Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Medicine

斑马鱼模型的糖尿病和代谢记忆

Published: February 28, 2013 doi: 10.3791/50232

Summary

代谢记忆的现象,其中糖尿病并发症的坚持和畅通,即使血糖正常,取得药学进展。在这里,我们描述了一个糖尿病斑马鱼模型的独特之处在于它允许参加考试的有丝分裂传播后生成分代谢记忆

Abstract

糖尿病目前影响3.46亿人,这是到2030年预计将增加至400万。从实验室和大规模临床试验的证据已显示,糖尿病并发症的进展不受阻碍地通过即使当血糖控制药学实现代谢记忆现象。基因的表达,可以稳定地改变表观遗传变化,不仅让细胞和生物体能够快速响应不断变化的环境刺激,但也赋予能力的细胞的“记忆”一旦遇到刺激被删除。因此,角色,这些机制在代谢记忆的现象,目前正在研究之中。

我们最近报道的斑马鱼模型的Ⅰ型糖尿病的发展,这种模式的特点表明,糖尿病斑马鱼不仅显示已知的继发性并发症,包括有关的变化糖尿病视网膜病变,糖尿病肾病,影响伤口愈合,但也表现出减值尾鳍再生。这种模式是独特的斑马鱼能够再生受损的胰腺和类似什么,将可望在人类患者移植后恢复正常血糖状态。此外,多个轮尾鳍截肢允许在体内系统中的分离和纯后生效应研究没有潜在的复杂因素,从以前的糖尿病状态。虽然血糖正常胰腺再生,鳍的再生和皮肤伤口愈合的糖尿病继发的持续存在下去。在鳍的再生受损的情况下,这种病理鳍的再生女儿鳍组织的多轮之后仍然保留。这些观察指出,一个基本的表观遗传过程中存在的代谢记忆状态。在这里,我们目前的需要的方法,成功地根全方位的糖尿病和代谢记忆的鱼,并讨论了该模型的优势。

Introduction

糖尿病(DM)是一个日益严重的健康问题,缩短预期寿命,由于特定的微血管疾病(视网膜病变,肾病,神经病变,影响伤口愈合)和大血管并发症(心脏疾病和中风)1。一旦启动,糖尿病并发症的不断进步,即使血糖控制是实现不间断2,3,这种现象被称为代谢记忆或旧的效果。这种现象的存在,临床上在20世纪90年代初的“糖尿病控制和并发症试验(DCCT)”的进展,因为已经得到了多个额外的临床试验4,5,6,7,8,9,10, 11,12,13,14。 DM动物模型,发现相关的病理生理学,糖尿病并发症和代谢记忆的关键。事实上,糖尿病并发症的最早记载于持久性糖尿病犬模型视网膜病变这已被使用各种在体外培养系统和动物模型15,16,17,18,19,20,21几行的实验证据支持的。这些研究清楚地表明,一个的初始高血糖期间的查询结果的永久异常(包括异常的基因表达)的靶器官/细胞和机械地表明表观基因参与。

表观基因组包括所有的染色质修饰为一个特定的细胞类型,并负责细胞的独特的基因表达谱。染色体修改是动态的,在开发过程中,支持细胞分化,对外界刺激反应的,是有丝分裂稳定遗传22,23和可以改变疾病24,25,26。这些表观遗传机制,包括:发布翻译组蛋白修饰,非规范的组蛋白变体包含在octomers通过DNA甲基化,染色质的访问变化,基因通过微RNA的非编码27,28,29,30的表达调控。总之,后生过程使细胞/生物能够快速响应不断变化的环境刺激31,32,33,他们还赋予细胞的能力“记住”这些一旦遇到刺激被删除23,22。因此,改变基因的表达谱是稳定的表观遗传过程产生启动信号(S)的情况下,是可遗传的,通过细胞分裂,他们都获得了极大的兴趣相关的人类疾病包括代谢记忆的分子机制。在DM和表观遗传学在其他疾病中过多的表观遗传变化引起的高血糖会导致细胞的基因调控网络的不断变化显着(审查34,35,36,37,38)平行进步的背景下,新兴的结果。

