Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Genetics

補体受容体1長多型のための高分解能Melting PCR Genotyping:アルツハイマー病の遺伝子感受性評価のための革新的なツール

Published: July 18, 2017 doi: 10.3791/56012

Summary

ここでは、いくつかの用途、特にアルツハイマー病(AD)のような疾患に対する感受性の評価における補体受容体1(CR1)の長さの多型を決定する革新的な方法について説明する。この方法は、ADの病因におけるCR1アイソフォームの役割をよりよく理解するのに有用であり得る。

Abstract

先天性免疫系において重要な役割を果たす膜貫通糖タンパク質である補体受容体1(CR1)は、多くの細胞型で発現するが、特に赤血球(RBC)に発現する。補体成分C3bおよびC4bの受容体として、CR1は補体カスケードの活性化を調節し、免疫複合体および細胞破片ならびにアルツハイマー病(AD)におけるアミロイド - ベータ(Aβ)ペプチドの食作用を促進する。いくつかの研究では、 CR1遺伝子におけるAD関連一塩基多型(SNP)ならびにコピー数変動(CNV)が確認されている。ここでは、CR1受容体の長さ多型を決定する革新的な方法について説明する。受容体は、長鎖同族反復(LHR)-LHR-A、LHR-C、およびLHR-D-と呼ばれる3つのドメインおよびnドメインLHR-B(nは0と3の間の整数である)を含む。特異的プライマーのうちの少なくとも1つを使用して、遺伝物質を使用して、LHR-Bドメインの第1の断片(the変異型アンプリコンB)およびLHR-Cドメインの第2のフラグメント(不変型アンプリコン)を含む。変異型アンプリコンBおよび不変型アンプリコンは、前記プライマーのハイブリダイゼーション領域の外側の5ヌクレオチドでの差異を示す。定量的ツール(高分解能融解(HRM)曲線)を使用して変異体アンプリコンBおよび不変アンプリコンの数を導き出し、CR1長多型に応じて変異型アンプリコンB対不変型アンプリコンの比が異なる。この方法は、新鮮な材料を必要とせず、より安価で、より速く、より大きな集団に適用できるので、標準的表現型方法に対していくつかの利点を提供する。したがって、この方法の使用は、ADなどの病気の病因におけるCR1アイソフォームの役割をよりよく理解するのに役立つはずである。

Introduction

認知症の最も一般的な原因であるADは、世界中の3,000万人以上に影響を及ぼし、重大な公衆衛生上の問題である1 。臨床的に、ADは、神経認知障害によって特徴づけられ、自律性が漸進的に失われる2 。 ADは、2つの神経病理学的特徴、すなわち細胞外アミロイド沈着物および細胞内神経原線維変化を特徴とする3

伝統的に、疾患の発症年齢に応じて、ADは2つの形態に分類される。第一は早期発症AD(EOAD)であり、発症は65歳までに最も頻繁に起こる。この形態は、AD症例の5%未満を占める。それは、アミロイド前駆体タンパク質( APP) 4 、プレセニリン1( PSEN15 、またはプレセニリン2( PSEN2 )のいずれかの完全浸透性突然変異をもたらすADのまれな常染色体優性型である。> 6遺伝子。第2に、より一般的な形態の疾患(AD症例の> 90%)は、「散発性の遅発性AD(LOAD)」と呼ばれ、65歳以上の個体で最も頻繁に起こる。それは、複数の遺伝的および環境的リスク要因から生じる7 。負荷、アポリポタンパク質E(APOE)遺伝子の4対立遺伝子は、主要な遺伝的危険因子8、9です。さらに、ゲノムワイド関連研究(GWAS)によって、ADのリスクに関連していると同定されている遺伝子座は、20を超える遺伝子座であり、その1つは補体成分(3b / 4b)受容体1( CR1 )遺伝子10であり、補体関連タンパク質のクラスターにおける第1染色体1番染色体。 CR1遺伝子は、補体活性調節因子の成分である補体受容体1型(CR1)タンパク質をコードする。

CR1(C3b / C4b受容体、CD35)、近似の膜貫通糖タンパク質エリー200 kDaの11は 、マンナン結合レクチン(MBL)のC3b、C4bと、はC3bi、のC1qに結合し、タンパク質12を補完フィコリン。 CR1の生物学的機能は、それが発現される細胞型によって異なる。ヒトでは、循環する全CR1の90%が赤血球(RBC)に見出される13 。 RBCの表面に存在するCR1は、C3b-またはC4b-オプソニン化微生物または免疫複合体に結合し、循環からのクリアランスを促進する。赤血球が肝臓と脾臓11、14を通過する際CR1に結合した複合体は、実際に食細胞に転送されます。 C3bおよびC4bの沈着を制限することにより、CR1は過剰な補体活性化を防止し得る。したがって、RBC上のCR1の発現は、免疫複合体沈着および結果として生じる疾患に対する、脳神経系などの組織の保護において必須の要素であると考えられている。 RBC上のCR1もまた、病原性感染症15、16の中で重要な役割を果たしています。加えて、先天性免疫における重要な役割を果たすCR1は、補体カスケードの調節および免疫複合体の輸送およびクリアランスに関与している。 CR1は、C3bおよびC4bフラグメントに結合し、古典的および代替の転換酵素(C4b2a複合体からのC2aの解離およびC3bBb複合体からのC3bの解離)を解離することによって、この活性を発揮する。血漿セリンプロテアーゼI因子(FI)の補因子として、CR1は、補因子活性(CA)として知られる特性であるFIによるC4bおよびC3bの切断を増加させることによって、およびC3増幅ループを阻害することによって古典的補体経路および代替補体経路を阻害する次に補体のさらなる活性化を妨げる。 Rogersらは、Aβペプチドが抗体17の非存在下で補体経路に結合して活性化し、Aβペプチドがclであることを示唆する証拠を提供する補体依存性の遵守を介して循環から耳にして、RBC 18で発現されるCR1に耳を傾ける。

