Summary

MicroRNA-gebaseerde verordening van Picornavirus Tropism

Published: February 06, 2017
doi:

Summary

We describe here a method for regulating picornavirus tropism by incorporating sequences complementary to specific microRNAs into the viral genome. This protocol can be adapted to all different classes of viruses with modifications based upon the length and nature of their life cycle.

Abstract

Cell-specific restriction of viral replication without concomitant attenuation can benefit vaccine development, gene therapy, oncolytic virotherapy, and understanding the biological properties of viruses. There are several mechanisms for regulating viral tropism, however they tend to be virus class specific and many result in virus attenuation. Additionally, many viruses, including picornaviruses, exhibit size constraints that do not allow for incorporation of large amounts of foreign genetic material required for some targeting methods. MicroRNAs are short, non-coding RNAs that regulate gene expression in eukaryotic cells by binding complementary target sequences in messenger RNAs, preventing their translation or accelerating their degradation. Different cells exhibit distinct microRNA signatures and many microRNAs serve as biomarkers. These differential expression patterns can be exploited for restricting gene expression in cells that express specific microRNAs while maintaining expression in cells that do not. In regards to regulating viral tropism, sequences complementary to specific microRNAs are incorporated into the viral genome, generally in the 3′ non-coding regions, targeting them for destruction in the presence of the cognate microRNAs thus preventing viral gene expression and/or replication. MicroRNA-targeting is a technique that theoretically can be applied to all viral vectors without altering the potency of the virus in the absence of the corresponding microRNAs. Here we describe experimental methods associated with generating a microRNA-targeted picornavirus and evaluating the efficacy and specificity of that targeting in vitro. This protocol is designed for a rapidly replicating virus with a lytic replication cycle, however, modification of the time points analyzed and the specific virus titration readouts used will aid in the adaptation of this protocol to many different viruses.

Introduction

De ontwikkeling van een breed toepasbare, eenvoudige en effectieve werkwijze voor het manipuleren van een vector met beperkte tropisme biedt een grote kans om de veiligheid, biologische begrip en therapeutische bruikbaarheid virussen verbeteren. Verschillende mechanismen bestaan ​​om virale tropisme waaronder transductional, transcriptionele en translationele gebaseerde technieken richten. Deze werkwijzen zijn niet algemeen voor alle vectorsystemen, defect signaalwegen in doelcellen vereisen of vereisen grote insertie van coderende sequenties in het virale genoom. Bovendien kunnen deze werkwijzen resulteren in verzwakking van het virus aanzienlijk belemmeren hun therapeutische activiteit en het beperken inzicht in het ongemodificeerde systeem.

MicroRNAs zijn kleine (22-25 nucleotiden), niet-coderende RNA dat gen silencing mediëren in eukaryote cellen. MicroRNA functie door het binden van complementaire doelwit sequenties (response-elementen) in messenger RNA (mRNA) resulti ng in transcript destabilisatie, degradatie of translationele repressie. MicroRNAs gewoonlijk binden responselementen met gedeeltelijke complementariteit en op kleine wijzigingen in genexpressie 1, 2, 3, 4, 5. Belangrijker veranderingen in genexpressie kan worden bereikt door verhoging van de complementariteit responselement 6. Duizenden mature microRNAs zijn geïdentificeerd in verschillende soorten en vele vertonen differentiële expressie patronen in verschillende cel- en weefseltypes 7, 8, 9. Deze microRNA handtekeningen kunnen worden benut celspecifieke beperking van virusreplicatie door opname perfect complementair responselementen in het virale genoom 10,= "xref"> 11, 12, 13. De algemene doelstelling van deze microRNA-targeting techniek is om het tropisme van een vector genoom te bedienen zonder extra demping.

De bruikbaarheid van deze methode voor het reguleren van virale tropisme werd oorspronkelijk aangetoond lentivirale vectoren transgenexpressie beperking op specifieke weefsels 14, 15, 16. Deze techniek is vervolgens toegepast op een breed scala van replicerende en niet-replicerende virale vectoren voor verbeterde gentherapie en de veiligheidsprofielen van vele oncolytische virussen verbeteren door geen ongewenste toxiciteit in normale weefsels 10, 11, 12, 13, 17 . Ook is gebruik gemaakt veilig en e genererenffectieve levende verzwakte vaccins en aan betere vaccins virus en fabricageprocessen 18, 19, 20, 21. MicroRNA-targeting van een vector kunnen zorgen voor een demping bij gevaccineerde hosts of gerichte systemen met behoud van wild-type groeiniveaus van de producentenprijzen systemen. MicroRNA targeting kan ook worden gebruikt om de biologische veiligheid van virussen voor onderzoeksdoeleinden te verbeteren door het beperken transmissie in één soort (bijvoorbeeld mens) terwijl het bericht in het andere hosts 22. Tot slot, microRNA-targeting kunnen zorgen voor een diepgaande analyses van virale levenscycli en de specifieke rol van celtypen in de pathogenese en immuniteit door het scheiden van de virale groei van 23, 24, 25, 26.

Deze techniek biedt een alternative targeting methode die gemakkelijk wordt uitgevoerd en geldt voor alle virus systemen. Daarnaast is de steeds groeiende verzameling van volwassen microRNAs met differentiële expressie patronen in specifieke celtypen maakt deze techniek zeer veelzijdig. MicroRNA-based targeting is doeltreffend voor verschillende virus systemen bewezen zonder dat systeem functioneren. De belangrijkste beperkingen van deze techniek omvatten trial and error optimalisatie, de mogelijkheid van ontsnapping mutaties en potentiële off-target effecten op de endogene transcripten. Toch kunnen deze beperkingen in het algemeen worden overwonnen met geoptimaliseerd en rationeel antwoord element design. Positieve-sense RNA-virussen vaak bijzonder reageert op microRNA targeting om als gevolg van de positieve-sense oriëntatie van het genoom en de beschikbaarheid van de transcripten aan de machine tijdens het microRNA volledig cytoplasmatische replicatiecyclus. Hier beschrijven we een protocol voor het genereren van een microRNA-gerichte picornavirus en de experimental tot de efficiëntie en specificiteit van deze targeting in vitro verifiëren.

Protocol

1. Klonen microRNA Response Elements in het virale genoom Ontwerp microRNA reactie element inserts. Identificeer de gewenste microRNA en de bijbehorende doelsequentie. Verschillende databases zijn beschikbaar met volwassen microRNA sequenties. Aanbevolen: http://www.mirbase.org/ 9, 27, 28, 29, 30. <stro…

Representative Results

Tabel 1 geeft de resultaten een typisch voorbeeld van een titratie test voor een picornavirus en beschrijft hoe de weefselkweek infectieuze dosis van 50% te berekenen. Een schematische weergave van het totale concept van microRNA gebaseerde regulering van virale tropisme in dit handschrift beschreven wordt getoond in figuur 1. De oriëntatie van microRNA tot responselement tijdens intracellulaire interacties juist ontwerp van responselement oligonucleoti…

Discussion

Het ontwerp, de samenstelling en lokaliseren van microRNA responselementen in het virale genoom zal dicteren gericht op effectiviteit en specificiteit. Het optimaliseren van deze zullen trial and error nodig. Echter, rationele ontwerp op RNA structuuranalyse en eerdere studies van virale replicatie en microRNA handtekeningen helpt bij de uitvoering van deze techniek met minimale optimalisatie 10, 11, 12, <sup class="…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Al and Mary Agnes McQuinn, the Richard M. Schulze Foundation, and an NIH Relief Grant from the Mayo Clinic funded representative work described here.

Materials

RE encoding Oligonucleotides IDT PAGE-Purified Ultramer Sequence Designed by Investigator
Oligonucleotides encoding unique restriction site IDT 25nM Sequence Designed by Investigator
Expand High Fidelity PCR Kit Sigma Aldrich 11732641001 Many other High Fidelity Polymerase PCR kits available
T4 DNA Ligase System NEB M0202S
MEGAscript Kit ThermoFisher Scientific AM1333
MEGAclear Kit ThermoFisher Scientific AM1908
0.5 M EDTA ThermoFisher Scientific AM9260G RNase-free
5 M NH4 Acetate ThermoFisher Scientific N/A Comes in MEGAclear Kit
Ethanol ThermoFisher Scientific BP2818100
Nuclease-free Water Fisher Scientific AM9938
TransIT-2020 Transfection Reagent Mirus MIR 5404
TransIT-mRNA Transfection Reagent Mirus MIR 2225
0.2 μm syringe filter Millipore SLGP033RS
2mL Screw-Cap Tubes Sarstedt 72.694.005
Cell Scrapers Fisher Scientific 08-100-241
MicroRNA Mimics Dharmacon Varied
MTT Cell Proliferation Assay ATCC 30-1010K
Subcloning Efficiency DH5α Competent Cells ThermoFisher Scientific 18265017
pBlueScript II Vectors Agilent Technologies Variable (e.g. 212205) There are different plasmids with T7 or T3 promoters and variable cloning sites to enable cloning and RNA transcription.

References

  1. Wightman, B., Ha, I., Ruvkun, G. Posttranscriptional Regulation of the Heterochronic Gene Lin-14 By Lin-4 Mediates Temporal Pattern Formation in C. Elegans. Cell. 75 (5), 855-862 (1993).
  2. Lee, R. C., Feinbaum, R. L., Ambros, V. The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs With Antisense Complementarity to Lin-14. Cell. 75 (5), 843-854 (1993).
  3. Ambros, V. The Functions of Animal MicroRNAs. Nature. 431 (7006), 350-355 (2004).
  4. Bartel, D. P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 116 (2), 281-297 (2004).
  5. Bartel, D. P. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 136 (2), 215-233 (2009).
  6. Benitez, A. A., Spanko, L. A., Bouhaddou, M., Sachs, D., Tenoever, B. R. Engineered Mammalian RNAi Can Elicit Antiviral Protection That Negates the Requirement for the Interferon Response. Cell Rep. 13 (7), 1456-1466 (2015).
  7. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., Tuschl, T. Identification of Tissue-Specific MicroRNAs From Mouse. Curr Biol. 12 (9), 735-739 (2002).
  8. Landgraf, P., et al. A Mammalian MicroRNA Expression Atlas Based on Small RNA Library Sequencing. Cell. 129 (7), 1401-1414 (2007).
  9. Griffiths-Jones, S., Saini, H. K., Van Dongen, S., Enright, A. J. miRBase: Tools for MicroRNA Genomics. Nucleic Acids Res. 36, D154-D158 (2008).
  10. Kelly, E. J., Russell, S. J. MicroRNAs and the Regulation of Vector Tropism. Mol Ther. 17 (3), 409-416 (2009).
  11. Brown, B. D., Naldini, L. Exploiting and Antagonizing MicroRNA Regulation for Therapeutic and Experimental Applications. Nat Rev Genet. 10 (8), 578-585 (2009).
  12. Tenoever, B. R. RNA Viruses and the Host MicroRNA Machinery. Nat Rev Microbiol. 11 (3), 169-180 (2013).
  13. Ruiz, A. J., Russell, S. J. MicroRNAs and Oncolytic Viruses. Curr Opin Virol. 13, 40-48 (2015).
  14. Brown, B. D., Venneri, M. A., Zingale, A., Sergi Sergi, L., Naldini, L., L, Endogenous MicroRNA Regulation Suppresses Transgene Expression in Hematopoietic Lineages and Enables Stable Gene Transfer. Nat Med. 12 (5), 585-591 (2006).
  15. Brown, B. D., et al. A MicroRNA-Regulated Lentiviral Vector Mediates Stable Correction of Hemophilia B Mice. Blood. 110 (13), 4144-4152 (2007).
  16. Brown, B. D., et al. Endogenous MicroRNA Can be Broadly Exploited to Regulate Transgene Expression According to Tissue, Lineage and Differentiation State. Nat Biotechnol. 25 (12), 1457-1467 (2007).
  17. Ruiz, A. J., Hadac, E. M., Nace, R. A., Russell, S. J. MicroRNA-Detargeted Mengovirus for Oncolytic Virotherapy. J Virol. 90 (8), 4078-4092 (2016).
  18. Vignuzzi, M., Wendt, E., Andino, R. Engineering Attenuated Virus Vaccines By Controlling Replication Fidelity. Nat Med. 14 (2), 154-161 (2008).
  19. Barnes, D., Kunitomi, M., Vignuzzi, M., Saksela, K., Andino, R. Harnessing Endogenous MiRNAs to Control Virus Tissue Tropism as a Strategy for Developing Attenuated Virus Vaccines. Cell Host Microbe. 4 (3), 239-248 (2008).
  20. Perez, J. T., Pham, A. M., Lorini, M. H., Chua, M. A., Steel, J., Tenoever, B. R. MicroRNA-Mediated Species-Specific Attenuation of Influenza a Virus. Nat Biotechnol. 27 (6), 572-576 (2009).
  21. Saydaminova, K., et al. Efficient Genome Editing in Hematopoietic Stem Cells With Helper-Dependent Ad5/35 Vectors Expressing Site-Specific Endonucleases Under MicroRNA Regulation. Mol Ther Methods Clin Dev. 1, 14057 (2015).
  22. Langlois, R. A., et al. MicroRNA-Based Strategy to Mitigate the Risk of Gain-of-function Influenza Studies. Nat Biotechnol. 31 (9), 844-847 (2013).
  23. Kelly, E. J., Hadac, E. M., Cullen, B. R., Russell, S. J. MicroRNA Antagonism of the Picornaviral Life Cycle: Alternative Mechanisms of Interference. PLoS Pathog. 6 (3), e1000820 (2010).
  24. Pham, A. M., Langlois, R. A., Tenoever, B. R. Replication in Cells of Hematopoietic Origin is Necessary for Dengue Virus Dissemination. PLoS Pathog. 8 (1), 1002465 (2012).
  25. Langlois, R. A., Varble, A., Chua, M. A., García-Sastre, A., Tenoever, B. R. Hematopoietic-Specific Targeting of Influenza a Virus Reveals Replication Requirements for Induction of Antiviral Immune Responses. Proc Natl Acad Sci U S A. 109 (30), 12117-12122 (2012).
  26. Chua, M. A., Schmid, S., Perez, J. T., Langlois, R. A., Tenoever, B. R. Influenza a Virus Utilizes Suboptimal Splicing to Coordinate the Timing of Infection. Cell Rep. 3 (1), 23-29 (2013).
  27. Griffiths-Jones, S. The MicroRNA Registry. Nucleic Acids Res. 32, D109-D111 (2004).
  28. Griffiths-Jones, S., Grocock, R. J., Van Dongen, S., Bateman, A., Enright, A. J. miRBase: MicroRNA Sequences, Targets and Gene Nomenclature. Nucleic Acids Res. 34, D140-D144 (2006).
  29. Kozomara, A., Griffiths-Jones, S. miRBase: Integrating MicroRNA Annotation and Deep-Sequencing Data. Nucleic Acids Res. 39, D152-D157 (2011).
  30. Kozomara, A., Griffiths-Jones, S. miRBase: Annotating High Confidence MicroRNAs Using Deep Sequencing Data. Nucleic Acids Res. 42, D68-D73 (2014).
  31. Heckman, K. L., Pease, L. R. Gene Splicing and Mutagenesis By PCR-Driven Overlap Extension. Nat Protoc. 2 (4), 924-932 (2007).
  32. . Basic Methods in Cellular and Molecular Biology. Gel Purification. Available from: https://www.jove.com/science-education/5063/gel-purification (2016)
  33. . Basic Methods in Cellular and Molecular Biology. DNA Ligation Reactions Available from: https://www.jove.com/science-education/5069/dna-ligation-reactions (2016)
  34. . Basic Methods in Cellular and Molecular Biology. Bacterial Transformation: The Heat Shock Method Available from: https://www.jove.com/science-education/5059/bacterial-transformation-the-heat-shock-method (2016)
  35. Zhang, S., Cahalan, M. D. Purifying Plasmid DNA From Bacterial Colonies Using the Qiagen Miniprep Kit. J Vis Exp. (6), e247 (2007).
  36. . Basic Methods in Cellular and Molecular Biology. Molecular Cloning. Available from: https://www.jove.com/science-education/5074/molecular-cloning (2016)
  37. Kueberuwa, G., Cawood, R., Tedcastle, A., Seymour, L. W. Tissue-Specific Attenuation of Oncolytic Sindbis Virus Without Compromised Genetic Stability. Hum Gene Ther Methods. 25 (2), 154-165 (2014).
  38. Grundhoff, A., Sullivan , C. S. Virus-Encoded MicroRNAs. Virology. 411 (2), 325-343 (2011).
  39. Kincaid, R. P., Sullivan, C. S. Virus-Encoded MicroRNAs: An Overview and a Look to the Future. PLoS Pathog. 8 (12), e1003018 (2012).
  40. Thomson, D. W., Bracken, C. P., Goodall, G. J. Experimental Strategies for MicroRNA Target Identification. Nucleic Acids Res. 39 (16), 6845-6853 (2011).
  41. Thomson, D. W., Dinger, M. E. Endogenous MicroRNA Sponges: Evidence and Controversy. Nat Rev Genet. 17 (5), 272-283 (2016).
  42. Mullokandov, G., et al. High-Throughput Assessment of MicroRNA Activity and Function Using MicroRNA Sensor and Decoy Libraries. Nat Methods. 9 (8), 840-846 (2012).
  43. Thomson, D. W., et al. Assessing the Gene Regulatory Properties of Argonaute-Bound Small RNAs of Diverse Genomic Origin. Nucleic Acids Res. 43 (1), 470-481 (2015).
  44. Wu, S., et al. Multiple MicroRNAs Modulate P21cip1/waf1 Expression By Directly Targeting Its 3′ Untranslated Region. Oncogene. 29 (15), 2302-2308 (2010).
  45. Vo, N. K., Dalton, R. P., Liu, N., Olson, E. N., Goodman, R. H. Affinity Purification of MicroRNA-133a With the Cardiac Transcription Factor, Hand2. Proc Natl Acad Sci U S A. 107 (45), 19231-19236 (2010).
  46. Arvey, A., Larsson, E., Sander, C., Leslie, C. S., Marks, D. S. Target mRNA Abundance Dilutes MicroRNA and siRNA Activity. Mol Syst Biol. 6, 363 (2010).
  47. Garcia, D. M., Baek, D., Shin, C., Bell, G. W., Grimson, A., Bartel, D. P. Weak Seed-Pairing Stability and High Target-Site Abundance Decrease the Proficiency of Lsy-6 and Other MicroRNAs. Nat Struct Mol Biol. 18 (10), 1139-1146 (2011).
  48. Jinek, M., Doudna, J. A. A Three-Dimensional View of the Molecular Machinery of RNA Interference. Nature. 457 (7228), 405-412 (2009).
  49. Pasquinelli, A. E. MicroRNAs and Their Targets: Recognition, Regulation and an Emerging Reciprocal Relationship. Nat Rev Genet. 13 (4), 271-282 (2012).
  50. Finnegan, E. F., Pasquinelli, A. E. MicroRNA Biogenesis: Regulating the Regulators. Crit Rev Biochem Mol Biol. 48 (1), 51-68 (2013).
  51. Ha, M., Kim, V. N. Regulation of MicroRNA Biogenesis. Nat Rev Mol Cell Biol. 15 (8), 509-524 (2014).
  52. Zuker, M. Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucleic Acids Res. 31 (13), 3406-3415 (2003).
  53. Reuter, J. S., Mathews, D. H. RNAstructure: Software for RNA Secondary Structure Prediction and Analysis. BMC Bioinformatics. 11, 129 (2010).
  54. Khan, A. A., Betel, D., Miller, M. L., Sander, C., Leslie, C. S., Marks, D. S. Transfection of Small RNAs Globally Perturbs Gene Regulation By Endogenous MicroRNAs. Nat Biotechnol. 27 (6), 549-555 (2009).
  55. Skalsky, R. L., Cullen, B. R. Viruses, MicroRNAs, and Host Interactions. Annu Rev Microbiol. 64, 123-141 (2010).
  56. Sugio, K., et al. Enhanced Safety Profiles of the Telomerase-Specific Replication-Competent Adenovirus By Incorporation of Normal Cell-Specific MicroRNA-Targeted Sequences. Clin Cancer Res. 17 (9), 2807-2818 (2011).
  57. Fu, X., Rivera, A., Tao, L., De Geest, B., Zhang, X. Construction of an Oncolytic Herpes Simplex Virus That Precisely Targets Hepatocellular Carcinoma Cells. Mol Ther. 20 (2), 339-346 (2012).
  58. Yao, W., Guo, G., Zhang, Q., Fan, L., Wu, N., Bo, Y. The Application of Multiple MiRNA Response Elements Enables Oncolytic Adenoviruses to Possess Specificity to Glioma Cells. Virology. 458-459, 69-82 (2014).
  59. Bofill-De Ros, X., Gironella, M., Fillat, C. Mir-148a- and Mir-216a-regulated Oncolytic Adenoviruses Targeting Pancreatic Tumors Attenuate Tissue Damage Without Perturbation of MiRNA Activity. Mol Ther. 22 (9), 1665-1677 (2014).
  60. Baertsch, M. A., et al. MicroRNA-Mediated Multi-Tissue Detargeting of Oncolytic Measles Virus. Cancer Gene Ther. 21 (9), 373-380 (2014).

Play Video

Cite This Article
Ruiz, A. J., Russell, S. J. MicroRNA-based Regulation of Picornavirus Tropism. J. Vis. Exp. (120), e55033, doi:10.3791/55033 (2017).

View Video