斑马鱼一直是最大的模式生物,以学生DY脊椎动物的发展,但过去15年来一直呈指数级增长,利用这种微生物为研究人类疾病的39。人类疾病的斑马鱼模型已经建立了覆盖广泛的人类疾病,包括遗传性疾病和后天疾病40,41,42。比其他脊椎动物模式生物斑马鱼的诸多优点,包括高繁殖力,世代时间短,通过成年早期的透明度,降低住房成本和阵列的基因操纵的工具。此外,由于遗传途径和细胞之间的脊椎动物的生理和能力进行高通量药物筛选的广泛保护,斑马鱼已被成功地用于药物发现。

我们已经开发了一个成年斑马鱼模型的I型糖尿病,链脲佐菌素致糖尿病药物。我们这一模型显示,糖尿病斑马鱼T仅显示已知的人类继发性并发症,但除此之外,表现出肢体再生障碍(尾鳍再生)的高血糖环境的后果。此外,我们曾报道过,高血糖斑马鱼恢复到正常血糖水平在2周内由于在生理上正常的血糖状态的内源性胰岛β细胞再生的药物清除。然而,与此相反,这些鱼的肢体再生的仍然减值到相同的程度,在这种并发症的糖尿病急性状态仍然存在,并容易代谢记忆。产生这种模式的主要动力是提供一个系统研究的有丝分裂稳定的表观遗传代谢记忆现象的组件,支持在以前的高血糖环境的背景噪音的情况下。在该协议的结论这里提供的斑马鱼和或选择性组织可以处理任何适合的resea测定rchers需要。我们已经成功地使用了此程序,以确定在DNA甲基化的基因组范围内的持久改变代谢内存状态21被保持在由高血糖引起的。

我们认为,这种斑马鱼模型的I型糖尿病有几个创新的优势,其他的模型系统研究代谢记忆。 1)所有我们的研究可以在体内进行的和以前的高血糖鱼通过返回到正常血糖的内源性胰岛素生产的再生,它们不需要外源性胰岛素注射。因此,这样就避免了复杂的血糖控制可能发生的需要外源性胰岛素在动物的峰值和低谷。 2)如上所述,从以前的糖尿病状态( 晚期糖基化终端产品和活性氧标志物的继续存在)的背景刺激被淘汰,因此可以检查纯粹epig代谢记忆的enetic因素。 3)的实验,可以迅速地进行,因为它需要约80天诱导糖尿病直到代谢记忆检查。 4)尾鳍再生实验非常平易近人,和允许容易的遗传和实验操作,有大量的工具。 5)尾鳍再生提供了一个非常简单的,可量化的方法来评估代谢记忆,因此将允许未来的药物发现。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

所有程序中的“实验动物护理原则的指引”(美国国立卫生研究院出版。85-23号,1985年修订)和罗莎琳德·富兰克林大学实验动物护理和使用委员会的动物协议08-19。

有2个重要的这个手稿中所使用的缩写。 1)DM:是指鱼(300毫克/分升)在急性高血糖状态,并已在至少3个星期。 2)MM:是指鱼,分别为21天(见协议)DM鱼和胰腺再生,恢复血糖控制。这是实现内的去除药物(14)天。从这一点鱼被认为是MM鱼。同样重要的是要注意,鱼,被统称为控制方面的注射次数DM或MM鱼(盐水),在各种温度下的孵育时间和数量和定时的处理是完全相同的尾鳍截肢。

1。糖尿病,DM鱼斑马鱼产生的

  1. 准备恢复和麻醉水箱。恢复水是正常的鱼水。补充足够的麻醉水2 - 苯氧乙醇,1:1,000稀释在正常鱼水的。
  2. 准备的链脲佐菌素(STZ)的0.3%的溶液(在通风橱中)通过添加6毫克STZ 2毫升0.09%的氯化钠,并立即在冰上放置该溶液。这将提供足够的注射液,注射20分钟约20鱼。如果你超过20分钟的标记,停,并作出新的STZ溶液,然后再继续。在一个单独的管等分足够的生理盐水溶液用于控制鱼。一旦STZ溶解所有的后续步骤不需要通风橱中使用。
  3. 填写一个半毫升注射器配有1/2的27号针STZ或控制解决方案,确保没有气泡被困。
  4. 麻醉医师个别tize每条鱼将鱼放置在麻醉水,并等待,直到他们停止游泳运动(1-2分钟)。
  5. 一旦麻醉简要的鱼放在纸巾上,以吸收任何多余的水,将鱼在权衡船和测量质量的鱼。
  6. 将鱼放在一个坚固的表面上(培养皿盖子)注射。
  7. 过去的斜角到腹侧腹膜后方面通过插入针进入腹膜腔的鱼注射链脲佐菌素或对照溶液。
  8. 0.35毫克/克(350毫克/千克)的链脲佐菌素应交付每个鱼和需要,可以以下面的方式计算的0.3%的溶液的体积。
    1. 鱼的质量(克)乘以0.35以产生所需要的毫克量的STZ。
    2. 划分产品上面生成3,得到所需的注射在微升0.3%的溶液的体积。
      示例:对于一个0.5克的鱼:A)0.5×0.35 = 0.175)0.0175 / 3 =0.058毫升= 58微升。
      同样的体积,注射STZ没有控制鱼。一张卷注入每条鱼的质量应该产生和快速参考使用。
  9. 注射后,将恢复水箱中的鱼和他们正常的游泳活动进行监视。一旦这个已经实现了鱼被转移到一个正常的生活罐维持在降低的温度范围为22℃ - 24℃。这减少的温度为高效诱导的高血糖症的糖尿病(DM)的关键。
  10. 虽然高血糖在检测到第一次注射的24小时的范围内,以非常高的高血糖状态的诱导长期斑马鱼需要频繁注射诱导阶段,然后由注射每周检修,如下所示。

第1周:3次注射(第1天,3,5),第2周(12天):注射1次,3周注射1次(19天),
第4周(21天)执行分析的兴趣。

在这一点上,斑马鱼被认为是已经在长期的高血糖状态,并表现出糖尿病视网膜病变,肾病和也鳍的再生受损的并发症。这些被称为作为DM鱼。此外,如果需要的鱼可以保持在高血糖状态下与注射每周检修。在此过程中,大约有5%的死亡可以预期的。

2。采血车和空腹血糖的水平(FBGL)测定

  1. 各组DM和控制鱼类必须有足够的鱼,此法需要这些鱼被牺牲准确地确定本集团的平均FBGL。
  2. 准备标记的PCR管,每一个血液样本含5μl的无菌生理盐水。
  3. 血液采集,麻醉鱼上面,删除所有的水,将鱼放在显微镜载片上,用手术刀,去除头的鱼在基地的厣。
  4. 收集血液(最多2微升),从鱼到幻灯片上被释放,并迅速将其添加到5微升无菌生理盐水上下吹打确保血液不会堵塞。立即将样品放置在冰上。
  5. 确定的血液样品体积通过测量该液体的总体积(生理盐水+血),再减去5微升生理盐水。
  6. 从每个PCR管5微升稀释血液转移到1.5毫升微量离心管中,并确定使用QuantiChrome葡萄糖分析试剂盒的血液中的葡萄糖浓度。这是通过按照制造商的协议无一例外。预期的结果:正常/控制鱼60 mg / dl和DM鱼310毫克/分升。

3。尾鳍再生研究

  1. 麻醉鱼在1.0-1.4。
  2. 地点在培养皿盖和截肢鱼的尾鳍在一条直线上使用无菌大小的10手术刀近端的第一lepidotrichia分支点,同时通过在解剖显微镜观看翅片。
  3. 让鱼恢复,但在1.10的鱼在33°C的再生生长阶段的检测。这是一个既定的温度加速鳍的再生分析。
  4. 的散热片可以在任何时间后截肢成像,但是我们例行检查在24,28和72小时后,反式截面的再生生长。
  5. 麻醉鱼像以前那样(见1.0-1.4),在解剖显微镜下配备了一个摄像头(使用尼康SMZ-1500配备了一个Q-成像相机)的鱼,并收集所有的鳍在1倍放大率的图像与NIS Elements软件。应传播的翅片用于成像,以便它完全伸展不用拉伸或损坏的组织,并应该是免费的,任何水滴。为了一致性,始终把背侧到右侧。
  6. 打印的图像和测量的再生GRO一族的区域使用Image J软件和使用图垫。跟踪围绕新的增长的整个区域,并确定该区域。每次测量应进行5次,取平均值,以确保准确的跟踪。重要的是,所使用的图像没有阴影或水滴的,因为这些有助于扩展面积测量中的错误。
  7. 测量沿背腹轴的截肢站点的长度划分确定在3.6的区域,通过该测定。这允许直接进行比较,不同大小的鱼。

4。产生的代谢记忆(MM)斑马鱼

  1. 启动DM鱼和一组适当的控制,如第1节所述。
  2. 在21天中,确定FBGL本集团的一个子集,分2组,DM成鱼。继续每周STZ注射作为实验的持续时间的DM控制的基团之一。停止注射STZ为第二组和incubat的e的鱼在正常的温度。这些斑马鱼在14天内将恢复正常的血液中的胰岛素和血糖控制通过胰腺再生。这些鱼被称为MM(代谢记忆的鱼)。
  3. 在30天的药物清除后截肢的尾鳍控制,DM和MM鱼类的通过3.2中所描述的方法。
  4. 返回鱼的鳍的再生为期30天的正常供水条件。这使得我们称之为代谢记忆组织的生长。
  5. 在第60天,进行第二次截肢(如3.2中所述)被再生期间,在30-60天的组织内,并执行图1的尾鳍再生吸附试验(3.1-3.7)。
  6. 隔离组织的利益进行分析。协议摘要,请参阅表1。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

Ⅰ型糖尿病的斑马鱼不仅显示已知的继发性并发症视网膜病变和肾病患者,但也表现出额外的复杂性:尾鳍再生受损。这以后的并发症仍然存在,由于代谢记忆中的鱼,已经恢复了正常的血糖控制高血糖期。在图2A中(对照)和图2B(代谢记忆)代表图像再生的散热片,在72小时后截肢捕获。可以量化和图2C DM和MM斑马鱼表现出赤字约为40%,在72小时时相比,控制鱼的赤字。虽然图2C中所包含的数据在90日结束的减值已观察到了150天。

表1中。协议摘要。

图1
图1。卡通描绘截肢代谢记忆实验。网站的的蓝色代表组织暴露于以前的高血糖状态。绿色表示该组织生长后30-60天高血糖。黑虚线表示第一截肢站点执行在第30天及红色表示一个潜在的截肢的网站,将在60天发生。

图2
图2。减少糖尿病(DM)和“代谢记忆体(MM)斑马鱼尾鳍再生。 A.有代表性的的尾鳍图像从控制注入鱼正常量的Regenerative增长72小时后截肢。白色虚线代表了截肢平面和粉红色的的实线demarks的再生生长。确定跟踪的区域内包含的白线的长度正常化翅片大小差异除以的粉红色和白色的线量的再生B.一位代表从任一DM或MM尾鳍图像示出了减少量的再生生长。 72小时后截肢。线和面积测量是相同的面板A. C.图形演示的相对再生率与对照组相比,DM和MM斑马鱼作为。 DM和MM斑马鱼再生产物在72小时的相对百分比(设定为100%的控制)被示出。描述了在天的时间是相对于,STZ政府停止时,代谢记忆组。这些数据产生的一些研究人员和包括鱼每组超过1000。 <强>图2A和图2B是适于从Olsen 等人 43的许可。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

糖尿病是一种疾病,代谢失调,高血糖,最终导致血管损伤,导致许多并发症,坚持,即使血糖正常实现,但药物干预后,初步诊断为。这种持久性的并发症,被称为“代谢记忆和最近一些研究研究,表观遗传机制的作用发挥这种现象。在这里,我们已经详细介绍了协议,允许糖尿病急性代谢记忆(恢复血糖控制)斑马鱼产生的。我们进一步描述的方法,可以采用从以前的糖尿病状态的组件的潜在复杂分隔后生贡献。我们想强调的是,鱼可以在任何时候与任何感兴趣的特定的研究员,因此未来发现的下游应用是无穷无尽的分析研究。

进一步e是在协议中的几个步骤,值得进一步讨论和重点。根据我们的经验,在溶液中的0.3%的链脲佐菌素恶化,约20分钟后失去其效力。因此,我们建议使用一个定时器和一个新的解决方案,在20分钟的时间间隔。在我们最初的尝试产生糖尿病的斑马鱼,我们只使用一个注射过程中的第一个星期,约40%的鱼是成功的。因此,不存在三次注射了严格的要求,但是,当三个执行的成功率超过95%。其次,注入STZ到斑马鱼时重要的是,将针插入,使得在针的斜面是完全允许适当的分配的溶液内的鱼,然而,必须谨慎采取,它并穿透太多防止内部损坏。一旦STZ或控制的解决方案管理的鱼类培养以较低的温度(22°C - 24&D例如:C)。我们不能过分强调,因为没有它的斑马鱼再生的温度降低,不能有效地诱导β细胞(STZ注射)和高血糖的重要性。最后,在我们的手中斑马鱼血液凝结速度非常快,防止必要的毛细作用,有效的血糖仪使用,因此,我们不提倡他们使用。我们发现,描述的QuantiChrome分析不仅是最可靠的,但最简单的方法来执行,并教导实验室人员。总的来说,在协议中描述的技术是不困难的和代糖尿病斑马鱼以上所描述的步骤,如果采取适当的预防措施,但放心。

有极少数的限制,在这个手稿中描述的过程,但是所有药物引起的疾病模型总是有批评他们的脱靶效应拉平。我们建议读者参考我们最初的手稿detailin克这种模式为我们提供了5个独立的证据(包括直接注射STZ成鳍)记录有没有脱靶效应STZ 43。另一个潜在的限制不来的过程本身,而是来自一个事实,即斑马鱼研究的试剂是尚未在其他模式生物如老鼠。幸运的是,这方面的不足的正在被越来越多地用于斑马鱼作为模式生物对人类疾病正在迅速纠正。

总之,详细说明在引进,糖尿病的斑马鱼模型的描述在这里有几个优势,在其他模式生物。更重要的是,它可以让纯粹的后生组件,支持的代谢记忆现象的检查。据预测,将有400亿人患有这种疾病的,我们觉得利用该模型研究的贡献有显着影响人类健康。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

没有利益冲突的声明。

Acknowledgments

这项工作是从艾科卡家庭基金会,罗莎琳德富兰克林大学启动资金,和美国国立卫生研究院格兰特DK092721(RVI)的研究经费支持的。作者希望感谢尼克内壁的援助在准备论文。

Materials

DAY 程序
1
3 DM =,STZ注射液(350毫克/分升),控制注射生理盐水
5 DM =,STZ注射液(350毫克/分升),控制注射生理盐水
12 DM =,STZ注射液(350毫克/分升),控制注射生理盐水
19 DM =,STZ注射液(350毫克/分升),控制注射生理盐水
21 无论是DM鱼或继续执行分析的兴趣,使MM组切除STZ压力。
51 截肢鳍后30天的最后STZ注射的控制,DM和STZ组,以产生MM的组织。
81 重新截肢鳍组织生长中的所有组51和81日间进行再生研究。另外,治疗鱼/组织的检测利益。
Name Company Catalog Number Comments
Streptozocin Sigma Aldrich S0130
2 phenoxyethanol Sigma Aldrich P1126
Scalpel (size 10) Fisher Scientific 089275A
Petri Dishes Fisher Scientific 08-757-13
½ cc syringe, with 27 1/2 gauge needle Fisher Scientific 305620
QuantiChrome glucose assay kit. Bioassay Systems DIGL-100
Sodium Chloride Sigma Aldrich S3014
Dissecting Microscope Nikon TMZ-1500 Any dissecting microscope is fine.
Camera for Imaging Nikon Q imaging Any camera is suitable.
Image J software National Institutes of Health NIH Image
NIS Elements Nikon Any imaging software is suitable.

DOWNLOAD MATERIALS LIST

References

  1. Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 54, 1615-1625 (2005).
  2. Ihnat, M. A., Thorpe, J. E., et al. Reactive oxygen species mediate a cellular 'memory' of high glucose stress signalling. Diabetologia. 50, 1523-1531 (2007).
  3. Ceriello, A., Ihnat, M. A., Thorpe, J. E. Clinical review 2: The "metabolic memory": is more than just tight glucose control necessary to prevent diabetic complications. J. Clin. Endocrinol. Metab. 94, 410-415 (2009).
  4. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N. Engl. J. Med. 329, 977-986 (1993).
  5. Turner, R. C., Cull, C. A., Frighi, V., Holman, R. R. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA. 281, 2005-2012 (1999).
  6. Gaede, P. H., Jepsen, P. V., Larsen, J. N., Jensen, G. V., Parving, H. H., Pedersen, O. B. The Steno-2 study. Intensive multifactorial intervention reduces the occurrence of cardiovascular disease in patients with type 2. 165, 2658-2661 (2003).
  7. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R., Neil, H. A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577-1589 (2008).
  8. Nathan, D. M., Cleary, P. A., et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 353, 2643-2653 (2005).
  9. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. N. Engl. J. Med. 342, 381-389 (2000).
  10. Ismail-Beigi, F., Craven, T., et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 376, 419-430 (2010).
  11. Duckworth, W. C., McCarren, M., Abraira, C. Glucose control and cardiovascular complications: the VA Diabetes Trial. Diabetes Care. 24, 942-945 (2001).
  12. Skyler, J. S., Bergenstal, R., et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care. 32, 187-192 (2009).
  13. Riddle, M. C. Effects of intensive glucose lowering in the management of patients with type 2 diabetes mellitus in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Circulation. 122, 844-846 (2010).
  14. Patel, A., Macmahon, S., et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 358, 2560-2572 (2008).
  15. Engerman, R. L., Kern, T. S. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes. 36, 808-812 (1987).
  16. Hammes, H. P., Klinzing, I., Wiegand, S., Bretzel, R. G., Cohen, A. M., Federlin, K. Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen rat. Invest Ophthalmol. Vis. Sci. 34, 2092-2096 (1993).
  17. Kowluru, R. A. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes. 52, 818-823 (2003).
  18. Kowluru, R. A., Chakrabarti, S., Chen, S. Re-institution of good metabolic control in diabetic rats and activation of caspase-3 and nuclear transcriptional factor (NF-kappaB) in the retina. Acta Diabetol. 41, 194-199 (2004).
  19. Roy, S., Sala, R., Cagliero, E., Lorenzi, M. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc. Natl. Acad. Sci. U.S.A. 87, 404-408 (1990).
  20. Li, S. L., Reddy, M. A., et al. Enhanced proatherogenic responses in macrophages and vascular smooth muscle cells derived from diabetic db/db mice. Diabetes. 55, 2611-2619 (2006).
  21. Olsen, A. S., Sarras, M. P., Leontovich, A., Intine, R. V. Heritable Transmission of Diabetic Metabolic Memory in Zebrafish Correlates With DNA Hypomethylation and Aberrant Gene Expression. Diabetes. , (2012).
  22. Dolinoy, D. C., Jirtle, R. L. Environmental epigenomics in human health and disease. Environ. Mol. Mutagen. 49, 4-8 (2008).
  23. Morgan, D. K., Whitelaw, E. The case for transgenerational epigenetic inheritance in humans. Mamm. Genome. 19, 394-397 (2008).
  24. Ho, L., Crabtree, G. R. Chromatin remodelling during development. Nature. 463, 474-484 (2010).
  25. Jaenisch, R., Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245-254 (2003).
  26. Jirtle, R. L., Sander, M., Barrett, J. C. Genomic imprinting and environmental disease susceptibility. Environ. Health Perspect. 108, 271-278 (2000).
  27. Blomen, V. A., Boonstra, J. Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle. Cell Mol. Life Sci. , (2010).
  28. Bogdanovic, O., Veenstra, G. J. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma. 118, 549-565 (2009).
  29. Mosammaparast, N., Shi, Y. Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu. Rev. Biochem. 79, 155-179 (2010).
  30. Kouzarides, T. Chromatin modifications and their function. Cell. 128, 693-705 (2007).
  31. Gluckman, P. D., Hanson, M. A., Beedle, A. S. Non-genomic transgenerational inheritance of disease risk. Bioessays. 29, 145-154 (2007).
  32. Bjornsson, H. T., Fallin, M. D., Feinberg, A. P. An integrated epigenetic and genetic approach to common human disease. Trends Genet. 20, 350-358 (2004).
  33. Whitelaw, N. C., Whitelaw, E. Transgenerational epigenetic inheritance in health and disease. Curr. Opin. Genet. Dev. 18, 273-279 (2008).
  34. Reddy, M. A., Natarajan, R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc. Res. , (2011).
  35. Villeneuve, L. M., Reddy, M. A., Natarajan, R. Epigenetics: deciphering its role in diabetes and its chronic complications. Clin. Exp. Pharmacol. Physiol. 38, 401-409 (2011).
  36. Pirola, L., Balcerczyk, A., Okabe, J., El-Osta, A. Epigenetic phenomena linked to diabetic complications. Nat. Rev. Endocrinol. 6, 665-675 (2010).
  37. Cooper, M. E., El-Osta, A. Epigenetics: mechanisms and implications for diabetic complications. Circ. Res. 107, 1403-1413 (2010).
  38. Intine, R. V., Sarras, M. P. Jr Metabolic Memory and Chronic Diabetes Complications: Potential Role for Epigenetic Mechanisms. Curr. Diab. Rep. , (2012).
  39. Amsterdam, A., Hopkins, N. Mutagenesis strategies in zebrafish for identifying genes involved in development and disease. Trends Genet. 22, 473-478 (2006).
  40. Lieschke, G. J., Currie, P. D. Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353-367 (2007).
  41. Mandrekar, N., Thakur, N. L. Significance of the zebrafish model in the discovery of bioactive molecules from nature. Biotechnol. Lett. 31, 171-179 (2009).
  42. Goldsmith, J. R., Jobin, C. Think small: zebrafish as a model system of human pathology. J. Biomed. Biotechnol. 2012, 817341 (2012).
  43. Olsen, A. S., Sarras, M. P., Intine, R. V. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus. Wound. Repair Regen. 18, 532-542 (2010).

Tags

72期医学,遗传学,基因组学,生理学,解剖学,代谢组学,生物医学工程,斑马鱼,糖尿病,代谢记忆,组织再生,链脲佐菌素,表观遗传学,
斑马鱼模型的糖尿病和代谢记忆
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Intine, R. V., Olsen, A. S., SarrasMore

Intine, R. V., Olsen, A. S., Sarras Jr., M. P. A Zebrafish Model of Diabetes Mellitus and Metabolic Memory. J. Vis. Exp. (72), e50232, doi:10.3791/50232 (2013).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter