5 mg digitonin i 250 μL af den opvarmede ethanol til at producere en 1% stamopløsning af digitonin. For at generere en arbejdsgruppe løsning på 0,04% digitonin, der tilsættes 40 μL af digitonin stamopløsning til 960 μL af HCN buffer (50 mM HEPES pH 7,5, 150 mM NaCl, 2 mM CaCl 2, 10 mM N-ethylmaleimide, og en protease…

Discussion

Sammenligning med eksisterende metode

Vores SPR-baserede translokation analyse repræsenterer en hurtig, følsom, og kvantitativ metode til at påvise toksinet levering i værten cytosol. Teknikken kræver ikke radioaktiv mærkning eller andre ændringer af toksin, og det kan anvendes på alle giftstof, som en anti-toksin A kæde antistof er til rådighed. Eksisterende metoder til at overvåge toksin passage ind i cytosol er også afhængige af en subcellulære fraktioner protokol til partitio…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev finansieret af NIH give R01 AI073783 til K. Teter. Vi takker Dr. Shane Massey for bistand til udvikling af subcellulære fraktionering protokollen og Helen Burress til kritisk læsning af manuskriptet.

Materials

Name of the reagent Company Catalogue number
Digitonin Sigma D141
Ethanol Acros 61509-0010
DMEM Invitrogen 11995065
Fetal Bovine Serum Atlanta Biologicals S11550
Ganglioside GM1 Sigma G7641
CTA Sigma C2398
PTS1 List 182
NHS (N-Hydroxysuccinimide) Pierce 24500
EDC (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide) Thermo Scientific 22981
Ethanolamine Sigma E0135
PBST Medicago 09-8903-100
Anti-CTA antibody Santa Cruz Biotech sc-80747
Anti-CTB antibody Calbiochem 227040
Anti-PTS1 antibody Santa Cruz Biotech sc-57639
Refractometer Reichert SR7000, SR7000DC
SPR sensor slides Reichert 13206060
Syringe pump Cole Palmer 780200C

References

  1. Sandvig, K., van Deurs, B. Membrane traffic exploited by protein toxins. Annu. Rev. Cell Dev. Biol. 18, 1-24 (2002).
  2. Watson, P., Spooner, R. A. Toxin entry and trafficking in mammalian cells. Adv. Drug Deliv. Rev. 58, 1581-1596 (2006).
  3. Carbonetti, N. H. Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol. 5, 455-469 (2010).
  4. Wernick, N. L. B., Chinnapen, D. J. -. F., Cho, J. A., Lencer, W. I. Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins. 2, 310-325 (2010).
  5. Lord, J. M., Roberts, L. M., Lencer, W. I. Entry of protein toxins into mammalian cells by crossing the endoplasmic reticulum membrane: co-opting basic mechanisms of endoplasmic reticulum-associated degradation. Curr. Top. Microbiol. Immunol. 300, 149-168 (2005).
  6. Lencer, W. I. Entry of cholera toxin into polarized human intestinal epithelial cells. Identification of an early brefeldin A sensitive event required for A1-peptide generation. J. Clin. Invest. 92, 2941-2951 (1993).
  7. Orlandi, P. A., Curran, P. K., Fishman, P. H. Brefeldin A blocks the response of cultured cells to cholera toxin. Implications for intracellular trafficking in toxin action. J. Biol. Chem. 268, 12010-12016 (1993).
  8. Sandvig, K., Prydz, K., Hansen, S. H., van Deurs, B. Ricin transport in brefeldin A-treated cells: correlation between Golgi structure and toxic effect. J. Cell. Biol. 115, 971-981 (1991).
  9. Sandvig, K., Prydz, K., Ryd, M., van Deurs, B. Endocytosis and intracellular transport of the glycolipid-binding ligand Shiga toxin in polarized MDCK cells. J. Cell Biol. 113, 553-562 (1991).
  10. van Deurs, B. Estimation of the amount of internalized ricin that reaches the trans-Golgi network. J. Cell Biol. 106, 253-267 (1988).
  11. Tam, P. J., Lingwood, C. A. Membrane cytosolic translocation of verotoxin A1 subunit in target cells. Microbiology. 153, 2700-2710 (2007).
  12. Plaut, R. D., Carbonetti, N. H. Retrograde transport of pertussis toxin in the mammalian cell. Cell. Microbiol. 10, 1130-1139 (2008).
  13. Willander, M., Al-Hilli, S. Analysis of biomolecules using surface plasmons. Methods Mol. Biol. 544, 201-229 (2009).
  14. Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528-539 (2003).
  15. Medaglia, M. V., Fisher, R. J., Golemis, E. . Protein-Protein Interactions. , 255-272 (2002).
  16. Banerjee, T. Contribution of subdomain structure to the thermal stability of the cholera toxin A1 subunit. Biochemistry. 49, 8839-8846 (2010).
  17. Massey, S. Stabilization of the tertiary structure of the cholera toxin A1 subunit inhibits toxin dislocation and cellular intoxication. J. Mol. Biol. 393, 1083-1096 (2009).
  18. Taylor, M. A therapeutic chemical chaperone inhibits cholera intoxication and unfolding/translocation of the cholera toxin A1 subunit. PLoS ONE. 6, e18825-e18825 (2011).
  19. Taylor, M. Hsp90 is required for transfer of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J. Biol. Chem. 285, 31261-31267 (2010).
  20. Donta, S. T., Beristain, S., Tomicic, T. K. Inhibition of heat-labile cholera and Escherichia coli enterotoxins by brefeldin A. Infect. Immun. 61, 3282-3286 (1993).
  21. Donta, S. T., Tomicic, T. K., Donohue-Rolfe, A. Inhibition of Shiga-like toxins by brefeldin. A. J. Infect. Dis. 171, 721-724 (1995).
  22. Nambiar, M. P., Oda, T., Chen, C., Kuwazuru, Y., Wu, H. C. Involvement of the Golgi region in the intracellular trafficking of cholera toxin. J. Cell. Physiol. 154, 222-228 (1993).
  23. Rapak, A., Falnes, P. O., Olsnes, S. Retrograde transport of mutant ricin to the endoplasmic reticulum with subsequent translocation to cytosol. Proc. Natl. Acad. Sci. U. S. A. 94, 3783-3788 (1997).
  24. Xu, Y., Barbieri, J. T. Pertussis toxin-mediated ADP-ribosylation of target proteins in Chinese hamster ovary cells involves a vesicle trafficking mechanism. Infect. Immun. 63, 825-832 (1995).
  25. Yoshida, T., Chen, C. C., Zhang, M. S., Wu, H. C. Disruption of the Golgi apparatus by brefeldin A inhibits the cytotoxicity of ricin, modeccin, and Pseudomonas toxin. Exp. Cell Res. 192, 389-395 (1991).
  26. Godber, B. Direct quantification of analyte concentration by resonant acoustic profiling. Clin. Chem. 51, 1962-1972 (2005).
  27. Bernardi, K. M., Forster, M. L., Lencer, W. I., Tsai, B. Derlin-1 facilitates the retro-translocation of cholera toxin. Mol. Biol. Cell. 19, 877-884 (2008).
  28. Wernick, N. L., De Luca, H., Kam, W. R., Lencer, W. I. N-terminal Extension of the Cholera Toxin A1-chain Causes Rapid Degradation after Retrotranslocation from Endoplasmic Reticulum to Cytosol. J. Biol. Chem. 285, 6145-6152 (2010).
  29. Simpson, J. C. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast. FEBS. Lett. 459, 80-84 (1999).
  30. Veithen, A., Raze, D., Locht, C. Intracellular trafficking and membrane translocation of pertussis toxin into host cells. Int. J. Med. Microbiol. 290, 409-413 (2000).
  31. Castro, M. G., McNamara, U., Carbonetti, N. H. Expression, activity and cytotoxicity of pertussis toxin S1 subunit in transfected mammalian cells. Cell. Microbiol. 3, 45-54 (2001).
  32. Schmitz, A., Herrgen, H., Winkeler, A., Herzog, V. Cholera toxin is exported from microsomes by the Sec61p complex. J. Cell Biol. 148, 1203-1212 (2000).
  33. Teter, K., Allyn, R. L., Jobling, M. G., Holmes, R. K. Transfer of the cholera toxin A1 polypeptide from the endoplasmic reticulum to the cytosol is a rapid process facilitated by the endoplasmic reticulum-associated degradation pathway. Infect. Immun. 70, 6166-6171 (2002).
  34. Winkeler, A., Godderz, D., Herzog, V., Schmitz, A. BiP-dependent export of cholera toxin from endoplasmic reticulum-derived microsomes. FEBS Lett. 554, 439-442 (2003).
  35. Yu, M., Haslam, D. B. Shiga toxin is transported from the endoplasmic reticulum following interaction with the luminal chaperone HEDJ/ERdj3. Infect. Immun. 73, 2524-2532 (2005).
  36. LaPointe, P., Wei, X., Gariepy, J. A role for the protease-sensitive loop region of Shiga-like toxin 1 in the retrotranslocation of its A1 domain from the endoplasmic reticulum lumen. J. Biol. Chem. 280, 23310-23318 (2005).
  37. Teter, K., Jobling, M. G., Sentz, D., Holmes, R. K. The cholera toxin A13 subdomain is essential for interaction with ADP-ribosylation factor 6 and full toxic activity but is not required for translocation from the endoplasmic reticulum to the cytosol. Infect. Immun. 74, 2259-2267 (2006).
  38. Redmann, V. Dislocation of ricin toxin a chains in human cells utilizes selective cellular factors. J. Biol. Chem. 286, 21231-21238 (2011).
  39. Yamaizumi, M., Mekada, E., Uchida, T., Okada, Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell. 15, 245-250 (1978).
  40. Bellisola, G. Reductive activation of ricin and ricin A-chain immunotoxins by protein disulfide isomerase and thioredoxin reductase. Biochem. Pharmacol. 67, 1721-1731 (2004).
  41. McKee, M. L., FitzGerald, D. J. Reduction of furin-nicked Pseudomonas exotoxin A: an unfolding story. Biochemistry. 38, 16507-16513 (1999).
  42. Orlandi, P. A. Protein-disulfide isomerase-mediated reduction of the A subunit of cholera toxin in a human intestinal cell line. J. Biol. Chem. 272, 4591-4599 (1997).
  43. Spooner, R. A. Protein disulphide-isomerase reduces ricin to its A and B chains in the endoplasmic reticulum. Biochem. J. 383, 285-293 (2004).
  44. Fujinaga, Y. Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulm. Mol. Biol. Cell. 14, 4783-4793 (2003).
  45. Guerra, L. Cellular internalization of cytolethal distending toxin: a new end to a known pathway. Cell. Microbiol. 7, 921-934 (2005).
  46. Johannes, L., Tenza, D., Antony, C., Goud, B. Retrograde transport of KDEL-bearing B-fragment of Shiga toxin. J. Biol. Chem. 272, 19554-19561 (1997).
  47. Deeks, E. D. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry. 41, 3405-3413 (2002).
  48. Hazes, B., Read, R. J. Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry. 36, 11051-11054 (1997).
  49. Rodighiero, C., Tsai, B., Rapoport, T. A., Lencer, W. I. Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep. 3, 1222-1227 (2002).
  50. Worthington, Z. E., Carbonetti, N. H. Evading the proteasome: absence of lysine residues contributes to pertussis toxin activity by evasion of proteasome degradation. Infect. Immun. 75, 2946-2953 (2007).
  51. Pande, A. H., Moe, D., Jamnadas, M., Tatulian, S. A., Teter, K. The pertussis toxin S1 subunit is a thermally unstable protein susceptible to degradation by the 20S proteasome. Biochemistry. 45, 13734-13740 (2006).
  52. Pande, A. H. Conformational instability of the cholera toxin A1 polypeptide. J. Mol. Biol. 374, 1114-1128 (2007).

Play Video

Cite This Article
Taylor, M., Banerjee, T., VanBennekom, N., Teter, K. Detection of Toxin Translocation into the Host Cytosol by Surface Plasmon Resonance. J. Vis. Exp. (59), e3686, doi:10.3791/3686 (2012).

View Video