構造又は長多型、密度の多型、及びKnops血液族多型11、19:CR1三個の多型のタイプを示します。構造的多型は、長い同種反復(LHR)の数の変動に関連し、したがって4つのアイソフォームを定義する。実際、CR1タンパク質の細胞外ドメインは、短いコンセンサスリピート(SCR)または補体制御リピート(CCP)と呼ばれる一連の反復単位からなる。これらのSCRは、CR1をコードする補体デオキシリボ核酸(cDNA)から実証されている。 SCRは、LHRとして知られている7つのタンデムグループに配置されています。 CR1は、7 SCR部19、20の重複から生じる、LHR-A、-B、-C、および-Dとして指定され、4 LHRsに配置されています21

CR1 * 1(A / F)(ゲル電気泳動による高速移動)、CR1 * 2(B / S)(ゲル電気泳動における緩徐な移動)、CR1 * 3(C / F`)、CR1 * 4(D)である。 CR1 * 1(A / F)とCR1 * 2(B / S)はそれぞれ4つと5つのLHRで構成され、CR1 * 3(C / F`)とCR1 * 4(D )はそれぞれ3個と6個のLHRから構成されている。 30のSCRからなる最も一般的なアイソフォーム(CR1 * 1)は、3つのC4b結合部位(SCR1〜3; 8〜10,15〜17)および2つのC3b結合部位(SCR8〜10および15〜17) 、のSCR 22-28バインドのC1q、フィコリンおよびMBL 12、20、21、22、23、24、25つつ。したがって、CR1 * 2は、1つの追加のC3b / C4b結合部位を含むdをCR1 * 1に設定します。 図1は、CR1の4つの異なるアイソフォームの構造、命名法および分子量を示す。

密度多型は、RBC上のCR1の構成的発現のレベルを表す安定した表現型に対応する。健康な白人の被験者では、RBCあたりのCR1分子の数は最大10倍(細胞1個あたり150〜1,200分子)変動することが示されている26 。 Helgeson表現型の赤血球は、細胞27、28当たり150個の分子よりも低いことが示された非常に低いCR1の密度を有します。 RBC上のCR1密度は、 Hin dIII制限断片長多型(RFLP) 29と相関する、 CR1遺伝子上の常染色体共2重対立遺伝子系と遺伝的に関連している29 。イントロン27のCR1遺伝子の1点突然変異、第2のLHR-DにおけるSCR、この領域30内の多型ヒン DIIIサイトの生成をもたらします。 7.4および6.9kDaのゲノムHin dIII断片は、それぞれ赤血球上の高(Hアレル)または低(Lアレル)CR1密度に関連する対立遺伝子を同定する。しかし、何の相関関係は、いくつかの西アフリカの人口31、32にRBCおよびヒン DIII多型のCR1密度の間で認められませんでした。 CR1密度調節を非コード化Hin dIII多型に連結する機構は未だ不明である。いくつかの多型の中で、SCR28におけるSCR16とP1786RでQ981Hは赤血球30、33上のCR1密度に関連することが報告されています。

国際的な命名法によれば、Knops(KN)多型は、国際輸血学会によって索引付けされる第22血液型システムである。それは9つの抗原特異的KN1 / KN2、KN3 / KN6、およびKN4 / KN7、ならびに3つの単離された抗原、KN5、KN8、KN9を含む、赤血球上のCR1によって発現される異常を示す。 KN1、KN3、KN4、およびKN5抗原は、KN系の高周波抗原( すなわち、一般集団の99%以上発現する)である。しかし、ADにおけるこの多型の役割は未だ決定されていない13

この研究で説明されたプロトコルは、AD、全身性エリテマトーデス、およびマラリアなどのいくつかの疾患に対する感受性に関与するCR1長多型遺伝子型を決定するために設計された。本発明者らのCR1長多型決定の方法は、CR1アイソフォームを含むLHR-Bsの数およびLHR-BとLHR-Cとの間の配列差異( 図2 )を利用する。

Protocol

ヒト血液採取および取り扱いのプロトコルは、地域倫理委員会(CPP Est II)によって審査され承認され、プロトコル番号は2011-A00594-37である。

注:以下のプロトコルは、人の血液の取り扱いについて説明しています。生物有害物質を処分する際には、制度上のガイドラインに従ってください。ラボコートや手袋などの実験用安全装置を着用してください。プロトコルを説明するフローチャートが図3に示されています

1.血液および体液のDNA抽出

  1. 1.5mLチューブの底に20μLのプロテイナーゼK(15μg/μL)をピペットで入れる。
  2. サンプル200μLを1.5mLチューブに加えます。 200μLの全血、血漿、血清、バフィコート、または体液、または200μLのPBS中の5×10 6個のリンパ球を最大200μL使用する。
  3. 200μLの溶解緩衝液を試料に添加する。 15秒間パルスボルテックスして混合する。
  4. 56℃で10分間、水浴中でインキュベートする。
  5. 簡単に1.5mLチューブを遠心して、蓋の内側から滴を除去します。
  6. 200μLのエタノール(96〜100%)をサンプルに添加し、15秒間パルスボルテックスすることにより再度混合する。混合後、1.5mLチューブを短く遠心して、蓋の内側から滴を除去する。
  7. 慎重にステップ1.6の混合物をメンブレンカラム(2 mLのコレクションチューブ内)にかけます。リムを濡らさないでキャップを閉め、6,000 xgで1分間遠心します。膜カラムを清潔な2 mLコレクションチューブに置き、ろ液を含むチューブを捨てます。
  8. 慎重にメンブレンカラムを開き、リムを濡らさずに500μLの洗浄バッファー1を加えます。キャップを閉め、6,000 xgで1分間遠心する。メンブレンカラムを清潔な2 mLコレクションチューブに置き、ろ液を含むチューブを捨てる。
  9. 慎重に膜カラムを開き、500μLの洗浄緩衝液2を濡らすことなく添加する。eリム。キャップを閉め、フルスピード(20,000 xg)で3分間遠心する。
  10. メンブレンカラムを新しい2 mLコレクションチューブに入れ、コレクションチューブをろ液で捨てます。 1分間20,000×gで遠心分離する。
  11. 膜カラムを清潔な1.5mLチューブに入れ、濾液を含む回収チューブを捨てる。
  12. 慎重に膜カラムを開き、蒸留水200μLを加える。室温で5分間インキュベートし、次いで6,000×gで1分間遠心分離する。
  13. DNA濃縮ステップの決定に進むか、DNAサンプルを-20℃で凍結する。

2.DNA濃度の測定

注: 図4を参照してください。

  1. 1を押して分光光度計でDNAモードを選択します。左右の矢印を使用して5mmのパス長を選択します。左と右の矢印を使用して希釈係数1を選択します。
  2. 単位を選択する(μg/ mL)e左右の矢印。左と右の矢印を使用して50の係数を選択します。 [ OK]を押します。
  3. 10μLの蒸留水をキュベットにピペットで入れる。キュベットを分光光度計に入れます。 OA / 100%Tボタンを押します。
  4. DNAサンプル(蒸留水中1/4希釈)10μLをキュベットにピペットで入れる。キュベットを分光光度計に入れます。緑色のボタンを押します(読み込み/開始)。濃度に注意してください。
  5. -20℃でDNAサンプルを凍結する。

HRM-PCRプロトコル

  1. DNAサンプルを解凍する。 DNAサンプルを1.5 mLのチューブで水で希釈し、10 ng /μLの濃度に調整します
    注:希釈したDNAの総量は2μL〜10μLの間でなければなりません。
  2. プライマー溶液を解凍する。プライマー溶液を1.5 mLのチューブで水で希釈し、6μMの同じ濃度に調整します。
    注:プライマー配列および反応条件は、 T有能な1。

表1
表1:高分解能融解分析に使用されるプライマーおよびパラメータ。

  1. HRM-PCRキット溶液を解凍し、ボルテックスで注意深く混合してすべての内容物を確実に回収する。酵素結合剤を含む3つのバイアルを、DNA結合色素、MgCl 2 、および水をマイクロ遠心分離機で簡単に回転させてから、それらを開く。室温で保管してください。
  2. 室温で1.5mLのチューブで、下記の成分を以下の順序で添加して、20μLの反応1つにつきPCR混合物を調製する:
    1. DNA結合色素との酵素混合物10μL;
    2. 2μLの25mM MgCl 2 ;
    3. 1μLのプライマー1、6μM(最終濃度:300nM)。
    4. プライマー2の1μL、6μM(最終濃度:300nM)。そして
    5. 5μLの水。
      注:複数の反応のためにPCRミックスを調製するには、上記の容量に実行する反応の数と1回の追加の反応を掛けます。
  3. ボルテックスで注意深く混ぜる。
  4. 上記で調製したPCR混合物19μLを白色マルチウェルプレートの各ウェルにピペットで入れる。
  5. ステップ3.1で調製した1μLの濃度調整DNAテンプレートを加える。
    注:コントロール反応のために、常にサンプルでネガティブコントロールを実行してください。ネガティブコントロールを調製するには、テンプレートDNAを水で置換します。
  6. シーリングホイルで白いマルチウェルプレートをシールします。
  7. 白いマルチウェルプレートを遠心分離機に置き、適切なカウンターウェイト( すなわち、別のマルチウェルプレート)と平衡させる。適切なアダプターを備えたマルチウェルプレート用ローターを含む標準スイングバケット遠心分離機で1,500 xgで1分間遠心分離します。
  8. 白色マルチウェルプレートをHRM-PCR装置にロードする。
  9. 以下のPCR条件でHRM-PCRプログラムを開始する:

    変性:95℃で10分間; 1サイクル。
    増幅:95℃で10秒間、62℃で15秒間、および72℃で20秒間; 47サイクル。
    融点曲線:95℃;ランプ速度:0.02℃/ s; °C当たり25回の買収。 1サイクル。
    冷却:40℃で30秒間;ランプ速度2.2℃/ s; 1サイクル。

4. CR1長多型を決定するためのHRM分析

注記:説明された方法( 図5 )は、当社ソフトウェア( 表の表を参照)に固有のものですが、他のソフトウェアパッケージを使用することもできます。

  1. 遺伝子スキャニングソフトウエアを開き、CR1長多型スキャン分析を行う。
  2. 増幅プログラムと融解曲線プログラムを含む実験を開きます。
  3. モジュールバーのサンプルエディタをクリックし、 Sを選択します缶詰のワークフロー
  4. サンプルの特性( すなわち、名前;未知または陰性対照)を定義する。
  5. モジュールバーの[ 分析]をクリックします。
  6. Create New Analysisリストで、 Gene Scanningを選択します
  7. 融解曲線を正規化するには、[ 正規化 ]タブをクリックします。
  8. 温度シフトタブをクリックして、融解曲線の温度軸(x軸)をリセットします。
    注記:下のグラフは、標準化および温度シフトされた融解曲線を示しています。
  9. [ 計算 ]ボタンをクリックして、結果を分析し、グループ化を決定します。
  10. チャート領域のDifferenceプロットタブをクリックして、 Normalized and Shifted Melting CurveNormalized and Temperature Shifted Differenceプロットを表示します。

Representative Results

図6 Aは、WBによってCR1長多型の表現型を表示します。 6BおよびCは、CR1長多型の決定を可能にする、HRM-PCR分析の間に得られる曲線を示す。異なるCR1アイソフォームを有する被験体のゲノムDNAからのPCR由来アンプリコンの高解像度融解後のソフトウェアを用いた融合曲線の分析は、それらのアロタイプCR1発現表現型に従って被験体を識別する曲線を生成する。

図6( B)は、「正規化されシフトされた融解曲線」と呼ばれる第1の提示様式を示し、 6Cは、「正規化されたおよび温度偏移図形 」と呼ばれる第2の提示様式を示す。

、図6 Aに表示された表現型を表すグループに応じて分配される:(CR1 * 3、CR1 * 1)。 (CR1 * 1、CR1 * 2); CR1 * 1; CR1 * 2;と(CR1 * 2、CR1 * 4)。これは、この新しい分子生物学的方法を用いてCR1長多型の遺伝子型決定を可能にする。

図1
図1: 補体受容体1タンパク質の構造および多型の模式 それぞれの短いコンセンサスリピート(SCR)または補体制御タンパク質(CCP)は、円で表される。 SCRは、LHRと呼ばれる反復的な高次構造にグループ分けされています。細胞外ドメインから細胞膜までのLHRは、LHR-A、-B、-C、-D、および-S(補充または追加のLHR)である。最も一般的なCR1アイソフォーム(CR1 * 1)、C4b /崩壊促進活性(DAA)結合部位はLHR-A(SCR1-3、緑色丸)に位置し、C3b / C4b /補因子活性(CA)結合部位は3 LHR-B(SCRs8-10、赤丸)およびLHR-C(SCR15-17、紫色丸)のN末端SCRおよびC1q / MBLおよびフィコリンの結合部位は、LHR-D(SCR 22-28、青い円)。相同な構造は同じように着色されている。 CR1 * 2(S)アイソフォームは、追加のLHR(LHR-S)を提示し、したがって、追加のC3b / C4b結合部位を含む。 KDa、キロダルトン。 NRC、非還元条件。 RC、減少した条件。 TM、膜貫通ドメイン。この数字は、Brouwers et al。 Nature Publishing Groupの許可を得て36歳この図の拡大版を見るには、ここをクリックしてください。

図2 "/files/ftp_upload/56012/56012fig2.jpg" />
図2 :HRM-PCRによって得られた配列アンプリコン位置を有するCR1アイソフォーム構造の模式 各ボックスはSCRを表します。 SCRは、LHR:LHR-A、-B、-Cおよび-Dに分類される。相同な構造は同じように着色されている。 CR1 * 2およびCR1 * 4アイソフォームは、追加のLHR(LHR-B)を提示し、したがって追加のアンプリコン領域(アンプリコンB、赤色)を含む。 CR1 * 3はLHR-Bを欠き、より少ないアンプリコン領域(アンプリコンBを欠く)を含む。アンプリコンB(196bp)と不変のアンプリコン(197bp)との間のヌクレオチド差は、それぞれ赤色および青色で示される。各CR1アイソフォーム間の比(赤色/不変のアンプリコン中のアンプリコンB、青色)は、HRM-PCRによって決定され、遺伝子型決定が可能になる。 CN3およびCN3reプライマー配列には下線が引かれている。 TM、膜貫通ドメイン。 CYT、細胞質尾部。pg "target =" _ blank ">この図の拡大版を見るには、ここをクリックしてください。

図3
図3: ヒト血液サンプルからのCR1長多型を遺伝子型決定するためのプロトコルのフローチャート。ヒトのDNAサンプルを採取する。 DNA血液サンプルを得るためにDNAを抽出する。 DNA濃度を決定し、希釈して10ng /μLのDNA濃度を得る。 HR1-PCRを用いてCR1長多型遺伝子型を得る。 この図の拡大版を見るには、ここをクリックしてください。

図4
図4 :分光光度計のスクリーンショット DNA濃度を測定する。 1( A )を押して、分光光度計でDNAモードを選択します。左右の矢印( C )を使用して5mmのパス長( B )を選択します。左右の矢印( C )を使用して単位(μg/ mL)( D )を選択します。左右の矢印( C )を使用して希釈係数1( E )を選択します。左右の矢印を使って50( F )を選択します。 OKG )を押します。 10μLの蒸留水をキュベットにピペットで入れる。キュベットを分光光度計( H )に入れる。 OA / 100%Tボタン( I )を押します。キュベットに10μLのDNAサンプル(蒸留水で1/4希釈)をピペットで加える。キュベットを分光光度計( K )に入れる。緑のボタン(読み取り/開始)( L )を押します。濃度( M )に注意してください。es / ftp_upload / 56012 / 56012fig4large.jpg "target =" _ blank ">この図の拡大版を表示するには、ここをクリックしてください。

図5
図5: プロトコルのステップ4で使用されるソフトウェアのグラフィカルインタフェースのスクリーンショット。A )遺伝子スキャニングソフトウェアを開きます。 ( B )増幅プログラムおよび融解曲線プログラム。 ( Cモジュールバーのサンプルエディタをクリックします。 ( Dスキャンを選択します。 ( E )サンプルの特性を定義する。 ( Fモジュールバーの解析をクリックします。 ( GNormalizationタブをクリックして融解曲線を正規化する。 ( H )[ 温度シフト ]タブをクリックすると、両方の融解曲線が表示されます正規化され、温度シフトされる。 ( I )「 計算」ボタンをクリックして、結果を分析し、グループを決定します。 ( J )[ 差プロット ]タブをクリックして、 標準化およびシフト融解曲線および標準化および温度シフト差プロットを表示します。 ( K )CR1の長さの遺伝子型によるサンプルの色分けされたグループ分け。 この図の拡大版を見るには、ここをクリックしてください。

図6
図6: HRM-PCRによって得られたWBおよびそれらに対応するプロファイル曲線において観察されたCR1長多型の表現型決定。A )WBを用いたCR1長多型の表現型決定。 ( B C )HRM-PCR分析を用いたCR1長多型のジェノタイピング。異なるCR1アイソフォームを示す被験体のゲノムDNAから得られたPCRアンプリコンのHRM曲線分析は、特異的な曲線プロファイル(CR1 * 3、CR1 * 1)(紫)の同定をもたらした。 (CR1 * 1、CR1 * 2)(青色)。 CR1 * 1(緑色)。 CR1 * 2(赤色)。 (CR1 * 2、CR1 * 4)(灰色)。これらは、CR1長多型対立遺伝子に対応する。 (CR1 * 3、CR1 * 1)に従って、曲線のプロファイルが分布していることが示されています(「標準化されシフトされた融解曲線」(B)および「標準化された温度差プロット」(C) ; (CR1 * 1、CR1 * 2); CR1 * 1; CR1 * 2;および(CR1 * 2、CR1 * 4)グループ。この数字は、Mahmoudi et al。 38エルゼビアの許可を得て。 この図の拡大版を見るには、ここをクリックしてください。

Discussion

ここでは、CR1の長さの多型を研究するために広くアクセス可能な方法を説明します。増幅またはセグメントハイブリダイゼーションのための分子生物学技術は、すべての個体におけるCR1長多型の決定を可能にする満足のいく結果を与えることは決してできなかった。これは、CR1遺伝子の繰り返し構造( すなわち、 CR1の高度に反復性のSCR)のためである。本明細書に記載の分子生物学方法は、CR1分子中のLHR-Bの定量的分布を利用する。 CR1分子は、 図2に記載および図示されるように、n個のLHR-Bドメイン(nは0〜3の数であり、唯一のLHR-Cドメイン)を含む。定量的ドメインB検出は、1つの追加または欠損ドメインBを完全に識別することを可能にする。

抽出された遺伝物質から、LHR-B由来の第1のDNA断片を、一対の特異的プライマーrepresen「変異体アンプリコンB」と呼ばれるLHR-Bの特徴的な変異体を同定した。 「不変のアンプリコン」と呼ばれ、LHR-Cに属する第2のDNA断片もまた増幅される。この第2のDNA断片はLHR-Cの断片であるが、LHR-Aまたは-Dの別の不変断片も使用することができる。

2つのDNAフラグメント、変異型アンプリコンBおよび不変型アンプリコンは、同じプライマーによって増幅され、ヌクレオチド配列において5つの相違を示す。この特徴により、その後の工程において、この目的に適合させた定量的分子生物学ツールHRMを用いて、変異型アンプリコンBの数および不変型アンプリコンの数を決定することが可能になる。アンプリコンBと不変のアンプリコンの数の比(アンプリコンB /不変アンプリコン)は、CR1分子の長さによって変化します。実際、CR1 * 4は3アンプリコンBユニットを1不変アンプリコンに、CR1 * 2は2アンプリコンBユニットを1不変アンプリコンに、CR1 * 1は1アンプリコンBを1不変アンプリコンに、CR1 * 3は0アンプリコンBを1不変アンプリコンに表示します( 図2 )。従って、このHRM-PCR法は、CR1長多型の遺伝子型決定を可能にする。

それにもかかわらず、研究の開始時に、この技術は、得られた曲線の参照プロファイルに従ってCR1の遺伝子型決定を確立することができるように、CR1表現型が既に知られている( すなわち、以前にWBによって確立された) HRM-PCRにより検出した。 「標準化された融解曲線とシフトされた融解曲線」と「標準化された温度差プロット」の2種類の表現が利用できます。それらは、WBによって得られたCR1長多型表現型に従って着色された別個の曲線プロファイル群を示す図6 )。 「正規化された融解曲線」ステップから、本発明者らの方法は、色でグループ分けされたCR1のアイソフォームに対応する曲線の異なるグループ。しかし、異なる数学的表現に対応する「正規化および温度シフト差プロット」は、異なる曲線グループの視覚化を容易にする。この研究ではメーカーのソフトウェアが日常的に使用されていましたが、他のソフトウェア(uANALYSEなど)を曲線解析のデータ抽出プログラムとして使用できます。

