Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Bioengineering

切り替え可能な音響光学分解能光音響顕微鏡 Published: June 26, 2017 doi: 10.3791/55810

Summary

ここでは、インビボで同じ試料上の浅い深度での高分解能画像化と低分解能深部組織画像化の両方が可能な切り替え可能な音響分解能(AR)および光学分解能(OR)光音響顕微鏡法(AR-OR-PAM)

Abstract

光音響顕微鏡法(PAM)は、オプティクスと超音波の両方を組み合わせた高速成長型のインビボイメージングモダリティであり、光学的平均自由行程(肌で1mm以下)を超えて高分解能で侵入します。単一のモダリティで超音波の高空間分解能と光吸収コントラストを組み合わせることにより、この技術は深部組織に浸透することができます。光音響顕微鏡検査システムは、音響分解能が低く、プローブが深く、または光学分解能が高く、プローブが浅くてもよい。単一のシステムで高い空間分解能と深度の浸透を達成することは困難です。この研究は、浅い深度での高解像度イメージングとインビボでの同じサンプルの低解像度深部組織イメージングの両方が可能なAR-OR-PAMシステムを提示する。光学集束を用いた1.4mmの撮像深度を有する4μmの横分解能と、音響集束を用いた7.8mmの撮像深度を有する45μmの横分解能が成功した組み合わせたシステムを使って実証されました。ここで、生体内での小動物の血管系画像化を行って、その生物学的イメージング能力を実証する。

Introduction

光干渉断層撮影法、共焦点顕微鏡法、および多光子顕微鏡法などの高分解能光画像化様式は、多数の利点を有する。しかしながら、空間分解能は、撮像深度が増加するにつれて著しく減少する。これは、軟組織1,2における光輸送の拡散性のためである。光励起と超音波検出の統合は、深部組織における高解像度光学イメージングの課題を克服する解決策を提供する。光音響顕微鏡(PAM)は、他の光学イメージング様式よりも深いイメージングを提供することができるそのような様相の1つである。これは、インビボの構造的、機能的、分子的および細胞イメージングに首尾よく適用されている3,4,5,6,7,8 、 > 9,10,11,12,13の研究を行った。

PAMでは、短いレーザーパルスが組織/試料を照射する。発色団( 例えば、メラニン、ヘモグロビン、水など )による光の吸収は、温度上昇をもたらし、その結果、音響波(光音響波)の形態の圧力波が生成される。生成された光音響波は、組織境界外の広帯域超音波変換器によって検出することができる。弱い光学的およびタイトな音響集束を利用して、深部組織撮像は音響解像度光音響顕微鏡(AR-PAM)14,15,16において達成することができる。 ARでは-PAM、45μmの横方向分解能、3mmまでの撮像深度が実証されている15 。単一毛細管(約5μm)を音響的に解決するためには、> 400MHzの中心周波数で動作する超音波トランスデューサが必要である。このような高い周波数では、侵入深さは100μm未満である。タイトな光学的集束を使用して、密着した音響集束によって生じる問題を解決することができる。光学的解像度光音響顕微鏡法(OR-PAM)は、単一の毛細血管または単一の細胞17を分解することができ、0.5μmの横方向分解能は18,19,20,21,22,23,24に達している。フォトニックナノジェットの使用は、回折限界解像度以上の解像度を達成するのに役立ちますn 25,26 。 OR-PAMでは、光の集束のために侵入深さが制限され、生物組織23の内部で約1.2mmまで撮像することができる。従って、AR-PAMはより深く、より低い解像度で画像を形成することができ、OR-PAMは、非常に高い解像度で画像化することができるが、画像深度は限られる。 AR及びOR-PAMシステムの画像化速度は、主として、レーザ光源27のパルス繰り返し速度に依存する。

AR-PAMとOR-PAMを組み合わせることは、高解像度と深い画像の両方を必要とするアプリケーションに大きな利点となります。これらのシステムを組み合わせるための努力はほとんどなされていない。通常、2つの異なるイメージングスキャナがイメージングに使用され、これはサンプルが両方のシステム間を移動することを必要とし、したがってインビボイメージングを実行することを困難にする。しかしながら、AR及びOR PAMの両方を用いたハイブリッド撮像は、スケーラブルな解像度深さ。 1つのアプローチでは、ARおよびOR PAMの両方の光を送達するために光ファイババンドルが使用される。このアプローチでは、2つの別々のレーザー(ARの場合は570 nmの高エネルギーレーザーとORの場合は532 nmの低エネルギー、高繰り返しレーザー)が使用され、システムが不便で高価になります。 OR-PAMレーザーの波長は固定されており、酸素飽和度などの多くの研究は、この複合システムを使用しては不可能です。 ARとOR PAMとの比較研究は、ARとORとの間のレーザ波長の違いのためにも不可能である。さらに、AR-PAMは明視野照明を使用する。したがって、皮膚表面からの強い光音響信号が画質を制限する。このため、このシステムは多くのバイオイメージングアプリケーションには使用できません。 ARおよびOR PAMを実行する別の手法では、光学的および超音波的な焦点がシフトされ、光の焦点および超音波の焦点の位置合わせが不整合になる。したがって、画質は最適ではない

この研究は、両方の嚢に対して同じレーザーとスキャナーを使用して、同じサンプルの高分解能イメージングと低分解能深部組織イメージングの両方が可能な切り替え可能なARおよびOR PAM(AR-OR-PAM)イメージングシステムを報告していますems。 AR-OR-PAMシステムの性能は、ファントム実験を用いて空間分解能および画像深度を決定することによって特徴付けられた。 インビボでの血液血管造影画像をマウスの耳に対して実施して、その生物学的イメージング能力を実証した。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

すべての動物実験は、シンガポール南陽技術大学の動物実験および使用委員会(Animal Protocol Number ARF-SBS / NIE-A0263)の認可された規制およびガイドラインに従って行われた。

AR-OR-PAMシステム( 図1

  1. システム構成:AR-PAM
    1. ダイオード励起、固体状態のNd-YAGレーザー(532 nm)と、光照射源として559〜576 nmの可変範囲を有する色素レーザーからなるナノ秒の可変レーザーシステムを使用する。外部コントローラを使用してレーザー波長を570 nmに設定し、レーザーソフトウェアを使用してレーザーの繰り返し速度を1 kHzに設定します。
    2. ビームサンプラーをレーザーの前に45°の角度で置き、可変中性密度フィルター(NDF1; OD = 0-4.0)を介してレーザー出力の5%をフォトダイオードにそらす。
    3. ビームサンプラーの後で90°でレーザービームを方向転換する直角プリズム(RAP1)である。
    4. 別の直角プリズム(RAP2)を使用して、可変中性密度フィルター(NDF2; OD = 0-4.0)とマルチモードファイバー(MMF)を通過させ、ファイバーカプラー(FC)-a対物レンズの組み合わせ(開口数(NA):0.25)およびXYトランスレータ。
    5. XYトランスレータを使用して、ファイバを走査ステージに固定します。ファイバー出力端から25 mm離れた平凸レンズ(L1)を置き、ファイバーからビームをコリメートします。
    6. コリメートされたビームを頂角130°の円錐レンズに通して、リング状のビームを生成する。コーンアングル70°と110°の自家製光学コンデンサー(OC)を使用し、中心に穴をあけて、リング状のビームを被写体に弱く集中させます。
    7. ホームメイドコンデンサーの中央に音響レンズ(AL)付きの50 MHz超音波トランスデューサー(UST)を置きます。
  2. システム構成:OR-PAM
    1. 使うダイオード励起、固体状態のNd-YAGレーザ(532nm)と、559〜576nmの可変範囲を有する色素レーザとからなるナノ秒可変レーザシステムを光照射源として使用する。外部コントローラを使用してレーザー波長を570 nmに設定し、レーザーソフトウェアを使用して5 kHzでレーザーの繰り返し速度を設定します。
    2. コンピュータ制御の回転ステージ(RAP1を保持)を90°回転させて、レーザービームをアイリス上に向けて整形し直します。
    3. 可変中性密度フィルター(OD:0〜4.0)をビームに沿って配置し、集光レンズ(CL)でビームを集束させるレーザービームを減衰させます。空間フィルタリングのためにCLから75 mm離れたピンホール(PH)に通してください。
    4. SMFに光ビームを集束させるための0.1NAの対物レンズからなるシングルモードファイバーカプラー(FC)を使用して、空間的にフィルターされたビームをシングルモードファイバー(SMF)に照射します。
    5. ファイバーカプラーを調整して最大の結合効率を達成してください。
    6. ファイバをtに固定します。スリッププレート(SP)を用いてステージを走査する。レーザ光をコリメートするために、無色レンズ(L2)をSMファイバから50mm離して置きます。
    7. 別の同一の色消しレンズ(L3)の背面開口部を満たすために、キネマティックに制御可能な楕円鏡(M)を使用して、平行化されたビームを90°に向けてください。レンズチューブ(LT)を使用して、焦点合わせに使用する色消しレンズを平行移動マウント(TM2)に置きます。
    8. 集束ビームを直角プリズム(RA)と菱形プリズム(RP)からなる手作りの光音響ビーム結合器に通し、その間にシリコンオイル(SO)の層を置きます。
      注:シリコンオイル層は、光学的に透明で音響的に反射する膜として機能します。
    9. 菱形プリズムの底面に音響レンズ(AL)を取り付けて、音響焦点(焦点直径:約46μm)を与えます。
    10. 菱形プリズムの上に50MHzの中心周波数を持つ超音波トランスデューサを置く。効果的な結合のためにエポキシ層を使用する。
  3. 2.システムの切り替えとアライメント

    1. 手作りの切り替え可能なプレートを、コンピュータに接続された3軸コントローラによって制御される3軸電動ステージに固定する(しっかりとねじ込む)。
    2. ケージ取り付けブラケットを使用して自家製プレートにARおよびORケージシステムを取り付けると、ARおよびORスキャンヘッドを簡単に切り替えることができます。スキャンヘッドをイメージング領域の上にスライドさせます。
    3. AR-OR-PAMスキャナーヘッドの底部を水で満たされたアクリル製タンク(13 cm x 30 cm x 3 cm)に浸して音響結合します。
    4. タンクの底板に直径7cmの画像ウィンドウを開き、光学的および音響的伝達のためにポリエチレン膜でシールします。
    5. パルスエコーアンプとオシロスコープを使用して、超音波トランスデューサの焦点を合わせます。
      1. 送信/受信モードでパルスエコーアンプのゲインを24 dbに設定します。
      2. 同期アウト信号frを使用するオシロスコープをトリガとし、オシロスコープを使用してスライドガラス(水槽の底部から挿入)から後方散乱信号を検出します。
        注:スライドには黒いテープが貼られているはずです。
      3. Z軸を動かして、パルスエコー信号の振幅を最大にします(オシロスコープで表示)。
        注:ガラス板にフォーカスがあると、エコーの振幅は最大になります。
    6. レーザーのスイッチを入れ、BNCケーブルを使用してUSTを2つのアンプに接続し、それぞれ24dBの固定ゲインを接続します。
      注:アンプの出力はデータ集録カード(DAQ)に接続されています。
    7. レーザーの前面にあるフォトダイオード(PD)からの信号を、データ集録システムのトリガーとして使用します。
    8. AR-PAMでは、円錐レンズ(con.L)と光凝縮器(OC)の距離を変えて、試験対象から生成された光音響信号の振幅を最大化します(ガラススライド上に黒いテープが貼り付けられます)。最大光音響(PA)信号振幅を決定することにより、光学焦点と音響焦点が共焦点であることを確認します。
      1. 最大PA信号の遅延に注意してください。これを後で使用して、データ集録ソフトウェアの焦点を確認してください。
    9. スキャンヘッドのネジを緩め、スキャンヘッドを手動でAR-PAMからOR-PAMに切り替えます。次に、ネジを締めます。
    10. OR-PAMでは、オシロスコープに表示されているPA信号の振幅を最大にするために、収束する無彩色ダブレット(レンズチューブ(LT)の内側)とオプトアコースティックコンバイナの間の距離を変えます。
      1. 最大PA信号の遅延に注意してください。
        注:共焦点配置を決定するには、細分化が必要です。

    3.実験ステップ

    1. 横方向分解能および画像深さ定量化
      1. 直径100ナノメートルの金ナノ粒子を使用して、ARの側方分解能を決定する。d ORシステム。
      2. 等量の水で0.1mLのナノ粒子溶液を希釈する。カバースリップ上に0.1 mLの希釈溶液を分配し、タンクの下のポリエチレンメンブレンに接触させて置きます。
      3. スキャンの前に、AR-PAMとOR-PAMがデータ収集ソフトウェア(表の表を参照)に焦点を合わせていることを確認します(ステップ2.8と2.10)。
        注:サンプリングレート(250 MS / s)を掛けた2.9と2.10のステップからの最大PA信号のマイクロ秒の遅延を知ることによって、画像はデータ収集ソフトウェアでフォーカスされます。データ取得中に省略しなければならない遅延は、後処理のために必要なデータポイントのみを保存するようにソフトウェアで決定することができる。
      4. AR-PAMのスキャンパラメータを設定し、「スキャン」ボタンを押してラスタスキャンを開始します。
        1. データ収集ソフトウェアのAR-PAMのスキャンパラメータを「速度」の「4」mm / sスキャン速度で設定します。; 「パルス繰返し率」タブでは「1」kHz、「Yスキャン範囲」タブでは「0.5」mm、「Xスキャン範囲」タブでは「0.5」mmである。 dxタブのx方向のステップサイズを "4"μmに設定します。
          注:y方向のステップサイズは、ステージのスキャン速度速度とパルス繰り返し速度(この場合、4,000μm/ 1,000 Hz = 4μm)から自動的に決定されます。
      5. OR-PAMのスキャンパラメータを設定し、「スキャン」ボタンを押してラスタスキャンを開始します。
        1. データ収集ソフトウェアのスキャンパラメータを「速度」タブの「2.5」mm / sスキャン速度、「パルス繰り返し速度」タブの「5」kHz、「Yスキャン範囲」の「0.5」mm、タブ、「Xスキャン範囲」タブでは「0.5」mmです。 「dx」タブで、x方向のステップサイズを「0.5」μmに設定します。
          注:sステージの走査速度速度とパルス繰返し速度(この場合2,500μm/ 5,000Hz =0.5μm)からy方向のテップサイズが自動的に決定されます。
      6. スキャン処理中に、データが継続的にキャプチャされ、コンピュータに保存されていることを確認します
        注:データは、Yステージの1つの移動方向にのみキャプチャされます。
      7. コンピュータに保存された複数のBスキャンデータを使用して、画像処理ソフトウェア( 表の表を参照)を使用して最大振幅投影(MAP)画像を検索します。
      8. 走査からの単一のナノ粒子画像(複数の画像のうちの1つ)を使用して、ナノ粒子画像の中央領域を通る線を手動でプロットして横方向の解像度を決定し、ガウス曲線のような点広がり関数を得る。 図2を参照してください。
      9. Gauを用いて単一のナノ粒子画像から得られた点広がり関数を適合させる画像処理ソフトウェア( 表の表を参照)を使用して半値全幅(FWHM)を測定します。これを横方向の解像度として使用します。 図2を参照してください。
      10. 奥行き画像のためのターゲットオブジェクトとしてスライスチキンティッシュの一部に斜めに黒いテープを挿入します。水タンクにテープ付きのティッシュを置きます。
        注:黒いテープは、組織にテープを取り付けるのを助ける、鋭い先端を備えた金属プレートに貼り付けられています。
      11. AR-PAMのスキャンパラメータをデータ収集ソフトウェアに設定し、「スキャン」ボタンを押して単一のBスキャン画像をキャプチャして最大画像深度を決定します。
        1. 「速度」タブでは「15」mm / s、「パルス繰返し率」タブでは「1」kHz、「Yスキャン範囲」タブでは「5」cm、 "mm"を "Xスキャン範囲"タブに表示します。セットする「dx」タブの「0.1」mmでのx方向のステップサイズ。
      12. OR-PAMのスキャンパラメータを設定し、「スキャン」ボタンを押して単一のBスキャン画像をキャプチャし、最大イメージング部を決定します。
        1. "速度"タブでは "15" mm / sのスキャン速度、 "パルス繰り返し率"タブでは "5" kHz、 "Yスキャン範囲"では "2" cmとデータ収集ソフトウェアのスキャンパラメータを設定します。 「Xスキャン範囲」タブでは「0.1」mmとなります。 「dx」タブのx方向のステップサイズを「0.1」mmに設定します。
          注:Xスキャン範囲とdxは同じであるため、1つのBスキャンしかキャプチャされません。時間分解されたPA信号に軟組織の音速(1,540m / s)を乗じると、Aライン画像が得られます。 Yステージの連続動作中に複数のAラインが捕捉されてBスキャンが生成される。
    2. インビボで</ em>マウス耳血管系のイメージング
      1. 体重25g、年齢4週の雌マウスを使用する。
      2. ケタミン(120mg / kg)およびキシラジン(16mg / kg)のカクテルを腹腔内注射(0.1mL / 10g投与)して動物を麻酔する。
      3. 脱毛クリームを使用して動物の耳から毛を取り除く。エリアをきれいに拭きます。散乱したレーザービームが眼に当たるのを避けるために、動物の目を滅菌眼軟膏で覆う。
      4. 耳を置くためのミニプレートもあるステージ上に動物を置く。
      5. 撮影期間中、吸入イソフルラン(1L /分酸素で0.75%)で麻酔を維持する。
      6. 脈拍オキシメーターをマウスの脚または尾に締め付け、生理的状態をモニターする。超音波ゲルを用いてイメージング領域をポリエチレン膜と接触させる。
      7. AR-PAMのスキャンパラメータを設定し、「スキャン」ボタンを押してラスタスキャンを開始しますing。
        1. データ収集ソフトウェアのAR-PAMのスキャンパラメータを「速度」タブの「15 mm / s」スキャン速度、「パルス繰り返し速度」タブの「1 kHz」、「パルス繰り返し速度」タブの「10 mm」、 「Yスキャン範囲」タブ、および「6スキャン」範囲タブの「6」mmである。 「dx」タブで、x方向のステップサイズを「30」μmに設定します。
          注:y方向のステップサイズは、ステージのスキャン速度速度とパルス繰返し速度(この場合、15,000μm/ 1,000 Hz = 15μm)から自動的に決定されます。
      8. AR-PAMスキャンが終了したら、イメージングヘッドの位置をAR-PAMからOR-PAMに切り替えます(セクション2を参照)。
      9. OR-PAMのスキャンパラメータを設定し、「スキャン」ボタンを押してラスタスキャンを開始します。
        1. データ収集ソフトウェアのOR-PAMのスキャンパラメータを「15mm / sスキャン速度」の「速度「Yスキャン範囲」タブでは「10」mm、「Xスキャン範囲」タブでは「6」mmとすることができる。 x方向に「dx」タブの「6」μmと表示されます。
          注:y方向のステップサイズは、ステージのスキャンスピードとパルス繰り返しレート(この場合、15,000μm/ 5,000 Hz = 2μm)から自動的に決定されます。
      10. コンピュータに保存された複数のBスキャンデータを使用して、画像処理ソフトウェアを使用してMAP画像を検索します。
      11. 撮影期間全体を通して動物を観察する。

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

AR-OR-PAMシステムの概略図を図1に示します 。このセットアップでは、すべてのコンポーネントが光学ケージの設定で統合され、組み立てられました。ケージシステムを使用することにより、AR-OR-PAM走査ヘッドがコンパクトになり、単一の走査ステージ上に容易に組み立てられ、位置合わせされ、一体化される。

撮像ヘッドの2次元連続ラスタ走査を画像取得中に使用した。時間分解PA信号に音速(1,540m / s)を掛けてAラインを得た。 Yステージの連続動作中に捕捉された複数のAラインは、2次元Bスキャンを生成した。画像化領域の複数のBスキャンを捕捉してコンピュータに保存し、MAP光音響画像を処理および生成するために使用した。

切り替え可能なシステムの解像度を決定するには単一のナノ粒子のMAP画像を使用した( 31) 。画像の中央横方向に沿った光音響振幅をプロットし、ガウス関数に適合させた。ガウシアンフィットの半値幅は、横方向分解能と考えられた。 図2aに示すように、AR-PAMの測定横分解能は45μmであっ 。同様に、 2bに示すように、OR-PAMを用いて取得した単一のナノ粒子画像を中央の横方向に沿って合わせて、OR-PAMの解像度を決定した。測定された横方向分解能は、FWHMから決定された4μmであった。図の挿入図は、金ナノ粒子の対応するMAP画像を示す。理論的には、AR-PAMの光学回折限界横分解能は、以下の式を用いて決定される45μmである:0.72λ/ NA、λは中心音響波長、NAは数値超音波トランスデューサの開口部。理論的な分解能は実験データとよく一致する。同様に、OR-PAMの理論的横方向分解能は、以下の式:0.51λ/ NA(λはレーザ波長、NAは対物レンズの開口数)で計算して2.6μmである。 OR-PAMの実験的に測定された横方向分解能は、波面収差による可能性のある回折限界推定値よりも貧弱であった。 ARとORの両方が同様の変換器と音響レンズを使用しているので、理論上の軸分解能は0.88c / Δfに従って30μmになります。ここで、 cは軟組織の音速、 Δfは超音波トランスデューサの周波数帯域幅です。さらに、横分解能は、OR-PAM20およびAR-PAM32の両方の軸方向に沿って変化する。ここで報告された横方向の分解能は、焦点面上にある。

図3aは、ニワトリ組織上の黒いテープの写真を示す。 AR-PAMとOR-PAMの両方を使用して、単一のBスキャン画像をキャプチャしました。 3bおよび 3cは、それぞれAR-PAMおよびOR-PAMの単一B-スキャンPA画像を示す。 3bから明らかなように、AR-PAMシステムは、黒いテープを組織表面の約7.8mmまで明瞭に画像化することができる。同様に、OR-PAMシステムを用いて、黒いテープを組織表面の〜1.4mmまで明瞭に画像化することが可能であった( 3c )。画像から信号対雑音比(SNR)もまた決定された。 SNRはV / nとして定義され、ここで、V>はピークからピークまでのPA信号振幅であり、 nはバックグラウンドノイズの標準偏差である.4.6mmおよび7.8mmの撮像深さで測定されたSNRは、それぞれ2.6および1.4であった。 OR-PAMの場合、1.4mm撮像深度におけるSNRは1.4であった。切替え可能なAR-OR PAMシステムの生物学的イメージング能力を実証するために、インビボでの血液血管造影をマウスの耳に対して行った。イメージングに使用した生存マウスの耳の血管の解剖学的構造を示す写真を図4aに 示す 。 AR-PAMを使用して、10mm×6mmの走査領域を画像化し、Y方向に15μm、X方向に30μmのステップサイズを用いた。撮影には10分かかりました。現在、イメージングシステムは一方向のデータしか取得していません。プログラムを双方向データ取得能力を有するように変更することによって、取得時間をほぼ半分に短縮することができる。 AR-PAMのMAP画像を図4示すb 。関心領域のクローズアップを 4cに示す。 4dに、Y方向に3μm、X方向に6μmのステップサイズのOR-PAMを使用してスキャンした同様の領域を示します 。撮影には46分かかりました。関心領域のクローズアップを 4eに示す。 OR-PAMは、AR-PAMが解決できない単一毛細管を明確に解決することができる。 AR-PAMは、45μmより厚い血管を分解することができる。

要約すると、タイトな光学的集束を利用して高解像度のイメージングを達成することができる切り替え可能なAR-OR-PAMシステム、および音響集束を使用する深部組織イメージングが開発されている。切り替え可能なAR-OR-PAMシステムの性能は、横方向分解能および画像深度測定値を用いて定量化した。 インビボスタッド生物学的イメージング能力を示すために実施した。 この切替え可能な光音響顕微鏡検査システムは、時間的および空間的分解能が高く、血管造影、薬物応答などのイメージングを含む用途にシステムを重要にすることができ、単一毛細血管および深い脈管構造が重要である。手作りの切り替え可能なプレートを10cm移動電動ステージ(y軸)に置き換えることによって、システムのさらなる改良または改良を行うことができる。 OR-PAMの横分解能は、波面収差を補正することによってさらに改善することができる。 AR-PAMに高いパルスエネルギーを供給すると、SNRとイメージングの深さも向上します。

OR-PAMの場合、インビボイメージングのため光学焦点が皮膚表面より150μm下であると仮定すると、表面スポットサイズは直径22.5μmであった。 90 nJの単一レーザーパルスを送達すると、ma20.4mJ / cm 2の最小パルスエネルギー。 AR-PAMの場合、レーザー焦点は直径2mmであった。 50μJの単一レーザパルスを供給すると、1.6mJ / cm 2の焦点で最大パルスエネルギーが得られ、ANSIの安全限界である20mJ / cm 2、33の範囲内に収まる。

図1
図1 :AR-OR-PAMイメージングシステムの概略 a )BS:ビームサンプラ、NDF:減光フィルタ、RAP-直角プリズム、PD:フォトダイオード、CL:コンデンサレンズ、PH:ピンホール、FC:ファイバカプラ、UST:超音波トランスデューサ、MMF:マルチモードファイバ、SMF:シングルモードファイバ、DAQ:データ取得カード、TS:変換ステージ、Con.L:コニカルレンズ、L1:凸レンズ、L2&L3:無色レンズ、RA:直角プリズム、RP:菱形プリズム、OC:光学コンデンサー、M:m鏡筒、TM:平行移動マウント、KMM:キネマティックミラーマウント、AL:音響レンズ。 ( b )プロトタイプのAR-OR-PAMシステムの写真。 ( c )光音響ビームコンバイナのクローズアップ。 ( d )中央にUSTを有する光学コンデンサのクローズアップ。許可を得て参照番号34から転載。 この図の拡大版を見るには、ここをクリックしてください。

図2
図2 :AR-OR-PAMシステムの側方分解能試験:直径100nmの金ナノ粒子を画像化することによって推定された横方向分解能。黒(*)ドット:光音響信号;青線:( a )AR-PAMと( b )AR-PAMのガウス適合曲線OR-PAM。挿入図は、単一の金ナノ粒子の(a)における代表的なAR-PAM画像および(b)におけるOR-PAM画像を示す。許可を得て参照番号34から転載。 この図の拡大版を見るには、ここをクリックしてください。

図3
図3 :画像の奥行き測定:鶏の組織に斜めに挿入された黒いテープの単一BスキャンPA画像。 ( a )模式図。 ( b )AR-PAM画像。 ( c )OR-PAM画像。許可を得て参照番号34から転載。 この図の拡大版を見るには、ここをクリックしてください。


図4 マウスの耳の インビボ 光音響画像:a )マウスの耳の脈管構造の写真。 (b)AR-PAM画像。 ( c )( b )の関心領域(ROI)のクローズアップ。白い点線で示されている。 ( d )OR-PAM画像。 ( e )( d )の関心領域(ROI)(白い点線で示す)。 ( f )単一毛細管を示す(e)のROI白線の拡大図。 許可を得て参照番号34から転載。 この図の拡大版を見るには、ここをクリックしてください。

Subscription Required. Please recommend JoVE to your librarian.

Discussion

結論として、より低いイメージング深度で高解像度イメージングとより高いイメージング深度で低解像度イメージングの両方を達成できる切り替え可能なARおよびOR PAMシステムが開発された。切り換え可能なシステムの横方向分解能および画像深度が決定された。この切り替え可能なPAMシステムの利点は、(1)きつい光学的集束を使用する高解像度イメージング、 (2)音響集束を用いた深部組織撮像、 3)強力なPA信号が皮膚表面に出現するのを防止するAR-PAMの暗視野照明。 4)異なるシステム間でサンプルを移動することなく、サンプルを1か所に保持する能力。 5)複数のレーザーおよび走査ステージの使用を避ける可能性。 6)自家製成分の最小限の使用。これは、サンプル/ obを動かすことなく、同じサンプルの高解像度、浅い深さの画像および低解像度、深部組織画像を提供するOR-PAMと暗視野AR-PAMの最初に報告された組み合わせであるject。同じスキャニングステージとレーザーを使用することで、システムは効率的でコスト効率に優れています。組み合わされたシステムは、1.4mmの撮像深度を有する4μmの横方向分解能、および7.8mmの撮像深度を有する45μmの横方向分解能を有する。システムは手作り部品が最小限のオプティカルケージシステムで構成されているため、ARとOR PAMの組み立て、調整、および切り替えが容易になります。組み合わされた走査ヘッドはコンパクトであり、単一の走査ステージ上に容易に組み立てることができる。組み合わされたシステムを使用して、インビボイメージングが首尾よく実証された。

開発したシステムは、前臨床イメージングに使用することができます。主な前臨床応用には、血管新生、腫瘍微小環境、微小循環、薬物応答、脳機能、バイオマーカーおよび遺伝子活動の画像化が含まれる。システムの限界には、スキャン時間が含まれます。現在のところ、長いスキャン時間が必要ですが、ボット内のデータを取得することでそれを減らすことができますh方向。 OR-PAMとAR-PAMとの同時画像取得は現在不可能である。現在、OR-PAMとAR-PAMの手動切り替えが必要です。これは、少なくとも10cmのY方向の動きを持つ平行移動ステージを使用することで回避できます。プロトコルの重要なステップには、光学焦点と音響焦点の共焦点決定が含まれます。 OR-PAMのための5μm未満の光スポットサイズの達成、単一キャピラリーの画像化、 OR-PAM用の光音響ビーム結合器とAR-PAM用の光凝縮器の設計が含まれる。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

すべての動物実験は、シンガポール南陽技術大学の動物実験および使用委員会(Animal Protocol Number ARF-SBS / NIE-A0263)の承認されたガイドラインおよび規制に従って行われた。著者は、原稿に関連する金銭的関心はなく、開示する可能性のある他の利益相反はない。

Acknowledgments

著者は、シンガポールの教育省(ARC2 / 15:M4020238)が資金を提供するTier 2助成金からの財政的支援を認めたいと考えています。著者は機械ショップの助けを借りてChow Wai Hoong Bobbyに感謝したいと思います。

Materials

Name Company Catalog Number Comments
Q-switched Nd:YAG laser Edgewave BX80-2-L Pump laser 
Credo-High Repetition Rate Dye Laser Spectra physics CREDO-DYE-N Dye laser
Precision Linear Stage Physik Instrumente PLS 85  XY raster scanning stage
Translation stage Physik Instrumente VT 80  Confocal determine
Mounted Silicon photodiode Thorlabs SM05PD1A Triggering/Pulse variation
Motorized continuous Rotational stage  Thorlabs CR1/M-Z7 Diverting laser beam
Mounted Continuously Variable ND Filter Thorlabs NDC-50C-4M Intensity variable
Fiber Patch Cable Thorlabs M29L01 Multimode fiber
Microscope objective Newport M-10X Objective 
XY translating mount Thorlabs CXY1 Translating mount
Plano convex lens Thorlabs LA1951 Collimating lens
Conical lens  Altechna APX-2-B254 Ring shape beam
Translation stage Thorlabs CT1 Translating stage
Optical condenser Home made
Ultrasonic transducer Olympus-NDT V214-BB-RM 50MHz transducer
Plano concave lens Thorlabs LC4573 Acoustic lens
Pulser/Receiver Olympus-NDT 5073PR Pulse echo amplifier 
Mounted standard iris Thorlabs ID12/M Beam shaping
Plano convex lens Thorlabs LA4327 Condenser lens
Mounted precision pinhole Thorlabs P50S Spatial filtering
Single mode fiber patch cable Thorlabs P1-460B-FC-1 Single mode fiber
Fiber coupler Newport F-91-C1 Single mode coupling
Achromatic doublet lens Edmund Optics 32-317 Achromatic doublet
Protected silver elliptical mirror Thorlabs PFE10-P01 Mirror
Right angle kinematic mirror mount Thorlabs KCB1 Mirror mount
Z-Axis Translation Mount Thorlabs SM1Z z translator
Lens tube Thorlabs SM05L10
UV Fused Silica Right-Angle Prism Thorlabs PS615 Right angle prism
Rhomboid prism Edmund Optics 47-214 Shear wave
Dimethylpolysiloxane Sigma Aldrich DMPS1M Silicon oil
Amplifier Mini Circuits ZFL-500LN Amplifier
16 bit high speed digitizer Spectrum M4i.4420 Data acquisition card
Oscilloscope Agilent Technologies DS06014A
Mice  InVivos Pte.Ltd ICR Animal model
Ultrasound gel  Progress/parker acquasonic gel PA-GEL-CLEA-5000 Acoustic coupling
Water tank Home made
Translation stage Homemade Switching AR-OR
Gold nanoparticles Sigma Aldrich 742031 Lateral resolution
Sterile ocular ointment Alcon Duratears Animal imaging
1951 USAF resolution test target Edmund Optics 38257 Confocal alignment
Data acquisition software National Instrument Labview Home made software using Labview
Image Processing software Mathworks Matlab Home made program using Matlab

DOWNLOAD MATERIALS LIST

References

  1. Hu, S., Wang, L. V. Photoacoustic imaging and characterization of the microvasculature. J Biomed Opt. 15, 011101-01-011101-15 (2010).
  2. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 7 (8), 603-614 (2010).
  3. Wang, L. V., Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat Methods. 13, 627-638 (2016).
  4. Zhou, Y., Yao, J., Wang, L. V. Tutorial on photoacoustic tomography. J Biomed Opt. 21 (6), 061007 (2016).
  5. Upputuri, P. K., Sivasubramanian, K., Mark, C. S. K., Pramanik, M. Recent Developments in Vascular Imaging Techniques in Tissue Engineering and Regenerative Medicine. BioMed Res Intl. 2015, (2015).
  6. Yao, J., Wang, L. V. Photoacoustic Brain Imaging: from Microscopic to Macroscopic Scales. Neurophotonics. 1 (1), 011003-1-011003-13 (2014).
  7. Wang, L. V., Hu, S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science. 335 (6075), 1458-1462 (2012).
  8. Beard, P. Biomedical photoacoustic imaging. Interface Focus. 1 (4), 602-631 (2011).
  9. Pan, D. Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J. 25 (3), 875-882 (2011).
  10. Cai, X., Kim, C., Pramanik, M., Wang, L. V. Photoacoustic tomography of foreign bodies in soft biological tissue. J Biomed Opt. 16 (4), 046017 (2011).
  11. Pan, D. Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials. 31 (14), 4088-4093 (2010).
  12. Wang, L. V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photon. 3 (9), 503-509 (2009).
  13. Zhang, E. Z., Laufer, J. G., Pedley, R. B., Beard, P. C. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy. Phys. Med. Biol. 54 (4), 1035-1046 (2009).
  14. Park, S., Lee, C., Kim, J., Kim, C. Acoustic resolution photoacoustic microscopy. Biomed.l Eng. Lett. 4 (3), 213-222 (2014).
  15. Zhang, H. F., Maslov, K., Stoica, G., Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24 (7), 848-851 (2006).
  16. Maslov, K., Stoica, G., Wang, L. V. In vivo dark-field reflection-mode photoacoustic microscopy. Opt Lett. 30 (6), 625-627 (2005).
  17. Strohm, E. M., Moore, M. J., Kolios, M. C. Single Cell Photoacoustic Microscopy: A Review. IEEE J Sel Top Quantum Electron. 22 (3), 6801215 (2016).
  18. Kim, J. Y., Lee, C., Park, K., Lim, G., Kim, C. Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner. Sci Rep. 5, 07932 (2015).
  19. Matthews, T. P., Zhang, C., Yao, D. K., Maslov, K., Wang, L. V. Label-free photoacoustic microscopy of peripheral nerves. J Biomed Opt. 19 (1), 016004 (2014).
  20. Hai, P., Yao, J., Maslov, K. I., Zhou, Y., Wang, L. V. Near-infrared optical-resolution photoacoustic microscopy. Opt Lett. 39 (17), 5192-5195 (2014).
  21. Danielli, A. Label-free photoacoustic nanoscopy. J Biomed Opt. 19 (8), 086006 (2014).
  22. Zhang, C. Reflection-mode submicron-resolution in vivo photoacoustic microscopy. J Biomed Opt. 17 (2), 020501 (2012).
  23. Hu, S., Maslov, K., Wang, L. V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett. 36 (7), 1134-1136 (2011).
  24. Maslov, K., Zhang, H. F., Hu, S., Wang, L. V. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett. 33 (9), 929-931 (2008).
  25. Upputuri, P. K., Krishnan, M., Pramanik, M. Microsphere enabled sub-diffraction limited optical resolution photoacoustic microscopy: a simulation study. J Biomed Opt. 22, 045001 (2017).
  26. Upputuri, P. K., Wen, Z. B., Wu, Z., Pramanik, M. Super-resolution photoacoustic microscopy using photonic nanojets: a simulation study. J Biomed Opt. 19 (11), 116003 (2014).
  27. Allen, T. J. Novel fibre lasers as excitation sources for photoacoustic tomography and microscopy et al. Proc SPIE. , 97080W (2016).
  28. Xing, W., Wang, L., Maslov, K., Wang, L. V. Integrated optical-and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle. Opt Lett. 38 (1), 52-54 (2013).
  29. Estrada, H., Turner, J., Kneipp, M., Razansky, D. Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution. Laser Phys Lett. 11 (4), 045601 (2014).
  30. Jeon, S., Kim, J., Kim, C. In vivo switchable optica- and acoustic - resolution photoacoustic microscopy. Proc SPIE. , 970845 (2016).
  31. Song, W. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo. Sci Rep. 6, 32240 (2016).
  32. Park, J., et al. Delay-multiply-and-sum-based synthetic aperture focusing in Photoacoustic microscopy. J Biomed Opt. 21 (3), 036010-10 (2016).
  33. ANSI Standard Z136.1-2000. American National Standard for Safe Use of Lasers. , NY. (2000).
  34. Moothanchery, M., Pramanik, M. Performance Characterization of a Switchable Acoustic Resolution and Optical Resolution Photoacoustic Microscopy System. Sensors. 17 (2), 357 (2017).

Tags

バイオエンジニアリング、第124号、音響解像度光音響顕微鏡法、光学解像度光音響顕微鏡法、光音響画像法、光音響法、
切り替え可能な音響光学分解能光音響顕微鏡<em&gt;インビボ</em&gt;小動物の血管系イメージング
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Moothanchery, M., Sharma, A.,More

Moothanchery, M., Sharma, A., Pramanik, M. Switchable Acoustic and Optical Resolution Photoacoustic Microscopy for In Vivo Small-animal Blood Vasculature Imaging. J. Vis. Exp. (124), e55810, doi:10.3791/55810 (2017).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter