Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biology

インタラクトーム Seq: Domainome ライブラリーの構築、検証およびバクテリオファージの表示と次世代シーケンシングによる選択のプロトコル

Published: October 3, 2018 doi: 10.3791/56981

Summary

説明されているプロトコルは、建設、特性および DNA の任意のソースから作られた"domainome"ライブラリの (好みのターゲット) に対して選択を許可します。さまざまな技術を組み合わせた研究パイプラインにより、これ: バクテリオファージの表示、折りたたみ記者とシークエンサー データ解析のための web ツールを使用します。

Abstract

折りたたみ記者、不十分な蛋白質またはランダムの開いたリーディング ・ フレームを折りに融合、その折りたたみそして機能が侵害された抗生の抵抗などのわかりやすい表現型を持つ蛋白質であります。、ゲノム スケールの TEM 1 β-ラクタマーゼ (アンピシリン耐性酵素) を使用して、我々 選択することが正しく折られた蛋白質ドメインのコレクションすべて intronless ゲノムの DNA のコーディングの部分から戦略を開発しました。呼ばれる"domainome"は、このアプローチによって得られるタンパク質の断片はよく表現された水溶性、構造・機能の研究に適してになります。

クローニングとファージ ディスプレーに直接"domainome"を表示する、我々 ことを示した (例えば、他の蛋白質に抗体)、目的の結合プロパティを持つ特定のタンパク質ドメインを選択することが可能不可欠提供実験的遺伝子アノテーションまたは抗原同定.について

選択したポリクローナル人口の最も豊かなクローンの識別は、新しい次世代シーケンシング技術 (NGS) を使用して実現できます。これらの理由から、ライブラリ自体の多様性、豊かさと選択したフラグメントのそれぞれの正確なマッピングに関する完全な情報を提供する選択出力のディープ シーケンス解析を紹介する.ここで紹介するプロトコルは、ライブラリーの構築、評価、検証にキーの手順を示します。

Introduction

ここでは、建設と任意の遺伝子/ゲノム開始ソースから折り返しと可溶性タンパク質ドメインの図書館の選択のための高スループット方法をについて説明します。3 種類のテクノロジーを組み合わせて方法: バクテリオファージの表示、データ分析のため折りたたみ記者と次世代シーケンシング (NGS) 特定の web ツールの使用。識別と新しいタンパク質/タンパク質ドメインのアノテーションの定義と同様、知られている蛋白質の構造と機能特性の評価のため蛋白質ベースの研究の多くの異なった文脈でメソッドを使用できます。タンパク質間相互作用ネットワーク。

蛋白質ベースの研究に多くの未解決の問題があるまだ最適なタンパク質生産技術の開発、調査のいくつかのフィールドの重要な必要性。たとえば、原核生物と真核生物のゲノム1の何千もの可用性、にもかかわらずコード化されたタンパク質・ ペプチドの直接アノテーション付き相対プロテオームの対応するマップはまだ不足している生物の大多数のため。完全なプロテオームのカタログは、時間とリソースの面で多大な努力を必要とする挑戦的な目標として現れています。すべて、開いたリーディング ・ フレーム (ORFs)、ゲノムのと呼ばれる"ORFeome"の構築のクローニング実験的アノテーションのゴールド スタンダードのままです。通常遺伝子の機能は知られている活動の関連遺伝子に相同性に基づいて割り当てられているが、この手法は不十分な参照のデータベース2,3,4、多くの不適切な注釈の存在のために正確 5。また、識別されていると、注釈が付けられた蛋白質のためもさらなる研究が豊富な構造特性と機能を含む別のコンテキストでの発現パターンの観点からの評価を達成するために必要なだけでなく相互作用のネットワーク。

さらに、蛋白質は、それらのそれぞれ異なるドメインから構成研究とこれらのドメインの正確な定義により包括的な画像、シングルで両方をできる特定の機能を示し、異なるタンパク質機能に貢献すること、遺伝子と全ゲノムのレベルで。このすべての必要な情報は、広く、やりがいのあるフィールドを蛋白質ベースの研究になります。

このような観点で蛋白質の生産のための公平かつ高スループット方法から重要な貢献を与えられます。ただし、かなりの投資が必要の横にある、このようなアプローチの成功は、水溶性/安定な蛋白質の構造を生成する能力に依存します。これは主要な制限の要因に蛋白質の約 30% が正常に表現し、実験的役に立つ6,78に十分なレベルで生産、それが推定されているので。この制限を克服するためのアプローチは、個々 の遺伝子の重複フラグメント表現を一緒に提供する別のポリペプチドを生成するランダムに断片化された DNA の使用に基づきます。それらの大多数 (終止コドンをシーケンス内の存在) のための機能性または非天然 (元以外のフレームで ORF) 用にエンコードしながら、ランダムに生成された DNA のフラグメントのわずかな割合、機能 ORFsない生物学的意味を持つポリペプチド。

当社グループはこれらの問題に対処するゲノム スケールの9,1011,12に使用できるハイスループット蛋白質・表現と相互作用・解析・ プラットフォームを開発しました。このプラットフォームは、次のテクニックを統合: 1); 任意の有機体から DNA のコーディングの部分から正しく折られた蛋白質のドメインのコレクションを選択する方法2) ファージディスプレーの相互のパートナーを選択するため完全に調査の下で全体のインタラクトームを特徴付けるし、関心のクローンを識別する 3) NGS・ 4) ユーザー バイオインフォマティクスやプログラミングのスキルなし簡単で使いやすい方法で Seq インタラクトーム解析を実行するためのデータ解析のための web ツール。

このプラットフォームの利用調査の代替戦略上の重要な利点を提供しています。上記のすべてのメソッドは完全に公平な高スループット、および全ゲノムまで単一の遺伝子に至る研究のモジュール。パイプラインの最初のステップは、深く NGS によって特徴付けられる、調査の下でランダムに断片化された DNA からライブラリの作成です。このライブラリは、ペリプラズム空間 (すなわち、Sec リーダー) 蛋白質の分泌をシグナル配列と TEM1 β-ラクタマーゼ遺伝子間の興味の遺伝子/断片のクローン、組み換えベクターを使用して生成されます。融合タンパク質がアンピシリン抵抗性とクローンの断片がフレームの場合にのみ、アンピシリンの圧力の下で生き残るために能力を与えるこれらの要素とその結果の融合タンパク質が正しく折りたたまれた10,13 14。すべてのクローンと呼ばれる「フィルターのクローン」抗生物質の選択後に救出 ORFs、それら (80% 以上) の大多数、実際遺伝子9から派生しました。さらに、この戦略の力は、すべてのフィルター ORF クローンが正しく折り返されて/水溶性蛋白質/ドメイン15エンコーディングが所見であります。ライブラリと同じ地域/ドメインのマッピングの存在の多くのクローンがある異なる開始点と終了点は、この水溶性製品で発生する可能性が最小の断片の公平なシングル ・ ステップの識別できます。

技術のそれ以上の改善は、ライブラリを特徴付ける NGS の使用によって与えられます。このプラットフォームとデータ解析のための特定の web ツールの組み合わせを与えるさらに広範な分析を必要とせず研究下参照 DNA に関する重要な公平な情報正確な塩基配列と選択された ORFs の場所または実験的努力。

Domainome ライブラリは、選択のコンテキストに転送し、機能研究を実行する汎用計測器として使用できます。高スループット蛋白質表現と相互作用解析プラットフォーム統合、phagemid ベクトルにフィルターの ORF を転送し、バクテリオファージ ORF の作成によってバクテリオファージの表示技術の活用インタラクトーム Seq と呼ばれるライブラリ。一度再バクテリオファージ ディスプレイ コンテキスト、ドメインが M13 粒子の表面に表示されているタンパク質に複製この方法で、特定の酵素活性を持つドメインをエンコードまたはバインディング プロパティ、プロファイル インタラクトーム ネットワークことができます遺伝子断片の domainome ライブラリを直接選択できます。このアプローチは、Zacchiによって見出されました。16後でいくつか他のコンテキスト13,17,18

(質量1920酵母 2 ハイブリッド系など) 蛋白質蛋白質の相互作用を研究するために使用する他の技術と比較して、1 つの主要な利点はバクテリオファージの中に発生する結合パートナーの増幅選択範囲の複数回が表示されます。したがって低豊富な結合蛋白質のドメイン ライブラリの存在の識別を許可選択感度が向上します。ORF フィルター ライブラリで実行される選択の効率は非機能的なクローンの不在のため増し。最後に、技術は蛋白質および非蛋白質餌21,22,23,24,25に対して実行するを選択できます。

Domainome バクテリオファージのライブラリを使用してファージを選択は、餌として自己免疫疾患13がんや感染症など、病理学的条件の異なる患者の血清に由来する抗体を使用して実行できます。このアプローチを使用して、大規模を識別し、特に同時に患者の抗体によって認識される抗原/エピトープを特徴付けるように調査の下で疾患のいわゆる「抗体署名」を取得。他の方法と比較して、使用のバクテリオファージの表示により、線形および立体配座抗原エピトープの同定。特定の署名の識別には、病態理解、新しいワクチン デザイン、新しい治療標的の同定、新しいと特定診断と予後ツールの開発の重要な影響があります。また、感染症に関する研究をフォーカスすると、主要な利点ということです免疫原性タンパク質の検出病原体栽培から独立しました。

我々 のアプローチは、"domainome"を選択するゲノム スケールで折りたたみの記者が使える確認: DNA のコーディングの部分から正しく折られた、よく表現、可溶性タンパク質ドメインやすべての生物からの cDNA のコレクション。一度分離タンパク質断片が遺伝子アノテーションと同様構造の研究、抗体のエピトープ マッピング、抗原の同定などの本質的な実験的情報を提供する多くの目的のため役に立つ。NGS によって提供される高スループット データの完全性は、バクテリオファージの表示ライブラリなどの非常に複雑なサンプルの分析を可能し、伝統的な骨の折れるピッキングと救出された個々 の phage クローンのテストを回避する潜在性を保持します。

同時に極端な感度と NGS 解析の力し、フィルター処理したライブラリの機能のおかげで、それはそれぞれの相互作用を作成することがなく、最初の画面に直接責任がある蛋白質のドメインを識別することが可能それぞれの追加のライブラリは、タンパク質をバインドされています。NGS は、任意の遺伝子/ゲノム開始ソースの全体の domainome の包括的な定義を取得することができます、データ分析 web ツールにより、特異性の高い特性両方の定性・定量用のポイントのビューからの入手、インタラクトーム蛋白質のドメイン。

Subscription Required. Please recommend JoVE to your librarian.

Protocol

1、ORF ライブラリ (図 1) の建設

  1. 挿入 DNA の準備
    1. フラグメントの合成またはゲノム DNA からの準備
      1. エキス/26標準的な方法を使用して DNA を浄化します。
      2. Sonication によって DNA のフラグメント。電源出力 100% で 30 秒パルスを用いた一般的な提案開始として標準的な超音波発生装置を使用してかどうか。
        注: パイロット実験は DNA の準備のための最適な条件を設定する別の電源と超音波処理時間でされるべきであります。各テスト後 agarose のゲルの電気泳動によって DNA のフラグメントのサイズを決定します。
      3. 一緒に 100 bp の DNA の梯子の 1.5% の agarose のゲルに熱量の DNA をロードします。5 V/cm の 15 分間で実行し、断片化された DNA の塗抹標本を含んでいるゲルの部分をカット、短い電気泳動を行います。
      4. 列ベースのゲルの抽出キットを挿入 DNA を浄化し、紫外線分光光度計を使用して濃度を測定します。
        注: 少なくとも 500 消化ベクトルの 1 μ g と結紮する手順 1.3 で説明したように、この手順の後の精製挿入 ng を取得必要があります。サンプルの低品質はライゲーション効率に影響を与えるので、260 nm/A280 nm260 nm/A230nm比を評価することによってフラグメントの準備の質を確認してください。
      5. 製造元の指示に従ってクイック鈍化キット酵素ミックスの 1 μ L と、挿入の最大 5 μ g を扱います。使用するまで-20 ° C で 10 分サンプルを格納できるため、70 ° C で加熱することによって酵素を不活性化します。
    2. CDNA からのフラグメントの準備
      1. 標準的な方法 (例えば、 TRizol または同じような試薬を使用) と RNA を抽出します。
      2. 逆のトランスクリプションを実行する前に加熱による mRNA をフラグメントします。最終的な DNA フラグメントの長さは、mRNA の沸騰時間と任意プライマー濃度によって制御されます。たとえば、95 ° C で 6 分間のサンプルを加熱します。
      3. 製造元のプロトコルを次の使用可能なキットとランダムなプライマーを使用して cDNA を準備します。
      4. 37 ° C で 3 h のビオチン化ポリ dA との交配によるポリ dT ツインテールの cDNA を使い果たすし、Carninci et al.による記述でストレプトアビジン磁気ビードの分離13
      5. バインドされていない材料を回復し、製造元の指示に従って列に基づく DNA 精製キットで精製します。紫外線分光光度計を使用して濃度を測定します。1.1.1.4 の手順でメモを参照してください。
  2. フィルタ リングのベクトルの準備
    1. 精製クローニング ベクトル pFILTER312 10 U の EcoRV 制限の酵素、次の製造元のプロトコルとのダイジェスト 5 μ g。
    2. ロード 2 μ L (200 ng) 100 と共に、消化のベクトルの未消化のベクトルと 1 k bp 分子マーカーは、適切な消化力をチェックするための 1% アガロースゲル上の ng。熱は、制限酵素を不活性化します。
    3. ホスファターゼ バッファーとホスファターゼ 1 μ L (5 U) x 10 の 1/10 ボリュームを追加し、15 分熱は 65 ° C で 5 分間非アクティブにするために 37 ° C でインキュベート
    4. Agarose のゲルからの抽出によって消化されたプラスミドを浄化し、紫外線分光光度計を使用して濃度を測定します。サンプルは、使用するまで-20 ° C で保存できます。
  3. 結紮と変換
    1. 結紮を次のように実行: 1 μ g 消化プラスミドの追加 400 ng のリン酸化挿入 (プラスミッド挿入モル比 1:5) の 10 倍の 10 μ L T4 DNA リガーゼ、100 μ L の最終巻で高濃度 T4 DNA リガーゼの 2 μ L 用のバッファーが 16 ° C overni で反応を孵化させなさい右側。10 分の 65 ° C で熱を不活性化します。
    2. 酢酸ナトリウム溶液 (3 M, pH 5.2) の 1/10 ボリュームを追加することにより結紮製品の沈殿物と 100% のエタノールの 2.5 倍の量。混合し、-80 ° C、20 分でフリーズします。
    3. 4 ° C で 20 分最大速度で遠心します。上清を捨てます。
    4. ペレットと最大速度で 4 ° C で 20 分間遠心する冷たい 70% エタノール 500 μ L を追加します。上清を捨てます。
    5. 空気は乾燥ペレットです。10 μ L の水に沈殿した DNA を再懸濁します。
    6. 細菌の細胞のエレクトロポレーションを実行します。
      注: (上記の DNA の μ g あたり 5 x 109 transformants) 高効率電池の使用が必要です。大腸菌DH5αF の使用をお勧め ' (F'/endA1 hsd17 (rK − mK +) supE44 ティ 1recA1 ジャイラ (メルディ) relA1 (lacZYA 利用できません) U169 deoR (F80dlacD-(lacZ)M15) 生産家のまたはいくつかのメーカーから購入しました。
      1. 氷の上のマイクロ遠心チューブ用と 0.1 cm エレクトロポレーション キュヴェットの適切な数を配置します。細胞の 25 μ L に (純水) で精製した結紮ソリューションの 1 μ L を追加し、数回をはじきます。
      2. 冷たいキュベットに DNA 細胞の混合物を転送、2 x カウンターをタップ、キュベットの外から水を拭く、エレクトロポレーションの押すとモジュールのパルスに配置。
      3. 25 μ F、200 Ω 1.8 を使用して標準的な遺伝子導入装置マシンとエレクトロポレーションを行う kV。時定数 4-5 ミリ秒である必要があります。
    7. すぐに、抗生物質なし液体 2xYT 中の 1 mL を追加、10 mL のチューブに移し、37 ° C、1 時間 220 rpm で揺れで成長できるように。
    8. プレート変換 DH5αF' 15 cm 2xYT 寒天 34 μ G/ml クロラムフェニ コール (pFILTER 抵抗) と 25 μ G/ml アンピシリン (ORFs の選択的マーカー) 補われ、30 ° C で一晩インキュベート
    9. クロラムフェニ コール + アンピシリンとライブラリの滴定を行うにのみ、クロラムフェニ コールを添加した 10 cm 2xYT 寒天培地プレート上のライブラリの希釈液をプレートします。30 ° C で一晩インキュベートします。
  4. pFILTER ORF ライブラリ検証
    1. 15-20 挿入サイズ分布推定クロラムフェニ コールとクロラムフェニ コール/アンピシリン プレートからコロニーをテストします。先端のシングル コロニーをピックアップし、抗生物質なし 2xYT 媒体の 100 μ L で個別にそれらを希釈します。製造元のプロトコルに続く任意の標準的な TaqDNA ポリメラーゼと DNA のテンプレートとして PCR の反作用のこのソリューションの 0.5 μ L を使用します。
    2. 25 サイクルの増幅器は 55 ° C、40 の延長時間 T 焼鈍を行う s 72 ° C でプライマー シーケンスは、テーブルの材料で提供されます。
    3. 一緒に 100 bp の DNA の梯子と実行の 1.5% の agarose のゲルの PCR の製品をロードします。
  5. pFILTER ORF の図書館のコレクション
    1. 新鮮な 2xYT 培地 3 mL を追加して 150 mm 板から細菌を収集し、ミックス徹底的に滅菌スクレーパーと、それらを収穫して 20% 滅菌グリセリンで補完、小さい因数で-80 ° C で保存します。
    2. (グリセロール添加) の前に、ライブラリの 1 つの因数からプラスミド DNA を浄化の製造元の指示に従って列に基づくプラスミド抽出キットを使用しています。
    3. 紫外線分光光度計で濃度を測定します。-20 ° C まででサンプルを格納できる NGS phagemid ライブラリの作製および評価に使用します。

2. Phagemid ベクトル (図 2) でフィルター処理された ORFs の subcloning

  1. ORF の準備は、DNA のフラグメントをフィルター処理
    1. PFILTER ORF ライブラリ ベクトル BssHII の 10 U を追加して、製造元のプロトコルに従って培養から精製されたベクトルの 5 μ g の制限の酵素の消化力を設定します。酵素と 10 U NheI のダイジェストを不活性化します。
    2. 一緒に 100 bp の DNA の梯子の 1.5% の agarose のゲルに消化された DNA をロードします。電気泳動法の短い 15 分の 5 V/cm またはだけを切除片の塗抹標本を識別し、それらを含んでいるゲルの部分をカットで実行を実行します。
    3. 柱脚ゲル抽出キットを挿入 DNA を浄化し、紫外線分光光度計を使用して濃度を測定します。
  2. Phagemid DNA の調製
    1. 挿入に関しては精製 pDAN527の 5 μ g の制限の酵素の消化力を設定します。
    2. 0.75% の agarose のゲルの実行中の消化の DNA によって消化されたプラスミドを浄化し、列ベース キットにゲルから抽出します。
    3. 紫外線分光光度計を使用して濃度を測定します。サンプルは、使用するまで-20 ° C で保存できます。
  3. ライブラリ結紮、変換およびコレクション
    1. 結紮と pFILTER ベクトルの変換を実行します。
    2. プレート変換 DH5αF' 150 mm 2xYT 寒天 100 μ g/mL アンピシリンと補われ、30 ° C で一晩インキュベート
    3. ライブラリのサイズを決定するための 100 μ g/mL アンピシリンを添加した 100 mm 2xYT 寒天培地プレート上のライブラリの希釈液をプレートします。
    4. 1.4 の手順で説明するようにランダムに選択されたクローンの PCR によるライブラリの検証を実行します。
    5. 150 mm 板から細菌を収穫して phagemid ORF ライブラリを収集、混和、20% 滅菌グリセリンや-80 ° c の小さい因数でストアでそれらを補います。
    6. 製造元の指示に従って列に基づくプラスミド抽出キットを使用してライブラリの 1 つの因数からプラスミド DNA を浄化します。
    7. 紫外線分光光度計で濃度を測定します。-20 ° C まででサンプルを格納できる NGS によって評価されます。

3. バクテリオファージ ライブラリの準備および選択手順

  1. バクテリオファージの生産
    1. 外径600 ナノメートルを持つために 100 μ g/mL アンピシリンを添加した 2xYT 液体スープの 10 mL に phagemid ライブラリのストック因数を希釈 = 0.05。
    2. 37 ° C に達する OD600 ナノメートルまで 220 rpm で揺れ = 0.5、生殖不能のフラスコで希薄化後のライブラリを元のボリュームの 5-10 倍成長します。
    3. 助手のバクテリオファージ (例えばM13K07) 感染症 20:1 の多重度で細菌に感染します。時折撹拌 (10 分毎) で 45 分の 37 ° C に置いたまま。
    4. 室温で 10 分間 4000 x g で細菌を遠心します。上澄みを廃棄、100 μ g/mL アンピシリンと 50 μ G/ml カナマイシンを添加した 2xYT 液体スープ 40 ml 細菌ペレットを再停止し、一晩 220 rpm で振とうしながら 28 ° C で成長します。
    5. 4 ° C で 20 分間後、4000 × g で遠心分離細菌の日ファージを含む上清を収集します。
  2. ペグ - ファージの沈殿物。
    1. 1/5 量 0.22 μ m フィルター クリア ファージにペグ/食塩 (20 %w/v ペグ 6000、2.5 M の NaCl) を追加し、氷上で 30-60 分間インキュベートします。
      注: ソリューションになった煙数分後成功したファージの沈殿物を示します。ソリューションの曇りがインキュベーション時間の経過と共に増加します。
    2. 4000 x g で 4 ° C で 15 分間遠心ファージの白い小さなペレットを形成します。
    3. それは 1 mL の滅菌 PBS に再懸濁します。1.5 mL のチューブに移し、4 ° c 汚染細菌を除去する最大速度で 10 分間遠心分離します。茶色のペレットになります。
    4. 新しいチューブに上清含むファージを転送します。滴定およびバクテリオファージ淘汰の氷の上に感染するバクテリオファージを維持します。
  3. バクテリオファージの滴定
    1. バクテリオファージ ソリューションのシリアル希薄を準備します。990 μ L の 10-2希釈を取得する PBS のファージ液の 10 μ L を入れてください。再び 10-4これから 10-6希釈を取得しこの準備を希釈します。
    2. 成長 DH5αF' 2xYT 外径600 ナノメートルまで揺れで 37 ° C で液体培地に細菌細胞 = 0.5 に達する。1.5 mL チューブに準備された細菌の 1 mL を移すし、10-4バクテリオファージ希釈の 1 μ L ですぐに感染します。45 分 10-6希釈と同じ手順の繰り返しの 37 ° C に振ることがなく、インキュベートします。
    3. 感染した菌の希釈液を 100 mm 2xYT プレートにプレート。30 ° C で皿を一晩置きます。
    4. 感染していない DH5αF の 100 μ L をプレート ' 2xYT 寒天培地プレートに準備に汚染の有無を確認する 100 μ g/mL アンピシリンを補完します。
    5. 翌日は、コロニーの数を数えるし、ファージ力価を計算します。価ファージ/mL の数として表現します。予定価は 1012 13ファージ/mL です。
  4. ファージの選択
    1. ファージの選択を使用して浄化された抗体を餌として
      1. PBS-4% スキムミルクの等量にファージ調製の 200 μ L に希釈してファージを飽和し、低速回転に室温で 1 時間インキュベートします。この手順は、非特異的結合のファージのブロックできます。蛋白質 G の被覆磁性体ビーズ 30 μ L を 1.5 mL チューブに転送します。
      2. 次のように 2 回を洗う: 500 μ L の PBS を追加、室温で 2 分間低速回転でホイールに孵化させなさい、磁石を使用して管の 1 つの側面にビーズを描画、上澄みを除去。
      3. 低速回転と室温で 30 分間洗浄ビーズ飽和ファージを孵化させなさい。
      4. 磁気フィールドを使用して 1 つの側面にビーズを描画します。選択のステップに使用するファージを含む上清を収集します。
      5. 浄化された抗体の活用で、前の手順を実行しながら磁気ビーズを準備します。上記タンパク質 G コーティングされた磁気ビーズの 30 μ L を洗ってください。500 μ L の PBS で浄化された抗体の 10 μ g を希釈、洗浄のビーズを追加し、45 分 PBS で 2 回洗浄のため室温で低速回転で孵化させなさい。
        注: 磁気ビーズの 2 つの異なる製剤を実行: 1 つの興味の抗体とコントロール抗体、例えば、抗体とは健康なドナーから精製します。制御出力の分析手順の中に抗体を減算した抗原のシーケンス。また、コントロール抗体搭載磁気ビーズは、(非共役のビードと孵化のプロトコルに従う) ファージの前清算のステップを実行する使用できます。
      6. ファージの選択: 磁石を用いた管の 1 つの側面にビーズを描画、最後の洗浄を削除、ファージを追加、90 分 5 回 PBS-0.1% Tween 20 500 μ L と 5 回 PBS で洗浄のため室温で低速回転で孵化させなさい。
      7. 溶出がバインドされたファージ、1 ml DH5αF のビーズを混合することによって、選択範囲の出力を表す ' OD600で育った細胞 = 0.5。時折揺れ (10 分毎) で 37 ° C の 45 分のビーズと細菌を孵化させなさい。100 μ g/mL アンピシリンを添加した 150 mm 2xYT 寒天培地プレートに出力をプレートします。
      8. 滴定を実行する原液と出力 (10-1 10-5~) の異なる希釈液 100 μ L をプレートします。翌日 150 mm 板から新鮮な 2xYT 培地 3 mL を追加することによって細菌を収集し、ミックス徹底的に滅菌スクレーパーとそれらを収穫して 20% 滅菌グリセリンで補完、小さい因数で-80 ° C で保存します。
      9. 選択のラウンド 2 番目を実行するもう 1 つの因数が成長します。洗浄の条件を除いて上記のようにパンのすべての手順を繰り返します。PBS-1% Tween 20 と 10 回をこの場合洗浄 (管内の溶液を注ぐし、すぐに注ぐ)。500 μ L の PBS を追加し、10 分実行 PBS と他の 10 の洗浄のため室温で回転を孵化させなさい。選択範囲の最初のラウンドは溶出のステップに進みます。
      10. メーカーの指示に従って、列ベースのキットを使用して、出力の 1 つの因数からプラスミド DNA を抽出します。ディープ シーケンスの使用されるまでは、-20 ° C でプラスミドを格納します。
    2. 組換えタンパク質を餌として使用してファージの選択
      1. PBS-4% スキムミルクの等量にファージ調製の 200 μ L に希釈してファージを飽和し、低速回転に室温で 1 時間インキュベートします。
      2. ストレプトアビジン磁気ビーズの 100 μ L を追加します。ストレプトアビジン結合ファージを選択するために室温で 1 時間インキュベートします。ストレプトアビジン バインド ファージを削除するには、磁石を使用して 1 つの側面にビーズを描画します。前の手順から上澄みを取る (濃度 100 550 nM) にビオチン化タンパク質を加えるし、ロータの室温で 1 時間に 30 分の間孵化させなさい。
      3. 磁気ビーズを準備: 前の手順を実行中、100 μ L の PBS のストレプトアビジン磁気ビーズを洗浄、PBS 2% スキムミルクで再懸濁します、ローテーションで 1 時間に 30 分間室温でインキュベートします。
      4. ファージの選択: 磁石を用いた管の 1 つの側面にビーズを描画、PBS-2% の牛乳を削除およびバクテリオファージ タンパク質ミックス ビーズを再懸濁します。90 分間室温で低速回転で孵化させなさい。
      5. 磁石を用いた管の 1 つの側面にビーズを描画、上澄みを廃棄し、それらを注意深く洗浄 500 μ L の PBS を 5 回 0.1% Tween 20。前のセッションで説明したように、溶出を実行します。

4. バクテリオファージ ライブラリ ディープ シーケンス プラットフォーム (図 3)

  1. DNA は、pFILTER ORF ライブラリ、pDAN5-ORF-ライブラリまたは選択したファージライブラリから回復を挿入します。
    1. ライブラリの 1 つの因数を解凍、分光光度計を用いた定量化、特異的プライマー増幅作用による DNA チップを回復します。
      注: 挿入を救出するために使用するプライマーは、得た私アンプリコン プールの連続インデックスと DNA チップのダイレクト シーケンスをシーケンサーを使用して回復できるようにアダプター シーケンスに 5' 端にリンクされています。シーケンスは、テーブルの材料です。アダプターは、太字で表示されます、特異的プライマーはイタリック体で示されます。
    2. PCR の反作用のための DNA のテンプレートとして (pFILTER/phagemid/選択-ファージ) ライブラリの 2.5 μ L を使用します。
    3. 次のプログラムを使用して: 95 ° C、3 分。25 サイクル 95 ° C の 30 s、55 ° C、30 s、30 のための 72 ° C s;4 ° C で 5 分保持のための 72 ° C
      注: この時点でそれをバイオアナライザーまたは TapeStation、産物のサイズを確認し、適切な範囲であることを確認で 1 μ L の PCR の製品を実行するお勧め。
  2. PCR のクリーンアップ
    1. (例えばAMPure) の磁気ビーズを室温に戻します。1.5 mL チューブ、PCR チューブから全体の PCR の製品を転送します。渦 30 用磁気ビーズのビーズに均等に分散していることを確認します。PCR の製品は、軽くピペッティングしてミックスを含む各チューブに磁気ビーズの 20 μ L を追加します。5 分間振盪せず室温で孵化させなさい。
    2. マグネット スタンドを 2 分間または上澄みがクリアまでにプレートを配置します。マグネット スタンドに PCR の製品を削除し、上澄みを廃棄します。
    3. マグネット スタンドで PCR の製品と、作りたての 80% エタノールでビーズを通り洗う: もに各サンプルに作りたての 80% エタノール 200 μ L を追加3、マグネット スタンドに板を孵化させなさい s;慎重に削除し、上澄みを廃棄します。
    4. マグネット スタンド; の PCR の製品の第 2 エタノール洗浄を実行します。第 2 洗浄の最後に慎重にすべてのエタノールを削除し、10 分の風乾にビーズを許可します。
    5. マグネット スタンドからの PCR の製品を削除、各チューブに 10 mM Tris pH 8.5 の 17.5 μ L を追加、優しくをピペット、ダウン 10 回はビードが完全に再停止されることを確認してください。2 分間室温でインキュベートします。
    6. 2 分のマグネット スタンドにチューブを配置または 15 μ L を新しい 1.5 mL チューブ精製 PCR 産物を含む上清を慎重に転送上澄みがクリアまで。すぐにインデックス PCR を続行しないでください場合は-15 ° C-25 ° C、1 週までに精製 PCR の製品を格納します。
  3. PCR のインデックス
    注: PCR は、クリーンアップするインデックス PCR を実行します。Nextera XT インデックス キット;したがってそれは多重イルミナ内結果ダブル インデックス ライブラリをシーケンスすることが可能になります。
    1. 各製品を含む 15 μ L 新しい PCR チューブに浄化され、次の反応を含むセットアップすべて転送: 精製私アンプリコン製品、インデックス プライマー 1 の 5 μ L、5 μ L インデックス プライマー 2、2 ・ x PCR ミックスの 25 μ L の 15 μ L50 μ L の最終巻。
    2. 次のプログラムを使用してサーマルサイクラー PCR を実行: 95 ° C、3 分、30 の 95 ° C の 8 サイクル s、55 ° C、30 s、30 のための 72 ° C s;4 ° C で 5 分間、72 ° C が押し
  4. PCR クリーンアップ 2
    1. 次の変更をクリーンアップを PCR のセクション 4.2 で説明同じプロトコルに従う: 磁気ビーズの 56 μ L を各 50 μ L の PCR の製品の最初のステップで追加します。
    2. 精製の最後のステップで 10 mM Tris ph 8.5 27.5 μ L でビーズを再懸濁し、25 μ L を新しいチューブ (これは、定量化し、シーケンスの準備ができて精製最終ライブラリ) に転送します。
    3. ライブラリの定量化に進んでいない場合は-15 ° C-25 ° C、1 週までにプレートを格納します。
  5. 配列ライブラリの定性的、定量的評価
    1. 浄化後実行 1 μ L、1:10 の希釈のサイズを確認し、最終的なライブラリ トレースの領域を選択するそれを定量化にバイオアナライザー上最後のライブラリ。
    2. 同時に製造元のプロトコルごとのライブラリ定量キットを使用してリアルタイム PCR によるライブラリの定量化を実行します。
  6. シーケンス処理ライブラリ
    1. 他のデュアル インデックス付き配列ライブラリとともに生産デュアル インデックス ライブラリをプールします。シーケンスのこの種の生成することによってライブラリが読み取り時間が長い、最初のケース 250bp PE 読み取り、2 番目のケース 300 bp PE を取得する、Hiseq2500 または MiSeq 楽器の両方を使用して、少なくとも 250 bp ペア最後を読み取ります。

5. バイオインフォマティクス データ解析インタラクトーム Seq Web ツールを使用して

  1. インタラクトーム seq データ解析パイプラインを持つ pFILTER/phagemid/選択-ファージ ライブラリ シーケンスから読み取りを分析します。Web ツールは、自由に利用できる次のアドレス: http://interactomeseq.ba.itb.cnr.it/

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

フィルタ リングのアプローチは、図 1で図式です。Intronless DNA の各種類を使用できます。図 1Aでフィルタ リングのアプローチの最初の部分は表されます: agarose のゲルまたは、バイオアナライザーに読み込み、興味の DNA の良い断片化 150 750 bp の目的のサイズの長さ分布とフラグメントの塗抹標本として表示されます。得られた断片化された DNA の代表的な仮想ゲル画像が与えられます。フラグメントは agarose のゲルにロードが、リカバリ、最後修理しリン酸化、およびランダムな DNA 断片のライブラリ作成する以前鈍化 pFILTER ベクターにクローンを作成します。最適な条件の下で複製の手順の各ステップを実行することが調査の下で DNA の全範囲で質の良いライブラリを取得する必要です。

図 1 bでフィルタ リングのアプローチは表されます: ライブラリがクロラムフェニ コール (pFILTER 抵抗) 単独でまたはクロラムフェニ コールと ORF を含むコロニーのため選択するアンピシリン存在下で成長しました。ORF に対応する DNA 断片を持つ唯一の植民地は、機能の β-ラクタマーゼを生産し、抗生物質の選択範囲があるときに生き残る。図 1は、どのように貧しいフォルダーもの対良いフォルダー ORFs の選択が可能選択的な圧力の増加を示しています。期待される結果は、約 20 のライブラリのサイズの減少です。存続のクローン数の増加は、不十分な選択圧を示します。

ORF の断片を後続のアプリケーションをフィルター処理されたライブラリから簡単に回復できます。相互作用研究方針はファージディスプレイを活用。バクテリオファージ ライブラリ構築の主要なステップ図 2で表されます: 適切なライブラリは、pFILTER ベクトルからフィルター処理された断片を切断し、再の系列符号化との融合で phagemid プラスミドにクローニングによって準備されて、バクテリオファージ capside 蛋白質 g3p。一度助手のバクテリオファージの感染、細菌細胞にベクターの存在なりフィルター選択されたライブラリ、バクテリオファージの表示選択可能、さらに表面に ORF g3p 融合製品を表示するバクテリオファージの粒子の製造が可能します。解析。

すべてのライブラリは、図 3の 2 番目の部分のように深くファージの選択の出力と同様に、NGS によって分析されます。DNA のフラグメントはコロニーの成長から救出されたプラスミド バックボーン上焼鈍および配列のための特定のアダプターを運ぶ特定のオリゴヌクレオチドを PCR 法で。NGS は実行され、読み取りはインタラクトーム Seq データ解析 web ツールと分析しています。

図 4に、ORF フィルター処理されたバクテリオファージの表示ライブラリの選択手順の概略を報告しました。この例では選択は、抗体 (感染病態すなわち、自己免疫疾患、がん) の異なる病態によって被害を受けた患者からの血清中に存在を使用してによって実行されます。この場合はバクテリオファージのライブラリは直接抗体の病気特定の抗体によって認識されますので推定上特定の抗原を濃縮することができますこの方法と患者の血清に存在と対話します。この種の実験では、通常、ライブラリも選択されて連続比較と正規化手順に使用するバック グラウンド信号を持つために健康な患者のコントロール血清を用いてします。

選択は、血清抗体価の個体間変動を減らすために同じ種類の異なるプールに一緒に分類されます患者の血清を用いて実行されます。各プールが独立して使用の選択 2 ~ 3 連続ラウンドの免疫反応性クローン研究で病理学の特定のライブラリを豊かにします。ライブラリ ファージと孵化するテスト セット抗体、免疫複合体、蛋白質のコーティング磁気ビーズでは回復、連結ファージは、標準的な手順によって溶離されます。洗浄と逼迫をバインドを増やす選択サイクルが実行されます。

NGS によって生成される読み取りは、この種のデータを管理するために開発インタラクトーム Seq web ツールを使用して分析できます。インタラクトーム Seq データ解析のワークフローは、生配列読み取りから始まって、genomic 注釈 (図 5 a) と推定されるドメインの一覧を生成する 4 つの一連のステップで構成されます。最初のステップ入力 (図 5 a - 赤のボックス) でインタラクトーム Seq は入力ファイル (raw 読み取り、参照ゲノム配列、注釈のリスト) が正しくフォーマットされている場合を確認します。2 番目のステップで前処理 (図 5 a - オレンジ ボックス)、低品質シーケンス データは品質スコアに応じて Cutadapt28を使用してをトリミングしてまず、長さ未満 100 拠点での読み込みは破棄されます。後続の読み取りの配置手順 (図 5 a - グリーン ボックス) で残りの読み取りは blastn29不一致の 5% までを許可するゲノム シーケンスに配置されます。SAM ファイルが生成され、品質スコア 30 を超える読み取りのみ (Q > 30)、SAMtools30を使用して、BAM ファイルに変換処理されます。配置後インタラクトーム Seq 実行ドメイン検出 (図 5 a - 青いボックス)、Bedtools を呼び出すフィルターを31読み取りトラン スクリプト内の長さの 80% の少なくとも重複カバレッジ、最大深度およびフォーカスの値はマッピングの読み取りによって覆われた ORF 部分ごとに計算されます。カバレッジは、遺伝子に割り当てられている読み取りの合計数を表します深さはカバーする特定遺伝子の部分; 読み取りの最大数です。フォーカス、最大の深さと範囲、比から得られる指標であり、0 と 1 の間の範囲することができますそれ。フォーカスが 0.8 以上となると、カバレッジが BAM ファイルのマッピング領域のすべての観察された平均範囲より高い CD 部分は推定ドメイン/エピトープとして分類されます。インタラクトーム Seq パイプラインの最後のステップは出力 (図 5 a - バイオレット ボックス)、推定されるドメインの一覧が表で区切られた形式で生成されます。インタラクトーム Seq パイプラインは、グラフィカルなインターフェイスを介してインタラクトーム Seq 解析を実行する、簡単で使いやすい形式で結果を取得するバイオインフォマティクスやプログラミングのスキルなしのユーザーを可能にする web ツールに含まれています。図 5 bに示すように、可視化と探索を有効にする JBrowse32を使用して分析の出力結果が表示されます。インタラクトーム Seq は検出と推定されるドメインに対応するゲノム ブラウザーでトラックを生成し、また古典的なベン図などさまざまな選択実験の濃縮共通の推定されるドメイン間交差を表示するを提供します。

Figure 1
図 1: ORF フィルター ライブラリの構築のための主な手順の概要
A) 別のソースからの DNA は、超音波処理し、150 750 bp の長さのランダムな断片に分割します。フラグメントのゲルから回収し、鈍として pFILTER ベクトルにクローンを作成B) ステップ折りたたみ記者として β-ラクタマーゼを使用してフィルタ リングします。ない ORF フラグメントを含むベクトルが否定的選択 ORF 中アンピシリンに複製されたフラグメントを許可; 成長する植民地C) 増加する選択的な圧力のアプリケーション (0 からの固体成長媒体でアンピシリン濃度 > 100 μ g/mL) より折られた断片の選択を許可します。この図の拡大版を表示するのにはここをクリックしてください

Figure 2
図 2: バクテリオファージのライブラリの構築のための主な手順の概要
A) ORF フィルター フラグメントは、特定の制限の酵素を使用してフィルター処理されたベクトルからカットされます.回復、浄化後断片を phagemid ベクターにクローン化し、変換されます。B) phagemid 細菌ライブラリが助手のバクテリオファージの感染しているし、一晩成長後、ファージ、PEG 沈殿、収集しました。この図の拡大版を表示するのにはここをクリックしてください

Figure 3
シーケンス図 3: ORF ライブラリ
シーケンスを実行すると、両方元 ORF 選択したライブラリおよびバクテリオファージの表示ライブラリ;1) どちらの場合で生育したコロニーが復旧され、DNA の抽出;2) DNA のフラグメントは、配列用のアダプターにリンクされている特定のプライマーを用いて増幅で回復します。3-4) フラグメントが回収し、深い NGS; を使用してシーケンスされました。5) データを分析するには、インタラクトーム Seq パイプラインを使用しています。この図の拡大版を表示するのにはここをクリックしてください

Figure 4
図 4: 患者の抗体を使用してライブラリ選択の概要
バクテリオファージのライブラリを使用した患者血清からの抗体に対して選択。磁気ビーズに固定されている抗体、バクテリオファージのライブラリのキャプチャ/選択が実行される、洗浄の 3 つのサイクルを実行、その後選択したファージに回復され、再感染するために使用大腸菌。再感染した大腸菌細胞は選択的な圧力 (アンピシリン 100 μ g/mL) のメッキします。ORF の断片が増幅による回復し、私アンプリコン プール、NGS によってシーケンスに配置されます。この図の拡大版を表示するのにはここをクリックしてください

Figure 5
図 5: ライブラリの分析の概要
最終的な注釈付きドメイン リスト; 生 FASTQ ファイルからデータ解析ワークフローを表現 A)B) 入力とインタラクトーム Seq web ツールの出力の略図。この図の拡大版を表示するのにはここをクリックしてください

Subscription Required. Please recommend JoVE to your librarian.

Discussion

高品質非常に多様な Orf フィルター ライブラリの作成以来、それはパイプラインのすべての後続の手順に影響を与える全体の手順の最初の重要なステップであります。

本手法の有利な特徴は (intronless) DNA (cDNA、ゲノム DNA、派生した PCR または合成 DNA) の任意の元は図書館の建設に適しています。考慮するべきである最初のパラメーターは、pFILTER ベクターにクローニング DNA 断片の長さがゲノム ・ トランスクリプトーム、いわゆる"domainome"ドメインの全体のコレクションの表現を提供する必要があります。これはラインの報告は、タンパク質ドメイン正常に複製することができます、選択および、長さ分布 150 からにまたがる 750 bp33,34, DNA のフラグメントから始まって最後に識別できたほとんどのタンパク質ドメイン 100 aa の長さのことを示す文献 (50 から 200 までの範囲で aa)15

出発物質 DNA をフィルター (pFILTER)12ベクトルにクローンとして作られたサイズの範囲の選択およびそれ以降に断片化しなければなりません。これらの手順では、特定のフラグメントの末尾修復とリン酸化のプロトコルに含まれる反応の手順クローンの作成をすべての効率を最大化する潜在的なバイアスを避けられるでしょう。ベクトル準備やりがいや未消化のベクトルによってプラスミッドの劣化や汚染を避けるためにも、最適な条件ですべきであります。

ライブラリを作成すると、それする必要がありますが「フィルタ リング」ORFs の折り返し片だけを保持するために。このステップを調節する重要なパラメーターは、選択圧力適用必要なフィルタ リングの逼迫によると変更することができます。アンピシリンを用いて選択: は高濃度使用、生き残ることができる変換された細菌コロニー数が低い。これは良い-貧しい人々 フォルダー ORFs34対を選択するフィルター処理メソッドの機能を反映しています。クローンの数は、この削減は、折り畳み式の選択したフラグメントのプロパティの増加によってバランスです。通常、アンピシリン濃度は十分な約 1/20 にクロラムフェニ コールのみにライブラリの成長を得ることができたものに関して細菌コロニー数を減らすためにする必要があります。

ライブラリの検証は、ランダムに選択された植民地とその配列の PCR の拡大によって行われます通常。クイック ライブラリの品質評価を持つためにあるコロニー PCR 増幅を示唆: 挿入の長さは、150 750 bp と別の植民地の予想の範囲でする必要があります別の現在の挿入サイズを示す良いする必要があります変動の長期的にライブラリの準備。ライブラリ検証のための唯一の方法として適用時の審査のこの従来の戦略は包括的ではない、時間がかかる、コロニー数が限定の解析ができ、重要なクローンのほとんどを行方不明者の高いチャンスを有すること。ライブラリのディープ シーケンスに基づくが、これはライブラリの多様性と豊かさと選択した断片のそれぞれの正確なマッピングの完全な情報を提供します。

NGS 技術アプローチではフィルタ リングの実装は、桁違いによって分析の深さを増加します。最近では、ORF ライブラリをイルミナ プラットフォームを使用して、シーケンス処理するためのプロトコルを最適化して任意のバイオインフォマティクス プログラミングのスキルなしすべてのユーザーに対してこれらの種類のデータの分析は、データ解析のための特定の web ツールを開発しました。

ライブラリは「自体は」「普遍的な楽器」と、蛋白質の表現および/または選択のための別のコンテキストで利用できます。私たちの方法論的アプローチは、作り出された ORFeome のバクテリオファージのディスプレイ コンテキストに転送することに基づいています。ファージ表面に発現しているタンパク質断片となり後続の選択に適して。

これは、特定の制限の酵素と消化によって pFILTER ライブラリからフィルター処理された ORFs を救出し、再、ファージのタンパク質 g3p 融合をできるように互換性 phagemid ベクトルにクローンとして作ることによって行われます。

Phagemid ORF ライブラリを作成した後は、推定結合タンパク質10など浄化された抗体の35,36前述のように、異なる対象に対して選択に使えます。バクテリオファージの粒子は、フィルター処理された ORFs、これによって非表示の不在のため、はるかに効果的な選択プロシージャは通常、クローンを表面に表示されますのでそれに追いつき追い越します。

バクテリオファージの表示 ORF のライブラリの選択後、出力クローンをシーケンスおよび同じパイプラインを分析できます。NGS は完全な提供することができますとよくほとんどの統計的に有意なランキング選択 ORFs、大抵使用される餌との相互作用タンパク質の同定できます。いくつかのアミノ酸が異なる各ドメインの多くの異なるバージョンの存在を考えると、異なるシーケンスされたクローン間の重複はまた最小フラグメント/ドメインのバインドのプロパティを表示を識別します。最後に、バクテリオファージのライブラリに遺伝子型と表現型情報の結合のおかげで好みのドメインを特定したら、DNA シーケンスことができます簡単に救出されるさらなる研究の in vitroin vivoのライブラリから検証と評価。

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

著者が明らかに何もありません。

Acknowledgments

この作品は、イタリア教育省と大学からの補助金によって支えられた (CP に 2010P3S8BR_002)。

Materials

Name Company Catalog Number Comments
Sonopuls ultrasonic homogenizer Bandelin HD2070 or equivalent
GeneRuler 100 bp Plus DNA Ladder Thermo Scientific SM0321 or equivalent
GeneRuler 1 kb DNA Ladder Thermo Fisher Scientific SM0311 or equivalent
Molecular Biology Agarose BioRad 161-3102 or equivalent
Green Gel Plus Fisher Molecular Biology FS-GEL01 or equivalent
6x DNA Loading Dye Thermo Fisher Scientific R0611 or equivalent
QIAquick Gel Extraction Kit Qiagen 28704 or equivalent
Quick Blunting Kit New England Biolabs E1201S
NanoDrop 2000 UV-Vis Spectrophotometer Thermo Fisher Scientific ND-2000
High-Capacity cDNA Reverse Transcription Kit Thermo Fisher Scientific 4368813
Streptavidin Magnetic Beads New England Biolabs S1420S or equivalent
QIAquick PCR purification Kit Qiagen 28104 or equivalent
EcoRV New England Biolabs R0195L
Antarctic Phosphatase New England Biolabs M0289S
T4 DNA Ligase New England Biolabs M0202T
Sodium Acetate 3M pH5.2 general lab supplier
Ethanol for molecular biology Sigma-Aldrich E7023 or equivalent
DH5aF' bacteria cells Thermo Fisher Scientific
0,2 ml tubes general lab supplier
1,5 ml tubes general lab supplier
0,1 cm electroporation cuvettes Biosigma 4905020
Electroporator 2510 Eppendorf
2x YT medium Sigma-Aldrich Y1003
Ampicillin sodium salt Sigma-Aldrich A9518
Chloramphenicol Sigma-Aldrich C0378
DreamTaq DNA Polymerase Thermo Fisher Scientific EP0702
Deoxynucleotide (dNTP) Solution Mix New England Biolabs N0447S
96-well thermal cycler (with heated lid) general lab supplier
150 mm plates general lab supplier
100 mm plates general lab supplier
Glycerol Sigma-Aldrich G5516
BssHII New England Biolabs R0199L
NheI New England Biolabs R0131L
QIAprep Spin Miniprep Kit Qiagen 27104 or equivalent
M13KO7 Helper Phage GE Healthcare Life Sciences 27-1524-01 
Kanamycin sulfate from Streptomyces kanamyceticus Sigma-Aldrich K1377
Polyethylene glycol (PEG) Sigma-Aldrich P5413
Sodium Cloride (NaCl) Sigma-Aldrich S3014
PBS general lab supplier
Dynabeads Protein G for Immunoprecipitation Thermo Fisher Scientific 10003D or equivalent
MagnaRack Magnetic Separation Rack Thermo Fisher Scientific CS15000 or equivalent
Tween 20 Sigma-Aldrich P1379
Nonfat dried milk powder EuroClone EMR180500
KAPA HiFi HotStart ReadyMix  Kapa Biosystems, Fisher Scientific 7958935001
AMPure XP beads Agencourt, Beckman Coulter A63881
Nextera XT dual Index Primers Illumina FC-131-2001 or FC-131-2002 or FC-131-2003 or FC-131-2004
MiSeq or Hiseq2500 Illumina
Spectrophotomer Nanodrop
Agilent Bioanalyzer or TapeStation Agilent
Forward PCR primer general lab supplier 5’ TACCTATTGCCTACGGCA
GCCGCTGGATTGTTATTACTC 3’
Reverse PCR primer general lab supplier 5’ TGGTGATGGTGAGTACTA
TCCAGGCCCAGCAGTGGGTTTG 3’
Forward primer for NGS general lab supplier 5’ TCGTCGGCAGCGTCAGA
TGTGTATAAGAGACAGGCA
GCAAGCGGCGCGCATGC 3’;
Reverse primer for NGS general lab supplier 5’ GTCTCGTGGGCTCGGAGA
TGTGTATAAGAGACAGGGG
ATTGGTTTGCCGCTAGC 3’;

DOWNLOAD MATERIALS LIST

References

  1. Loman, N. J., Pallen, M. J. Twenty years of bacterial genome sequencing. Nat Rev Microbiol. 13 (12), 787-794 (2015).
  2. Jones, C. E., Brown, A. L., Baumann, U. Estimating the annotation error rate of curated GO database sequence annotations. BMC Bioinformatics. 8 (1), 170 (2007).
  3. Andorf, C., Dobbs, D., Honavar, V. Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach. BMC Bioinformatics. 8 (1), 284 (2007).
  4. Wong, W. -C., Maurer-Stroh, S., Eisenhaber, F. More Than 1,001 Problems with Protein Domain Databases: Transmembrane Regions, Signal Peptides and the Issue of Sequence Homology. PLoS Comput Biol. 6 (7), e1000867 (2010).
  5. Bioinformatics, B., et al. Identification and correction of abnormal, incomplete and mispredicted proteins in public databases. BMC Bioinformatics. 9 (9), (2008).
  6. Phizicky, E., Bastiaens, P. I. H., Zhu, H., Snyder, M., Fields, S. Protein analysis on a proteomic scale. Nature. 422 (6928), 208-215 (2003).
  7. DiDonato, M., Deacon, A. M., Klock, H. E., McMullan, D., Lesley, S. A. A scaleable and integrated crystallization pipeline applied to mining the Thermotoga maritima proteome. J Struct Funct Genomics. 5 (1-2), 133-146 (2004).
  8. Nordlund, P., et al. Protein production and purification. Nat Methods. 5 (2), 135-146 (2008).
  9. Zacchi, P., Sblattero, D., Florian, F., Marzari, R., Bradbury, A. R. M. Selecting open reading frames from DNA. Genome Res. 13 (5), 980-990 (2003).
  10. Di Niro, R., et al. Rapid interactome profiling by massive sequencing. Nucleic Acids Res. 38 (9), e110 (2010).
  11. Gourlay, L. J., et al. Selecting soluble/foldable protein domains through single-gene or genomic ORF filtering: Structure of the head domain of Burkholderia pseudomallei antigen BPSL2063. Acta Crystallogr Sect D Biol Crystallogr. 71 (Pt 11), 2227-2235 (2015).
  12. D'Angelo, S., et al. Filtering "genic" open reading frames from genomic DNA samples for advanced annotation. BMC Genomics. 12 (Suppl 1), S5 (2011).
  13. D'Angelo, S., et al. Profiling celiac disease antibody repertoire. Clin Immunol. 148 (1), 99-109 (2013).
  14. Robinson, M. D., McCarthy, D. J., Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26 (1), 139-140 (2009).
  15. Heger, A., Holm, L. Exhaustive enumeration of protein domain families. J Mol Biol. 328 (3), 749-767 (2003).
  16. Zacchi, P., Sblattero, D., Florian, F., Marzari, R., Bradbury, A. R. M. Selecting open reading frames from DNA. Genome Res. 13 (5), 980-990 (2003).
  17. Faix, P. H., Burg, M. A., Gonzales, M., Ravey, E. P., Baird, A., Larocca, D. Phage display of cDNA libraries: Enrichment of cDNA expression using open reading frame selection. Biotechniques. 36 (6), 1018-1029 (2004).
  18. Patrucco, L., et al. Identification of novel proteins binding the AU-rich element of α-prothymosin mRNA through the selection of open reading frames (RIDome). RNA Biol. 12 (12), 1289-1300 (2015).
  19. Collins, M. O., Choudhary, J. S. Mapping multiprotein complexes by affinity purification and mass spectrometry. Curr Opin Biotechnol. 19 (4), 324-330 (2008).
  20. Suter, B., Kittanakom, S., Stagljar, I. Two-hybrid technologies in proteomics research. Curr Opin Biotechnol. 19 (4), 316-323 (2008).
  21. Nakai, Y., Nomura, Y., Sato, T., Shiratsuchi, A., Nakanishi, Y. Isolation of a Drosophila gene coding for a protein containing a novel phosphatidylserine-binding motif. J Biochem. 137 (5), 593-599 (2005).
  22. Deng, S. J., et al. Selection of antibody single-chain variable fragments with improved carbohydrate binding by phage display. J Biol Chem. 269 (13), 9533-9538 (1994).
  23. Danner, S., Belasco, J. G. T7 phage display: A novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc Natl Acad Sci. 98 (23), 12954-12959 (2001).
  24. Gargir, A., Ofek, I., Meron-Sudai, S., Tanamy, M. G., Kabouridis, P. S., Nissim, A. Single chain antibodies specific for fatty acids derived from a semi-synthetic phage display library. Biochim Biophys Acta - Gen Subj. 1569 (1-3), 167-173 (2002).
  25. Patrucco, L., et al. Identification of novel proteins binding the AU-rich element of α-prothymosin mRNA through the selection of open reading frames (RIDome). RNA Biol. 12 (12), 1289-1300 (2015).
  26. Ausubel, F. M., et al. Current Protocols in Molecular Biology. Mol Biol. 1 (2), 146 (2003).
  27. Sblattero, D., Bradbury, A. Exploiting recombination in single bacteria to make large phage antibody libraries. Nat Biotechnol. 18, 75-80 (2000).
  28. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 17 (1), 10 (2011).
  29. Camacho, C., et al. BLAST+: architecture and applications. BMC Bioinformatics. 10 (1), 421 (2009).
  30. Li, H., et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 25 (16), 2078-2079 (2009).
  31. Quinlan, A. R. BEDTools: The Swiss-Army tool for genome feature analysis. Curr Protoc Bioinforma. , (2014).
  32. Skinner, M. E., Uzilov, A. V., Stein, L. D., Mungall, C. J., Holmes, I. H. JBrowse: A next-generation genome browser. Genome Res. 19 (9), 1630-1638 (2009).
  33. Gourlay, L. J., et al. Selecting soluble/foldable protein domains through single-gene or genomic ORF filtering: Structure of the head domain of Burkholderia pseudomallei antigen BPSL2063. Acta Crystallogr Sect D Biol Crystallogr. 71, 2227-2235 (2015).
  34. D'Angelo, S., et al. Filtering "genic" open reading frames from genomic DNA samples for advanced annotation. BMC Genomics. 12 (Suppl 1), S5 (2011).
  35. Di Niro, R., et al. Characterizing monoclonal antibody epitopes by filtered gene fragment phage display. Biochem J. 388 (Pt 3), 889-894 (2005).
  36. D'Angelo, S., et al. Profiling celiac disease antibody repertoire. Clin Immunol. 148 (1), 99-109 (2013).

Tags

生物学、問題 140、バクテリオファージの表示、次世代シーケンシング、インタラクトーム、タンパク質ドメイン、web ツール、折りたたみ記者、蛋白質の構造。
インタラクトーム Seq: Domainome ライブラリーの構築、検証およびバクテリオファージの表示と次世代シーケンシングによる選択のプロトコル
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Soluri, M. F., Puccio, S., Caredda,More

Soluri, M. F., Puccio, S., Caredda, G., Grillo, G., Licciulli, V. F., Consiglio, A., Edomi, P., Santoro, C., Sblattero, D., Peano, C. Interactome-Seq: A Protocol for Domainome Library Construction, Validation and Selection by Phage Display and Next Generation Sequencing. J. Vis. Exp. (140), e56981, doi:10.3791/56981 (2018).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter