Summary

Quantitative 3D<em> In Silico</em> Modellierung (q3DISM) zerebraler Amyloid-beta Phagozytose in Nagetiermodellen der Alzheimer-Krankheit

Published: December 26, 2016
doi:

Summary

Wir entwickelten eine Methode für die quantitative 3D in silico – Modellierung (q3DISM) zerebraler Amyloid-β (Aß) Phagozytose durch mononukleäre Phagozyten in Nagetiermodellen der Alzheimer-Krankheit. Dieses Verfahren kann für die Quantifizierung von praktisch jedem phagozytischen Ereignis in vivo verallgemeinert werden.

Abstract

Neuroinflammation wird nun als wichtiger ätiologischer Faktor bei der neurodegenerativen Erkrankung anerkannt. Mononukleäre Phagozyten sind angeborene Immunzellen verantwortlich für die Phagozytose und die Räumung von Schutt und Geröll. Diese Zellen sind ZNS-Makrophagen als Mikroglia bekannt und mononukleäre Phagozyten von der Peripherie zu infiltrieren. Die Lichtmikroskopie wurde allgemein verwendet worden, die Phagozytose in Nagetieren oder menschliche Gehirn Proben zu visualisieren. Allerdings haben qualitative Methoden nicht definitive Beweise für in vivo Phagozytose zur Verfügung gestellt. Hier beschreiben wir quantitative 3D in silico – Modellierung (q3DISM), ein robustes Verfahren ermöglicht für echte 3D – Quantifizierung von Amyloid-β (Aß) Phagozytose durch mononukleäre Phagozyten in Nagetier Alzheimer-Krankheit (AD) Modelle. Das Verfahren beinhaltet das fluoreszenz VISUALISIEREN Aß innerhalb Phagolysosome in Nagetier Hirnschnitten verkapselt. Große z-dimensionale konfokalen Datensätze werden dann 3D für die Quantifizierung von A rekonstruiert &# 946; räumlich innerhalb des Phagolysosom colocalized. Wir demonstrieren die erfolgreiche Anwendung von q3DISM zu Maus- und Rattengehirnen, aber diese Methode kann in jedem Gewebe zu praktisch jeder phagozytischen Ereignis verlängert werden.

Introduction

Alzheimer-Krankheit (AD) ist die häufigste Altersdemenz 1 wird durch die zerebrale Amyloid-β (Aß) ist eine Anreicherung als "senile" β-Amyloid – Plaques, chronische Low-Level – neuroinflammation, Tauopathie, Verlust von Neuronen charakterisiert und kognitive Störung 2 . In AD Patienten Gehirn wird bestimmt neuroinflammation durch reaktive Astrozyten und mononukleäre Phagozyten (bezeichnet als Mikroglia, obwohl ihre zentrale vs. peripheren Herkunft unklar bleibt) umgebende Aß Ablagerungen 3. Da die angeborene Immun Wächtern des ZNS, sind Mikroglia zentral Aß zu löschen Gehirn positioniert. Mikroglia Rekrutierung Aß – Plaques jedoch durch sehr wenig begleitet, wenn überhaupt, Aß Phagozytose 4,5. Eine Hypothese ist, dass Mikroglia zunächst neuroprotektive sind durch phagocytozing kleine Versammlungen von Aß. Doch schließlich werden diese Zellen neurotoxisch als überwältigend Aß Belastung und / oder altersbedingten Funktions decline, provoziert Mikroglia in einer dysfunktionalen proinflammatorischen Phänotyp, einen Beitrag zur Neurotoxizität und kognitive Abnahme 6.

Aktuelle genomweite Assoziationsstudien (GWAS) haben einen Cluster von AD Risiko – Allele Gehören Kern angeborenen Immunwege 7 , die 8-11 Phagozytose identifiziert modulieren. Folglich hat die Immunantwort auf die zerebrale Amyloid – Ablagerung ein bedeutendes Interessengebiet geworden, sowohl in Bezug auf AD Ätiologie zu verstehen und für neue therapeutische Ansätze zu entwickeln 14.12. Dennoch gibt es ein wesentliches Bedürfnis nach Methodik Aß Phagozytose in vivo zu bewerten. Um diesen ungedeckten Bedarf adressieren, haben wir quantitative 3D in silico – Modellierung (q3DISM) zu ermöglichen , echte 3D – Quantifizierung von zerebralen Aß Phagozytose durch mononukleäre Phagozyten in Nagetiermodellen der Alzheimer-ähnliche Krankheit entwickelt.

nur durch das Ausmaß beschränkt, auf die sie Krankheit rekapitulieren, Tiermodelle habenbewiesen von unschätzbarem Wert für das Verständnis der AD pathoetiology und für experimentelle Therapeutika zu bewerten. Aufgrund der Tatsache, dass Mutationen in den Presenilin (PS) und Amyloid Precursor Protein (APP) Gene unabhängig autosomal dominant AD verursachen, sind diese mutierten Transgene wurden verwendet, umfassend transgene Nagetiermodellen zu erzeugen. Transgene APP / PS1 – Mäuse Koexpression gleichzeitig "Schwedisch" mutiertes menschliches APP (APP swe) und Δ Exon 9 mutierten humanen Presenilin 1 (PS1ΔE9) vorhanden mit beschleunigten zerebraler Amyloidose und neuroinflammation 15,16. Ferner haben wir bi-transgenen Ratten co – injiziert mit APP swe und PS1ΔE9 Konstrukte (Linie TgF344-AD, auf einem Fischer – 344 – Hintergrund) erzeugt. Im Gegensatz zu transgenen Mausmodellen von zerebraler Amyloidose entwickeln TgF344-AD – Ratten , die zerebrale Amyloid – 17 Tauopathie, apoptotischen Verlust von Neuronen und Verhaltens Beeinträchtigung vorausgeht.

In diesem Bericht beschreiben wir ein Protokoll für die immunostaining Mikroglia, Phagolysosome und Aß-Ablagerungen in Hirnschnitten von APP / PS1-Mäusen und TgF344-AD Ratten und Erwerb von großen z-dimensionalen konfokalen Bildern. Wir Detail in silico Erzeugung und Analyse von echten 3D – Rekonstruktionen aus konfokalen Datensätze ermöglicht die Quantifizierung von Aß – Aufnahme in Mikroglia Phagolysosome. Allgemeiner gesagt, dass die Methodik ausführlich hier können wir nahezu jede Form der Phagozytose in vivo zu quantifizieren.

Protocol

Erklärung der Forschungsethik: Alle Versuche mit hierin aufgeführten Tiere wurden von der University of Southern California Institutional Animal Care und Use Committee (IACUC) und durchgeführt in strikter Übereinstimmung mit den National Institutes of Health Leitlinien und Empfehlungen der Gesellschaft für Evaluierung und Akkreditierung von Labor genehmigt Animal Care international. 1. Gehirn von Nagetieren Isolierung und Vorbereitung für Immunostaining TAG 1: Legen Sie …

Representative Results

Mit dem mehrstufigen Methodik für q3DISM oben beschrieben, sind wir in der Lage Aß – Aufnahme in Monozyten Phagolysosome im Gehirn von APP / PS1 – Mäuse (Abbildung 1) und TgF344-AD – Ratten (Abbildung 2) zu quantifizieren. Daher hat die q3DISM Methodik Analyse von mononukleären Phagozyten in Maus- und Rattenmodellen von AD aktiviert. Interessanterweise wird das Volumen besetzt durch CD68 + Phagolysosomen signifikant erhöht in Iba1 +<…

Discussion

Das Protokoll , das wir in diesem Bericht für echte 3D – Quantifizierung von Aß Phagozytose in vivo durch mononukleäre Phagozyten beschreiben beruht auf einer spezifischen Kennzeichnung von zellulärer und subzellulärer Kompartimente sowie Aß Ablagerungen. Insbesondere verwenden wir Iba1 (ionisiertes-Calcium – Bindungs Adaptor – Molekül 1), ein Protein , das in 18 – Membran Kräuseln und Phagozytose bei Zellaktivierung beteiligt ist, 19, zerebrale mononukleären Phagozyten…

Disclosures

The authors have nothing to disclose.

Acknowledgements

M-V.G-S. is supported by a BrightFocus Foundation Alzheimer’s Disease Research Fellowship Award (A2015309F) and an Alzheimer’s Association, California Southland Chapter Young Investigator Award. T.M.W. is supported by an ARCS Foundation and John Douglas French Alzheimer’s Foundation Maggie McKnight Russell-JDFAF Memorial Postdoctoral Fellowship. This work was supported by the National Institute on Neurologic Disorders and Stroke (1R01NS076794-01, to T.T.), an Alzheimer’s Association Zenith Fellows Award (ZEN-10-174633, to T.T.), and an American Federation of Aging Research/Ellison Medical Foundation Julie Martin Mid-Career Award in Aging Research (M11472, to T.T.). We are grateful for startup funds from the Zilkha Neurogenetic Institute, which helped to make this work possible.  

Materials

Isoflurane Abbott NDC 0044-5260-05
Dissecting scissors VWR 82027-582
Dissecting scissors Blunt tip VWR 82027-588
Tweezers VWR 94024-408
23G needle VWR BD305145
peristaltic pump FH10 Thermo Scientific 72-310-010
PBS 10X Bioland Scientific PBS01-02 Working concentration 1X
Adult Mouse Brain Matrix, Coronal slices, Stainless Steel 1mm  Kent Scientific RBMS-200C
Adult Rat Brain Matrix, Coronal slices, Stainless Steel 1mm  Kent Scientific RBMS-305C 
32% Paraformaldehyde aqueous solution EMS 15714-S Caution: Toxic. Working concentration 4% in PBS
Ethanol VWR 89125-188 Various concentrations, see protocol
Tissue-Tek Uni-cassettes Sakura VWR 25608-774
Embedding and Infiltration Paraffin VWR 15147-839
Microtome Leica RM2125 Leica Biosystems
Disposable Microtome Blades  VWR 25608-964
Water bath Leica HI 1210 Leica Biosystems
Micro slide Superfrost plus VWR 48311-703
Xylene Sigma-Aldrich 534056-4X4L Caution: Toxic 
Target Retrieval Solution 10X DAKO S1699 Working concentration 1X
KimWipes VWR 21905-026
Hydrophobic PAP pen VWR 95025-252
Triton X-100 VWR 97062-208
Normal Donkey Serum Jackson Immuno 017-000-121
Coverslips VWR 48393081
Prolong Gold antifade reagent with DAPI Life Technologies P36935
Glass Slide Rack VWR 100492-942
Iba1 antibody (polyclonal, rabbit) Wako 019-19741  Working concentration 1:200
Iba1 antibody (polyclonal, goat) LifeSpan Bioscience LS-B2645 Working concentration 1:200
rat CD68 [KP1] antibody (monoclonal, mouse) Abcam ab955 Working concentration 1:200
mouse CD68 [FA-11] antibody (monoclonal, rat) Abcam ab53444 Working concentration 1:200
mouse CD107a (LAMP1) antibody (monoclonal, rat) Affymetrix 14-1071 Working concentration 1:100
Beta-Amyloid, 17-24 (4G8) antibody (monoclonal, mouse) Covance SIG-39220 Working concentration 1:200
Beta-Amyloid, 1-16 (6E10) antibody (monoclonal, mouse) Covance SIG-39320 Working concentration 1:200
OC antibody (polyclonal, rabbit) Gifted by D. H. Cribbs and C. G. Glabe (UC Irvine) Working concentration 1:200
Alexa Fluor 488  mouse secondary antibody Invitrogen A-11001 Working concentration 1:1000
Alexa Fluor 488  rat secondary antibody Invitrogen A-11006 Working concentration 1:1000
Alexa Fluor 594 rabbit secondary antibody Invitrogen A-11037 Working concentration 1:1000
Alexa Fluor 594 goat secondary antibody Invitrogen A-11080 Working concentration 1:1000
Alexa Fluor 647 mouse secondary antibody Invitrogen A-21235 Working concentration 1:1000
Alexa Fluor 647 rabbit secondary antibody Invitrogen A-21443 Working concentration 1:1000
Immersion oil Nikon 
A1 Confocal microscope Nikon 
NIS Elements Advanced Research software Nikon 
Imaris:Bitplane software version 7.6 Bitplane "coloc" and "supass" modules are used. Alternatively, the open-source freeware ImageJ can be used for colocalization analysis of confocal z-stacks datasets.

References

  1. Brookmeyer, R., et al. National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dement. 7 (1), 61-73 (2011).
  2. Selkoe, D. J. Alzheimer’s disease. Cold Spring Harb Perspect Biol. 3 (7), (2011).
  3. Heneka, M. T., Golenbock, D. T., Latz, E. Innate immunity in Alzheimer’s disease. Nat Immunol. 16 (3), 229-236 (2015).
  4. Mawuenyega, , et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 330 (6012), 1774 (2010).
  5. Hickman, S. E., Allison, E. K., El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci. 28 (33), 8354-8360 (2008).
  6. Johnston, H., Boutin, H., Allan, S. M. Assessing the contribution of inflammation in models of Alzheimer’s disease. Biochem Soc Trans. 39 (4), 886-890 (2011).
  7. Gjoneska, E., et al. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer’s disease. Nature. 518 (7539), 365-369 (2015).
  8. Reitz, C., Mayeux, R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol. 88 (4), 640-651 (2014).
  9. Hazrati, L. -. N., et al. Genetic association of CR1 with Alzheimer’s disease: a tentative disease mechanism. Neurobiol Aging. 33 (12), 2949 (2012).
  10. Griciuc, A., et al. Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta. Neuron. , 1-13 (2013).
  11. Li, X., Long, J., He, T., Belshaw, R., Scott, J. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer’s disease. Scientific reports. 5, 12393 (2015).
  12. Weitz, T. M., Town, T. Microglia in Alzheimers Disease: “Its All About Context”. Int J Alzheimers Dis. , 314185 (2012).
  13. Guillot-Sestier, M. -. V., Doty, K. R., Town, T. Innate Immunity Fights Alzheimer’s Disease. Trends Neurosci. 38 (11), 674-681 (2015).
  14. Guillot-Sestier, M. -. V., Town, T. Innate immunity in Alzheimer’s disease: a complex affair. CNS Neurol Disord Drug Targets. 12 (5), 593-607 (2013).
  15. Jankowsky, J. L., Slunt, H. H., Ratovitski, T., Jenkins, N. A., Copeland, N. G., Borchelt, D. R. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol Eng. 17 (6), 157-165 (2001).
  16. Guillot-Sestier, M. -. V., et al. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron. 85 (3), 534-548 (2015).
  17. Cohen, R. M., et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. J Neurosci. 33 (15), 6245-6256 (2013).
  18. Imai, Y., Ibata, I., Ito, D., Ohsawa, K., Kohsaka, S. A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem. Biophys. Res. Commun. 224 (3), 855-862 (1996).
  19. Ohsawa, K., Imai, Y., Sasaki, Y., Kohsaka, S. Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J Neurochem. 88 (4), 844-856 (2004).
  20. Bandyopadhyay, U., Nagy, M., Fenton, W. A., Horwich, A. L. Absence of lipofuscin in motor neurons of SOD1-linked ALS mice. Proc Natl Acad Sci U S A. 111 (30), 11055-11060 (2014).
  21. Holness, C. L., Simmons, D. L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood. 81 (6), 1607-1613 (1993).
  22. Connor, T., et al. Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron. 60 (6), 988-1009 (2008).
  23. Cai, D., et al. Phospholipase D1 corrects impaired betaAPP trafficking and neurite outgrowth in familial Alzheimer’s disease-linked presenilin-1 mutant neurons. Proc Natl Acad Sci U S A. 103 (6), 1936-1940 (2006).
  24. Marsh, S. E., et al. The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc Natl Acad Sci U S A. 113 (9), 1316-1325 (2016).
  25. Lefterov, I., et al. Apolipoprotein A-I deficiency increases cerebral amyloid angiopathy and cognitive deficits in APP/PS1DeltaE9 mice. J Biol. Chem. 285 (47), 36945-36957 (2010).
  26. Blurton-Jones, M., et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A. 106 (32), 13594-13599 (2009).
  27. Stalder, M., Deller, T., Staufenbiel, M., Jucker, M. 3D-Reconstruction of microglia and amyloid in APP23 transgenic mice: no evidence of intracellular amyloid. Neurobiol Aging. 22 (3), 427-434 (2001).
  28. Leinenga, G., Götz, J. Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model. Sci Transl Med. 7 (278), 33 (2015).
  29. Liarski, V. M., et al. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci Transl Med. 6 (230), 46 (2014).
  30. Nichols, L., Pike, V. W., Cai, L., Innis, R. B. Imaging and in vivo quantitation of beta-amyloid: an exemplary biomarker for Alzheimer’s disease. Biol Psychiatry. 59 (10), 940-947 (2006).
  31. Skovronsky, D. M., Zhang, B., Kung, M. P., Kung, H. F., Trojanowski, J. Q., Lee, V. M. In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 97 (13), 7609-7614 (2000).
  32. Lian, H., Litvinchuk, A., Chiang, A. C. -. A., Aithmitti, N., Jankowsky, J. L., Zheng, H. Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer’s Disease. J Neurosci. 36 (2), 577-589 (2016).
  33. Novotny, R., et al. Conversion of Synthetic Aβ to In Vivo Active Seeds and Amyloid Plaque Formation in a Hippocampal Slice Culture Model. J Neurosci. 36 (18), 5084-5093 (2016).
  34. Tartaro, K., et al. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat. J Immunotoxicol. 12 (3), 239-246 (2015).

Play Video

Cite This Article
Guillot-Sestier, M., Weitz, T. M., Town, T. Quantitative 3D In Silico Modeling (q3DISM) of Cerebral Amyloid-beta Phagocytosis in Rodent Models of Alzheimer’s Disease. J. Vis. Exp. (118), e54868, doi:10.3791/54868 (2016).

View Video