今日まで、WB分析技術は、タンパク質のレベルで異なるCR1長多型の同定を可能にする元の技術である。しかし、この技術には多くの欠点がある。特に、WBによるタンパク質分析は、細胞膜の抽出後にのみ行うことができる。結果として、それは複雑で非常に時間がかかる。さらに、この技術は、有効なresを達成するために、手順の始めに適切な条件で新鮮な血液サンプルを得ることを必要とするウルトラ。これに対して、DNA上で行われたHRM-PCRは、長期保管後に乾燥血液スポットまたはサンプルを使用することを可能にする。 HMR-PCRには、HRMソフトウェアを備えた専用機器またはHMR能力サーモサイクラーのいずれかの特殊DNA融解機器が必要です。 SNP検出は、いくつかの要因に依存します:i)大きなPCR断片に含まれるSNPは、小さなPCR断片の同じSNPよりも検出が困難です。 II)のクラスIIIおよびIVに属するSNPは、クラスIおよびII 34よりも検出するのがより困難です。 iii)HMRプラットフォームの分解能にかかわらず、最近接塩基対称性( 例えば、 5'-G(G / C)C-3 ')に隣接するSNPは、融解によって選別することができない。アッセイの有効性を評価するために、目的のSNPを含む予測PCR断片をuMELTソフトウェア35で試験することは有用であり得る。最後に、HMR-PCRはアナログ法であり、これは融解曲線の類似性がbetテンプレート配列が参照とは異なるが、熱力学的に同等であり得るため、テンプレート配列が参照と同一であることを必ずしも意味しない。しかしながら、これらの制限は、5ヌクレオチド配列に関して異なるアンプリコンの混合物の融解に基づく、本明細書に記載の方法には適用されない。

さらに、HRMの分析に基づいて、ここに記載された技術は多くの利点を有する。第1に、CR1の長さの多型は、遺伝物質の抽出が行われた後約2時間で結果が得られるので、より迅速に決定される。逆に、WBタンパク質分析に基づく従来の生化学的技術は、アクリルアミドゲルによる細胞膜抽出物の電気泳動、タンパク質をニトロセルロースまたはポリビニリデンフルオライド(PVDF)膜に移すステップ、およびアイソフォームのCR1分子の免疫化学発光による検出。第2に、HRM-PCR技術は、高価ではないという利点も有し、アルツハイマー病などの病状の発症に対する感受性を決定するために多くの個体( すなわち、大規模)に適用される可能性のある方法にとって特に重要である。狼瘡、またはマラリアに感染する。

最近、我々及び他の一つの追加のC3b / C4bの結合部位を含むCR1 * 2アイソフォームは、AD 36、37、38に関連していたことを示しています。これまでに発表された研究では、遺伝子レベルでのCR1の長さの多型とタンパク質は、被験者の98.9%において一貫していた38 。 HRM-PCRで得られた長さの多型とWBで得られた長さの多型を比較したときの不一致の結果は、HRM(遺伝子)によって決定された(CR1 * 1、CR1 * 2)赤血球の表面でWB(タンパク質)に従ってCR1 * 1アイソフォームのみを押す。我々の研究では、WBがより長い曝露時間で行われた場合、CR1 * 2アイソフォーム発現の欠如(無応答対立遺伝子を有する個体)は再現性があり、CR1アレル(CR1 * 2)文献のHelgeson 39 。それにもかかわらず、この仮説を支持するためには、より多くの集団についてのさらなる研究が必要である。

プライベートSNP(小さな家族集団または単一の個体でのみ発生するSNP)は、参照表現型決定(WB)を使用して解読すべき明確な曲線プロファイルを導くが、これを避けるために標準プロファイルと混同することはできないCR1長多型遺伝子型の誤った解釈。

Disclosures

著者は、Reims Champagne-Ardenne(URCA)の特許(特許番号WO2015166194)によって所有されている特許の発明者であり、

Acknowledgments

私たちは、PlateformeRégionalede Biologie Innovanteの全メンバー、免疫学部のスタッフ、およびプロトコールの最適化と検証に貢献した内科と老年学科のスタッフに感謝します。この研究は、Reims University Hospitals(助成番号AOL11UF9156)によって資金提供された。我々はまた、編集支援のためにFiona Ecarnot(EA3920、Besancon大学病院)に感謝します。

Materials

Name Company Catalog Number Comments
Lab coat protection
SensiCareIce powder-free Nitrile Exam gloves Medline Industries, Inc, Mundelein, IL 60060, USA 486802 sample protection
Eppendorf Reference 2 pipette, 0,5-10µL Eppendorf France SAS, F-78360 Montesson, France 4920000024 sample pipetting
Eppendorf Reference 2 pipette, 20-100µL Eppendorf France SAS, F-78360 Montesson, France 4920000059 sample pipetting
Eppendorf Reference 2 pipette, 100-1000µL Eppendorf France SAS, F-78360 Montesson, France 4920000083 sample pipetting
TipOne 10µL Graduated, filter tip Starlab GmbH, D-22926 Ahrenburg, Germany S1121-3810 sample pipetting
TipOne 1-100µL bevelled, filter tip Starlab GmbH, D-22926 Ahrenburg, Germany S1120-1840 sample pipetting
ART 1000E Barrier Tip Thermo Fischer Scientific , F-67403 Illkirch, France 2079E sample pipetting
Eppendorf Safe-Lock Tubes, 1.5 mL, Eppendorf Quality Eppendorf France SAS, F-78360 Montesson, France 0030120086 mix
Vortex-Genie 2 Scientific Industries, Inc, Bohemia, NY 111716, USA SI-0236 mix
QIAamp DNA Mini Kit (250) Qiagen SA, F-91974 Courtaboeuf, France 51306 DNA Extraction
Buffer AL Qiagen SA, F-91974 Courtaboeuf, France 19075 Lysis buffer
QIAamp Mini Spin Column Qiagen SA, F-91974 Courtaboeuf, France 1011706 DNA binding
Buffer AW1 Qiagen SA, F-91974 Courtaboeuf, France 19081 Wash buffer
Buffer AW2 Qiagen SA, F-91974 Courtaboeuf, France 19072 Wash buffer
Biowave DNA spectrophotometer Biochrom Ltd, Cambridge CB4 OFJ, England 80-3004-70 DNA concentration 
Mikro 200 centrifuge Hettich Zentrifugen, D-78532, Germany 0002020-02-00 centrifugation
Multipette E3 Eppendorf France SAS, F-78360 Montesson, France 4987000010 distribution
Light Cycler 480 multiwell plate 96, white Roche Diagnostics GmbH, D-68305 Mannheim, Germany 04729692001 reaction place
Light Cycler 480 sealing foil Roche Diagnostics GmbH, D-68305 Mannheim, Germany 04429757001 coverage
Heraeus Megafuge 11R centrifuge Thermo Fischer Scientific , F-67403 Illkirch, France 75004412 centrifugation
LightCycler 480 Instrument II, 96-well Roche Diagnostics GmbH, D-68305 Mannheim, Germany 05015278001 high resolution melting polymerase chain reaction
LightCycler 480 High Resolution Melting Master Roche Diagnostics GmbH, D-68305 Mannheim, Germany 04909631001 reaction reagents
light cycler 480 SW 1.5.1 software Roche Diagnostics GmbH, D-68305 Mannheim, Germany software used for HRM PCR CR1 polymorphism data analysis
CN3 primer: 5'ggccttagacttctcctgc 3' Eurogentec Biologics Division, B- 4102 Seraing, Belgium reaction reagent
CN3re primer: 5'gttgacaaattggcggcttcg 3' Eurogentec Biologics Division, B- 4102 Seraing, Belgium reaction reagent

DOWNLOAD MATERIALS LIST

References

  1. Prince, M., et al. World Alzheimer Report 2015, The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. Alzheimer's Disease International. , (2015).
  2. McKhann, G. M., et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 7 (3), 263-269 (2011).
  3. Serrano-Pozo, A., Frosch, M. P., Masliah, E., Hyman, B. T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 1 (1), 006189 (2011).
  4. Goate, A., et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature. 349 (6311), 704-706 (1991).
  5. Sherrington, R., et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature. 375 (6534), 754-760 (1995).
  6. Levy-Lahad, E., et al. A familial Alzheimer's disease locus on chromosome 1. Science. 269 (5226), 970-973 (1995).
  7. Mayeux, R., Stern, Y. Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med. 2 (8), (2012).
  8. Corder, E. H., et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 261 (5123), 921-923 (1993).
  9. Yu, J. T., Tan, L., Hardy, J. Apolipoprotein E in Alzheimer's disease: an update. Annu Rev Neurosci. 37, 79-100 (2014).
  10. Lambert, J. C., et al. Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer's disease. Nat Genet. 41 (10), 1094-1099 (2009).
  11. Liu, D., Niu, Z. X. The structure, genetic polymorphisms, expression and biological functions of complement receptor type 1 (CR1/CD35). Immunopharmacol Immunotoxicol. 31 (4), 524-535 (2009).
  12. Jacquet, M., et al. Deciphering complement receptor type 1 interactions with recognition proteins of the lectin complement pathway. J Immunol. 190 (7), 3721-3731 (2013).
  13. Pham, B. N., et al. Analysis of complement receptor type 1 expression on red blood cells in negative phenotypes of the Knops blood group system, according to CR1 gene allotype polymorphisms. Transfusion. 50 (7), 1435-1443 (2010).
  14. Cosio, F. G., Shen, X. P., Birmingham, D. J., Van Aman, M., Hebert, L. A. Evaluation of the mechanisms responsible for the reduction in erythrocyte complement receptors when immune complexes form in vivo in primates. J Immunol. 145 (12), 4198-4206 (1990).
  15. Krych-Goldberg, M., Moulds, J. M., Atkinson, J. P. Human complement receptor type 1 (CR1) binds to a major malarial adhesin. Trends Mol Med. 8 (11), 531-537 (2002).
  16. Cohen, J. H., Geffriaud, C., Caudwell, V., Kazatchkine, M. D. Genetic analysis of CR1 (the C3b complement receptor, CD35) expression on erythrocytes of HIV-infected individuals. Aids. 3 (6), 397-399 (1989).
  17. Rogers, J., et al. Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci USA. 89 (21), 10016-10020 (1992).
  18. Rogers, J., et al. Peripheral clearance of amyloid beta peptide by complement C3-dependent adherence to erythrocytes. Neurobiol Aging. 27 (12), 1733-1739 (2006).
  19. Krych-Goldberg, M., Atkinson, J. P. Structure-function relationships of complement receptor type 1. Immunol Rev. 180, 112-122 (2001).
  20. Klickstein, L. B., et al. Human C3b/C4b receptor (CR1). Demonstration of long homologous repeating domains that are composed of the short consensus repeats characteristics of C3/C4 binding proteins. J Exp Med. 165 (4), 1095-1112 (1987).
  21. Hourcade, D., Miesner, D. R., Atkinson, J. P., Holers, V. M. Identification of an alternative polyadenylation site in the human C3b/C4b receptor (complement receptor type 1) transcriptional unit and prediction of a secreted form of complement receptor type 1. J Exp Med. 168 (4), 1255-1270 (1988).
  22. Krych, M., Hourcade, D., Atkinson, J. P. Sites within the complement C3b/C4b receptor important for the specificity of ligand binding. Proc Natl Acad Sci USA. 88 (10), 4353-4357 (1991).
  23. Krych-Goldberg, M., et al. Decay accelerating activity of complement receptor type 1 (CD35). Two active sites are required for dissociating C5 convertases. J Biol Chem. 274 (44), 31160-31168 (1999).
  24. Klickstein, L. B., Barbashov, S. F., Liu, T., Jack, R. M., Nicholson-Weller, A. Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity. 7 (3), 345-355 (1997).
  25. Ghiran, I., et al. Complement receptor 1/CD35 is a receptor for mannan-binding lectin. J Exp Med. 192 (12), 1797-1808 (2000).
  26. Cornillet, P., Philbert, F., Kazatchkine, M. D., Cohen, J. H. Genomic determination of the CR1 (CD35) density polymorphism on erythrocytes using polymerase chain reaction amplification and HindIII restriction enzyme digestion. J Immunol Methods. 136 (2), 193-197 (1991).
  27. Moulds, J. M., Nickells, M. W., Moulds, J. J., Brown, M. C., Atkinson, J. P. The C3b/C4b receptor is recognized by the Knops, McCoy, Swain-langley, and York blood group antisera. J Exp Med. 173 (5), 1159-1163 (1991).
  28. Moulds, J. M., Moulds, J. J., Brown, M., Atkinson, J. P. Antiglobulin testing for CR1-related (Knops/McCoy/Swain-Langley/York) blood group antigens: negative and weak reactions are caused by variable expression of CR1. Vox Sang. 62 (4), 230-235 (1992).
  29. Wilson, J. G., et al. Identification of a restriction fragment length polymorphism by a CR1 cDNA that correlates with the number of CR1 on erythrocytes. J Exp Med. 164 (1), 50-59 (1986).
  30. Wong, W. W., et al. Structure of the human CR1 gene. Molecular basis of the structural and quantitative polymorphisms and identification of a new CR1-like allele. J Exp Med. 169 (3), 847-863 (1989).
  31. Herrera, A. H., Xiang, L., Martin, S. G., Lewis, J., Wilson, J. G. Analysis of complement receptor type 1 (CR1) expression on erythrocytes and of CR1 allelic markers in Caucasian and African American populations. Clin Immunol Immunopathol. 87 (2), 176-183 (1998).
  32. Rowe, J. A., et al. Erythrocyte CR1 expression level does not correlate with a HindIII restriction fragment length polymorphism in Africans; implications for studies on malaria susceptibility. Genes Immun. 3 (8), 497-500 (2002).
  33. Birmingham, D. J., et al. A polymorphism in the type one complement receptor (CR1) involves an additional cysteine within the C3b/C4b binding domain that inhibits ligand binding. Mol Immunol. 44 (14), 3510-3516 (2007).
  34. Venter, J. C., et al. The sequence of the human genome. Science. 291 (5507), 1304-1351 (2001).
  35. Dwight, Z., Palais, R., Wittwer, C. T. uMELT: prediction of high-resolution melting curves and dynamic melting profiles of PCR products in a rich web application. Bioinformatics. 27 (7), 1019-1020 (2011).
  36. Brouwers, N., et al. Alzheimer risk associated with a copy number variation in the complement receptor 1 increasing C3b/C4b binding sites. Mol Psychiatry. 17 (2), 223-233 (2012).
  37. Hazrati, L. N., et al. Genetic association of CR1 with Alzheimer's disease: a tentative disease mechanism. Neurobiol Aging. 33 (12), 2945-2949 (2012).
  38. Mahmoudi, R., et al. Alzheimer's disease is associated with low density of the long CR1 isoform. Neurobiol. Aging. 36, 1712-1765 (2015).
  39. Helgeson, M., Swanson, J., Polesky, H. F. Knops-Helgeson (Kna), a high-frequency erythrocyte antigen. Transfusion. 10 (3), 137-138 (1970).

Tags

遺伝学、問題125、CR1、CD35、補体C3b / C4b受容体、CR1長多型、補体、アルツハイマー病、分子生物学、神経科学、全身性エリテマトーデス、遺伝的リスク
補体受容体1長多型のための高分解能Melting PCR Genotyping:アルツハイマー病の遺伝子感受性評価のための革新的なツール
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Kisserli, A., Tabary, T., Cohen, J.More

Kisserli, A., Tabary, T., Cohen, J. H. M., Duret, V., Mahmoudi, R. High-resolution Melting PCR for Complement Receptor 1 Length Polymorphism Genotyping: An Innovative Tool for Alzheimer's Disease Gene Susceptibility Assessment. J. Vis. Exp. (125), e56012, doi:10.3791/56012 (2017).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter