Waiting
Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove
Click here for the English version

Biochemistry

ניתוח של מתחמי חלבון ממברנה תילקואיד מאת כחול מקורי אלקטרופורזה בג'ל

doi: 10.3791/58369 Published: September 28, 2018

Summary

פרוטוקול עבור הבהרה של הצמח תילקואיד חלבון הארגון מורכבים ו הלחנה אצל כחול לזיהוי יליד ג'ל אלקטרופורזה (בסון-עמוד) ותיאר 2D-מרחביות עמודים. הפרוטוקול ממוטבת עבורו תודרנית לבנה, , אבל ניתן להשתמש עבור שאר מיני צמחים עם שינויים מזעריים.

Abstract

שרשרת העברת אלקטרונים פוטוסינתטיים (וכו ') ממירה אנרגיה סולארית אנרגיה כימית בצורה של nadph ל ו- ATP. ארבעה מתחמי חלבון גדולה מוטבע תילקואיד ממברנה הקציר האנרגיה הסולארית להסיע אלקטרונים מן המים NADP+ ויה photosystems שני, ולהשתמש מעבר הצבע שנוצר פרוטון לייצור ATP. Photosystem PSII, סאי, ציטוכרום b6f (Cyt b6נ) ו- ATPase הם כל מכלולי multiprotein עם אוריינטציה ברורים ואת הדינמיקה בתוך הקרומית תילקואיד. ניתן לקבל מידע חיוני על הרכב ואת האינטראקציות של מתחמי חלבון ממברנה תילקואיד solubilizing את מתחמי מן שלמות הממברנה על ידי חומרי ניקוי עדין ואחריו ג'ל יליד electrophoretic הפרדת מתחמי. כחול מקורי לזיהוי בג'ל (בסון-עמוד) היא שיטה אנליטית משמש הפרדת חלבונים מתחמי בצורתם הטבעית ופונקציונליים. השיטה יכול לשמש עבור חלבון טיהור מורכבים עבור ניתוח מבנה מפורטת יותר, אבל הוא גם מספק כלי כדי לנתח את האינטראקציות דינמי בין מתחמי חלבון. השיטה פותחה עבור הניתוח של מתחמי מיטוכונדריאלי חלבון בדרכי הנשימה, אבל מאז כבר אופטימיזציה, ויש משופרת עבור ניתוח מתחמי חלבון תילקואיד. כאן, אנו מספקים פרוטוקול עדכני מפורט לניתוח של מתחמי חלבון פוטוסינתטיים יציב ואת האינטראקציות שלהם ב תודרנית לבנה.

Introduction

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

חלבון multisubunit גדולה קומפלקסים photosystem PSII, Cyt b6f ו- ATPase, גם לתאם בייצור של nadph ל ATP בתגובות אור פוטוסינתטיים. ב מהכלורופלסט צמח גבוה, מתחמי ממוקמים ממברנה תילקואיד, אשר הוא מבנה הממברנה הטרוגנית מבחינה מבנית, הכוללת appressed grana משתית הלא-appressed thylakoids. כחול מקורי לזיהוי בג'ל (בסון-עמוד) היא שיטה בשימוש נרחב בניתוח של חלבון multisubunit גדולה מתחמי בצורתם הטבעית, פעילים ביולוגית. השיטה הוקמה עבור ניתוח ממברנה מיטוכונדריאלי חלבון מתחמי1, אך מאוחר יותר הותאם אישית לצורך הקמת מכשול ההפרדה של חלבון מתחמי תילקואיד רשת קרום, או3. השיטה מתאימה (i) לטיהור של מתחמי חלבון תילקואיד בודדים עבור ניתוח מבנה, (ii) לקביעת יליד אינטראקציות בין חלבונים מתחמי ו- (iii) לניתוח של ארגון הכולל מתחמי חלבון בעת שינוי רמזים סביבתיים.

לפני ההפרדה, מתחמי חלבון מבודדים מן הקרום עם חומרי ניקוי nonionic שנבחרו בקפידה, אשר הם קלים בדרך כלל, לשמר את המבנה המקורי של קומפלקסים חלבונים. חומרי ניקוי מכילים הידרופובי, אתרים הידרופיליות, טופס הקזאין יציב מעל ריכוז מסוים, נקרא ריכוז micellar קריטי (CMC). הגדלת ריכוז דטרגנט שמעל תוצאות CMC שיבוש של אינטראקציות השומנים-השומנים, את solubilization של מתחמי חלבון. הבחירה של דטרגנט תלוי על יציבותו של החלבונים עניין את יכולת solubilization של הנוזל. בשימוש שגרתי דטרגנטים כוללים α/β-dodecyl-maltoside digitonin. בעקבות solubilization של חלבון מתחמי במצבם המקורי, חומרים לא מסיסים יוסר על ידי צנטריפוגה. בצמחים גבוה יותר, קרום תילקואיד מאוד נדלנית במבנה, עכורה (למשל, digitonin) solubilize באופן סלקטיבי רק חלק מסוים של קרום3. לכן, כדי לאפיין הארגון מורכבים חלבון או את האינטראקציות בין מתחמי חלבון, זה קריטי תמיד לקבוע את יכולת solubilization של הנוזל שבחרת על-ידי קביעת התכנים כלורופיל, של כלורופיל / b יחס של תגובת שיקוע לאמוד את התשואה והתחום תילקואיד מייצגים (sub), בהתאמה, של השבר solubilized. היחס כלורופיל / b ב- thylakoids שלם של צמחים acclimated צמיחה-אור הוא בדרך כלל בסביבות 3, ואילו קלוא / b הערך של שברים תילקואיד מועשר או grana או stroma thylakoids יורד מתחת (~ 2.5) או חורג (~ 4.5) את הערך של סה כ thylakoids, בהתאמה.

כדי לספק מטען שלילי מתחמי חלבון, Coomassie (CBB) מבריק צבע כחול נוסף מדגם solubilized. בעקבות שינויי תשלום, חלבון מתחמי נודדים לכיוון האנודה ומופרדים על מעבר צבע אקרילאמיד (AA) על פי מסה מולקולרית והצורה שלהם. ברזולוציה גבוהה ויעילה ההפרדה מושגת באמצעות הדרגה ריכוז אקרילאמיד ליניארי. במהלך אלקטרופורזה, מתחמי חלבון נודדים לכיוון האנודה עד שיגיעו למגבלת גודל הנקבוביות שלהם תלוי בגודל. הנקבובית-הגודל של ג'ל לזיהוי תלוי אקרילאמיד הכולל (i) /bis- אקרילאמיד ריכוז (T) ו- (ii) על מחדש bis- אקרילאמיד מונומר ריכוז (ג) ביחס מונומרים סה כ4. לאחר ההפרדה עם בסון-דף, מתחמי חלבון נוסף נחלקים החלבוניות בודדים שלהם על ידי השנייה-מימד (2D) - מרחביות - דף. כאן, אנו מתארים את פרוטוקול מפורט לניתוח של מתחמי חלבון ממברנה תילקואיד מאת בסון-/ 2D מרחביות עמוד.

Subscription Required. Please recommend JoVE to your librarian.

Protocol

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

1. הכנת בסון ג'ל1,2,3

  1. בצע כיוונון גלגלית ג'ל עם לוחות 8 ס"מ x 10 ס"מ (זכוכית מלבני וצלחת אלומינה מחורץ) על פי הוראות היצרן באמצעות מפרידי 0.75 מ מ.
  2. במקום מערבל צבע על צלחת מערבבים וחבר אותו עם המשאבה ממברנות מאת אבובים. מחט מזרק לצרף הקצה השני של הצנרת ולמקם את המחט בין לוח אלומיניום וזכוכית. המקום פגים כדי "כבד" (H)-הקאמרית.
  3. הכן 3.5% (v/v) ו- 12.5% (v/v) פתרונות אקרילאמיד (AA) 15מל צנטריפוגה חרוט צינורות למעבר הצבע ג'ל ההפרדה (ראו מתכונים ב טבלה 1). כדי למנוע הפילמור בטרם עת, לשמור הצינורות צנטריפוגה על הקרח תוך הכנת את הפתרונות.
    זהירות: אקרילאמיד היא העצבים ומסרטנים, ללבוש בגדים מגן וכפפות.
  4. להוסיף 5% נכון APS, TEMED לפני pipetting את הפתרונות מערבל צבע. Pipet הפתרון 12.5% לתא-H.
    1. הסר את בועות האוויר בערוץ המחבר את "אור" (L) H-תא על-ידי פתיחת המסתם חיבור שני התאים המאפשר פתרון להיכנס לתא-L. סגור את השסתום ואת pipet שהעקבות של פתרון חזרה לתא-H.
    2. לבסוף, pipet הפתרון 3.5% לתא-L.
  5. . הפעילי את פגים (המהירות של וההדים אינה קריטית, אך זה צריך להבטיח לערבב הפתרונות קל), פתח את השסתומים, להחליף את משאבת סחרור. לאפשר את הפתרונות ג'ל לזרום בין לוח אלומיניום וזכוכית, flowrate צריכה להיות בערך 0.5 mL/min. המחט חייב להיות מעל הנוזל כל הזמן, אותו ניתן לחבר את החלק העליון של לוח הזכוכית עם קלטת.
  6. כאשר H ו- L-תאי - השתמשתי, למלא אותם במים הנדסה גנטית ולאפשר מים כדי כיסוי בעדינות את משטח ג'ל. הפילמור ג'ל אורכת בסביבות 1-2 שעות-RT.
  7. להכין את הפתרון אקרילאמיד 3% (ראו מתכון טבלה1) על הערימה ג'ל-RT. Pipet את הג'ל הערמה על גבי הג'ל polymerized ההפרדה (לפני השלכת את הג'ל הערמה, הסר את המים על-ידי כיסוי השטח ג'ל) ומניחים מסרק ג'ל מדגם בין אלומיניום וזכוכית צלחת הימנעות בועות האוויר.
    1. מאפשרים פולימריזציה 30-60 דקות ב RT. להסיר המסרק בעדינות מתחת למים הנדסה גנטית. אחסן את הג'ל-הלעפה תרוטרפמט +4.
      השהה נקודה. ניתן לאחסן את הג'ל-+4 הלעפה תרוטרפמט לכמה ימים. יש לשמור את הג'ל בתנאי לחות כדי למנוע ייבוש הבארות, השטח ג'ל.

2. תילקואיד Solubilization1,2,3

הערה: כל השלבים צריכה להתבצע באור עמום. לשמור דגימות מאגרים על קרח.

  1. לדלל thylakoids מבודדים עם מאגר 25BTH20G קר כקרח כדי ריכוז כלורופיל הסופי של 1 מ"ג/מ"ל. עבור ניתוח 2D-בסון מרחביות-עמודים בערך 4-8 µg של כלורופיל מדגם זה מתאים.
    הערה: thylakoids להשתמש בניסויים חייב להיות מבודד עלים טריים (עבור פרוטוקול של תילקואיד בידוד, ראה3)
  2. הוסף אמצעי שווה של מאגר דטרגנט, קרי, 2% β-DM (w/v) או 2% digitonin (w/v). לערבב הנוזל לדגימת תילקואיד בעדינות עם קצה pipet, להימנע מביצוע בועות אוויר. הריכוז הסופי של הנוזל הוא 1% של thylakoids 0.5 מ ג קלוא/mL.
    1. Solubilize את thylakoids למשך 2 דקות על קרח (β-מיט) או 10 דקות ב RT עם ערבוב עדין רציפה על נדנדה/מטרף (digitonin).
      הערה: Digitonin וβ-מיט משמשים בדרך כלל עבור solubilization של מתחמי תילקואיד חלבון. אם נעשה שימוש בדטרגנטים ללא יונית אחרים, ריכוז דטרגנט ואת הזמן solubilization חייב להיות קודם אופטימיזציה. בדרך כלל ריכוז דטרגנט בטווח של 0.5% - 5% (v/v).
      זהירות: Digitonin היא toxic, ללבוש בגדים מגן וכפפות
  3. להסיר את החומר insolubilized על ידי צנטריפוגה-g x 18,000 עבור 20 דקות, בהלעפה תרוטרפמט +4.
  4. להעביר את תגובת שיקוע צינור 1.5 מ"ל ולהוסיף 1/10 (v/v) מאגר CBB המדגם.
    הערה: כאשר הרכב הכולל מתחמי חלבון ממברנה תילקואיד נבדק, קביעת התשואה והתחום תילקואיד מייצגים של שבר solubilized מומלץ. כדי לקבוע את התשואה של החומר solubilized, לקחת 5 µL של תגובת שיקוע צינור (לפני הוספת CBB) ולמדוד את התוכן קלוא ואת קלוא / b יחס5.

3. בסון-עמוד1,2,3

  1. להגדיר את ג'ל אלקטרופורזה אנכי במערכת (למשל, Hoefer SE 250). למלא את התא העליון מאגר עם מאגר קטודית כחול (ראה טבלה 1) ויוצקים אנודת מאגר לתא מאגר נמוכה יותר.
  2. לטעון תילקואיד מדגם (למשל, 5 µg של כלורופיל) לתוך הבארות.
  3. להתחיל את אלקטרופורזה ולהגדיל בהדרגה את המתח: 75 V למשך 30 דקות, 100 וולט למשך 30 דקות, 125 V למשך 30 דקות, 150 V עבור 1 h של 175 V עד מתחמי הופרדו לחלוטין. הפעל את ג'ל- + 4˚C, או באמצעות חדר קר או התאמת הטמפרטורה ג'ל עם מערכת קירור.
    הערה: לשנות המאגר קטודית כחול למאגר קטודית ברורה כאשר החזית לדוגמה יש היגרו כשליש של הג'ל.
  4. לאחר electrophoretic לברוח, לסרוק את הג'ל עם photoscanner עבור התמונה בארכיון.

4. 2D-מרחביות-דף

  1. להרכיב מערכת אלקטרופורזה אנכי (ג'ל גודל 16 ס"מ על 20 ס"מ). השתמש מפרידי 1 מ מ.
  2. להכין מרחביות סטנדרטי ג'ל (אקרילאמיד 12%, אוריאה מ' 6, ראו מתכון בטבלה מס ' 2) עם מסרק 2D (יחיד גדול גם עבור רצועת וכל אחד סטנדרטי עבור סמן משקל מולקולרי).
  3. לחתוך את ליין מ בסון-ג'ל ולמקם אותו בצינור (5 מ"ל). להוסיף 2 מ של מאגר Laemmli (מכיל 5% β-mercaptoethanol), דגירה רצועת למשך 45 דקות עם טלטול עדין-RT.
  4. מקם את ליין, עם עזרה של למשל, כרווח, על גבי הג'ל הימנעות בועות אוויר.
  5. Pipet 5 µL של משקל מולקולרי סמן על פיסת צר מסנן נייר ומקום הנייר בתקן טוב.
  6. לאטום רצועת בסון-ג'ל, העיתון סמן, שופכים 0.5% agarose (בניהול מאגר) מעל רצועת ג'ל ולאפשר לגבש.
  7. לבצע אלקטרופורזה על פי פרוטוקולים סטנדרטיים. לאחר הפעלת electrophoretic, דמיינו את החלבונים עם למשל, הכתם עברית או כסף מכתים על פי6.

Subscription Required. Please recommend JoVE to your librarian.

Representative Results

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

מערכת 2D-בסון/מרחביות-עמוד נציג באיור 1 מדגים ההפרדה של digitonin וβ-DM-solubilized תילקואיד חלבון מתחמי והרכבן יחידה משנית חלבון מפורט. הדפוס חלבונים מורכבים של digitonin solubilized thylakoids (אופקי ג'ל על גבי בראש איור 1A) מכיל את megacomplex PSII-LHCII-PSI, שני supercomplexes PSII-LHCII גדולים (sc), PSI-LHCII supercomplex, PSI מונומר (ז), PSII m/Cyt b6f, מחויב באופן רופף (L)-LHCII trimer (איור 1 א'). דטרגנט חזק מעט יותר, β-מיט, solubilizes את קרום תילקואיד כולו (אופקי ג'ל על איור 1B), אך אינו מסוגל לשמור על החלשים אינטראקציות בין חלבונים מתחמי. תילקואיד solubilization עם β-מיט מייצרת בדרך כלל ארבעה PSII-LHCII supercomplexes (עם כמות שונה של LHCII האנטנה המצורפת), PSII דיימר (ד) ו- m PSI, ATPase, PSII m ו Cytb6f, M-LHCII, L-LHCII, LHCII מונומר (איור 1B). בניגוד β-מיט, digitonin מייצרת רק קטין כמות של מונומר LHCII. דפוס מורכבות חלבון עשויות להשתנות בהתאם צמח חשיפה לתנאי תאורה שונים, עשויים להיות שונים גם בין שורות מוטציה, מאחר הגומלין המורכבים חלבון דינמי ותלוי קרי, זירחון חלבונים. ג'לים מרחביות-PA מתחת רצועות ג'ל יליד איור 1 A ו- B מייצגים את ההרכב מפוליפפטיד של כל החלבונים בתחילה solubilized עם digitonin או β-DM.

Figure 1
איור 1. מימדי בסון-דף/מרחביות-עמוד תודרנית תילקואיד. תילקואיד חלבון קומפלקסים solubilized עם (א) 1% digitonin ו- (ב) 1% β-DM, המופרדים קודם 1 י-בסון-דף (המסלולים למעלה), לאחר מכן על 2D-מרחביות-דף להפגין הרכב חלבונים בודדים של כל המתחם. בשל הדגירה של בסון-רצועות עם denaturing Laemmli מאגר, החלבוניות של כל קומפלקס (ברצועת בסון) מביצועם, מופרדים בקו אנכי במהלך 2D-מרחביות-הדף. זיהוי חלבונים מבוססת על ניתוח ספקטרומטר מסה שהוצגו בהפניות7,8. אנא לחץ כאן כדי להציג גירסה גדולה יותר של הדמות הזאת.

מאגר תוכן הערות
3.5 ג'ל אקרילאמיד (AA) בסון ההפרדה % (T) 48% AA, 1.5% bis-AA: 148 µL
מאגר 3xGel: 700 µL
75% (w/v) גליצרול: 140 µL
הנדסה גנטית H2o: 1092 µL
5% APS: 15 ΜL
ΜL TEMED 3
הערה: אקרילאמיד זה העצבים. הוסף APS TEMED מיד לפני השימוש. במתכון מספיקה ליציקת ג'ל בסון קטן אחד.
12.5 ג'ל אקרילאמיד (AA) בסון ההפרדה % (T) 48% א. א., 1, 5% bis-AA: 530 µL
מאגר 3xGel: 700 µL
75% (w/v) גליצרול: 560 µL
הנדסה גנטית H2o: 290 µL
5% APS: 11 ΜL
TEMED 2ΜL
הערה: אקרילאמיד זה העצבים. הוסף APS TEMED מיד לפני השימוש. במתכון מספיקה ליציקת ג'ל בסון קטן אחד.
ג'ל אקרילאמיד (AA) בסון בערימה של 3% (T) 20% AA, 5% bis-AA: 180 µL
מאגר 3xGel: 500 µL
הנדסה גנטית H2o: 800 µL
5% APS: 30 ΜL
ΜL TEMED 3
הערה: אקרילאמיד זה העצבים. הוסף APS TEMED מיד לפני השימוש. במתכון מספיקה עבור ג'ל בסון קטן אחד.
3 x מאגר ג'ל 1.5 ACA מ
150 מ מ BisTris/HCl (pH 7.0)
החנות + 4 הלעפה תרוטרפמט.
מאגר CBB 100 מ מ BisTris/HCl (pH 7.0) 0.5 M ACA
30% (w/v) סוכרוז
50 מ"ג/מ"ל Serva בלו ז
החנות + 4 הלעפה תרוטרפמט
אנודת מאגר 50 מ מ BisTris/HCl (pH 7.0) החנות + 4 הלעפה תרוטרפמט. ניתן להכין מאגר כפתרון מניות x 10
מאגר קטודה 50 מ מ Tricine
15 מ מ BisTris
Serva 0.01% כחול G
החנות + 4 הלעפה תרוטרפמט. מאגר יכול להיות מוכנים כמו 10 x פתרון מניות, להוסיף לצבוע הפתרון 1 x
25BTH20G 25 מ מ BisTris/HCl (pH 7.0)
20% (w/v) גליצרול
0.25 מ"ג/מ"ל Pefabloc (להוסיף טרי)
10 מ מ NaF (להוסיף טרי)
מאגר ניתן להכין 2 X מניות פתרון (החנות + 4 הלעפה תרוטרפמט), אך להוסיף Pefabloc NaF טרי
מאגר דטרגנט 2% β-dodecyl maltoside/Digitonin (w/v)
25 מ מ BisTris/HCl (pH 7.0)
20% (w/v) גליצרול ו
0.25 מ"ג/מ"ל Pefabloc (להוסיף טרי מהפתרון מניות)
10 מ מ NaF (להוסיף טרי)
חומרי ניקוי ניתן להכין כפתרונות 5-10% מניות (מים). אם דטרגנטים אחרים משמשים, ריכוז דטרגנט הסופי חייב להיות מותאם.

טבלה 1. מאגרי ופתרונות יליד אלקטרופורזה בג'ל

מאגר תוכן הערות
מאגר Laemmli מ מ 138 טריס/HCL pH 6.8
אוריאה 6 מ'
22.2% (v/v) גליצרול
4.4% מרחביות
התייחסות: 9
12% אקרילאמיד, 6 מ' אוריאה מרחביות ההפרדה ג'ל 50% א. א., 1, 33% bis-AA: 10.5 מ ל
20% מרחביות: 0.7 mL
1.5 מ' טריס-HCl (pH 8.8): 8.05mL
אוריאה: 12.6 גר'
MQ-H2o: 6.16 מ ל
10% APS: 200 ΜL
ΜL TEMED 28
הערה: אקרילאמיד זה העצבים. המתכון מתאים ליציקת אחד גדול מרחביות-ג'ל.
6% אקרילאמיד, 6 מ' אוריאה מרחביות נאספות ג'ל 50% AA, 1.33% bis-AA: 1.2 מ ל
20% מרחביות: 0.2 מ"ל
0.5 מ' טריס-HCl (pH 6.8): 2.5 מ ל
אוריאה: 3.6 גרם
MQ-H2o: 3.45 mL
10% APS: 100 ΜL
ΜL TEMED 10
הערה: אקרילאמיד זה העצבים.
מאגר פועל למען חברה דמוקרטית 19 מ מ טריס
2.5 מ"מ גליצין
0.01% מרחביות

בטבלה 2. מאגרים עבור דו-ממדי-מרחביות עמודים

Subscription Required. Please recommend JoVE to your librarian.

Discussion

or Start trial to access full content. Learn more about your institution’s access to JoVE content here

המנגנון המרת אנרגיה פוטוסינתטיים מורכב קומפלקסים גדולים חלבון multisubunit, אשר מוטבעות ממברנה תילקואיד. פרוטוקול זה מתאר שיטה בסיסית לניתוח של מתחמי חלבון תילקואיד צמח מ תודרנית לבנה עם בסון-דף בשילוב עם 2D-מרחביות עמודים. הפרוטוקול מתאים גם לניתוח של תילקואיד מתחמי חלבון מן thylakoids טבק ותרד, אך עשויים לדרוש שינויים קטנים.

עבור solubilization של מתחמי חלבון ממברנה, דטרגנטים nonionic משמשים על יכולתם כדי לשמר את מתחמי בצורתם הטבעית. . הנה, שני חומרי ניקוי נפוץ β-DM, digitonin הוחלו. Dodecyl maltoside solubilizes מתחמי חלבונים בודדים, ואילו digitonin יכול לשמש לניתוח של חלבון גדול יותר מכלולים מורכבים10. Digitonin מובנים מגושם אין אפשרות שיתאים המחיצות grana appressed בחוזקה, ולכן solubilizes רק את האזורים הלא-appressed של ה3,ממברנה תילקואיד11. לכן זה מתאים לניתוח של thylakoids משתית והשמאליים grana. עם זאת, כאשר digitonin משמשת יחד עם חומצת אמינו קפרון (ACA), השילוב solubilizes ממברנה תילקואיד כולו, כולל גם את thylakoids appressed grana12. דרך מנגנון לא ידוע, ACA מאפשר digitonin תהיה גישה הפער מחיצה בין שכבות קרום grana סמוכים. חשוב לציין, digitonin משמרת יציב אינטראקציות בין חלבונים קומפלקסים של ולכן יכול לשמש לניתוח של חלבון יציב ויש סופר megacomplexes, אשר הנפוץ ביותר אזורים תילקואיד הלא-appressed8. יש לציין כי חומרי ניקוי תמיד להפריע חלק יחסי גומלין יציב מתחמי חלבון, ולכן אין אפשרות לבודד את רשת שלמה של מתחמי חלבון. חלק מתחמי הינם מוצרים דיסוציאציה נותק מ גדול יותר חלבון עמותות מורכבות במהלך תילקואיד solubilization ו אלקטרופורזה של... האיכות של ההפרדה בסון-דף תלוי לא רק על הכנת המדגם (חלבונים מורכבים solubilization), אלא גם על איכות הבידוד תילקואיד, אשר חייב להתבצע מתוך עלים טריים. אם טיפול מיוחד לא נלקח, לבזות supercomplexes PSII-LHCII בדרך כלל במהלך β-מיט solubilization.

בסון-דף שומר על שלמות מתחמי חלבון solubilized. יכולת ההפרדה של הג'ל בסון תלוי במעבר הצבע אקרילאמיד ולאחר מעבר הצבע צריך להיות ממוטב בהתבסס על מתחמי חלבון עניין. ניתן לשנות את גודל הנקבוביות של הג'ל לזיהוי על-ידי שינוי המילוי ההדרגתי ריכוז (אקרילאמיד הכולל ריכוז, T) או על-ידי התאמת את הריכוז - אקרילאמיד bis(ג) ביחס הסכום הכולל של אקרילאמיד מונומרים4. המילוי ההדרגתי ג'ל בסון-PA המשמש כאן אופטימיזציה, גם מתאים לניתוח של חלבון גדולה סופר - ו megacomplexes3. חשוב לציין, גודל הנקבוביות של הג'ל הערימה חייבות להיות גדולות כדי לאפשר כל מתחמי להזין הג'ל ההפרדה. לאחר החלבון מורכבת ההפרדה עם בסון-דף, קומפוזיציה או המבנה של כל הלהקה מורכב של חלבונים בודדים ניתן עוד לנתח. עבור ניתוח מבנה החלבון מתחם עניין חייב להיות eluted של הג'ל, הכי יציב מתחמי יושמדו במהלך • תנאי. לכן, סוכרוז צפיפות מעבר צבע משמש לעתים קרובות יותר לטיהור חלבונים מורכבים עבור ניתוח מבנה. לניתוח של מאפייני ספקטרוסקופיות מתחמי חלבון הג'ל, הדף נקי-מקורי יש להשתמש במקום בסון-דף, מאז לצבוע Coomassie מפריע מדידות כאלה. לניתוח של ההרכב יחידת משנה של קומפלקסים חלבונים, denaturing 2D-מרחביות-דף מתואר כאן. Subunits של קומפלקס לכל מופרדים בקו אנכי, ניתן לזהות בקלות. יש לציין כי חלבונים שונים עשויים להיות נוכחים במקום יחיד יכול להיות שייך subunits באותה שורה אנכית כדי להפריד בין מתחמי מעבר משותף בדף-בסון.

Subscription Required. Please recommend JoVE to your librarian.

Disclosures

המחברים אין לחשוף.

Acknowledgments

מחקר זה מבחינה כלכלית נתמך על ידי האקדמיה של פינלנד (פרוייקט מספרים 307335 ו- 303757) אנרגיה סולארית הסכם גרנט מארי ביומסה (SE2B) הספרותמוזאון (675006). הפרוטוקול מבוסס על התייחסות3.

Materials

Name Company Catalog Number Comments
6-aminocaproic acid (ACA) Sigma-Aldrich A2504
BisTris Sigma-Aldrich B4429
Sucrose Sigma-Aldrich S0389
Acrylamide (AA) Sigma-Aldrich A9099 Caution: Neurotoxic!
n-dodecyl-β-D-maltoside Sigma-Aldrich D4641
Tricine Sigma-Aldrich T0377
Tris Sigma-Aldrich T1503
SDS VWR 442444H
Urea VWR 28877.292
Glycerol J.T. Baker 7044
Sodium Fluoride (NaF) J.T. Baker 3688
EDTA disodium salt J.T. Baker 1073
Digitonin Calbiochem 300410 Caution:Toxic!
Pefabloc SC Roche 11585916001
Serva Coomassie Blue G Serva 35050
β-mercaptoethanol Bio-Rad 1610710
APS (Ammonium persulfate) Bio-Rad 161-0700
TEMED (Tetramethylethylenediamine) Bio-Rad 1610801
(N,N'-Methylene)-Bis-Acrylamide Omnipur 2610
Glycine Fisher G0800
Prestained Protein Marker, Broad Range (7-175 kDa) New England Biolabs P7708
Falcon, Conical Centrifuge Tubes 15 ml Corning 352093
Dual gel caster with 10 x 8 cm plates Hoefer SE215
Gradient maker SG5 Hoefer
0.75 mm T-spacers Hoefer SE2119T-2-.75
Sample gel comb, 0.75 mm Hoefer SE211A-10-.75
Mighty Small SE250 vertical electrophoresis system Hoefer SE250
IPC-pump Ismatec
Power supply, PowerPac HV Bio-Rad 164-5097
Centrifuge Eppendorf 5424R
Rocker-Shaker Biosan BS-010130-AAI

PROTEAN II xi Cell
Bio-Rad 1651813

DOWNLOAD MATERIALS LIST

References

  1. Schägger, H., von Jagow, G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Analytical Biochemistry. 199, 223-231 (1991).
  2. Kügler, M., Jänsch, L., Kruft, V., Schmitz, U. K., Braun, H. -P. Analysis of the chloroplast protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). Photosynthesis Research. 53, 35-44 (1997).
  3. Järvi, S., Suorsa, M., Paakkarinen, V., Aro, E. -M. Optimized native gel systems for separation of thylakoid protein complexes: novel super- and mega-complexes. Biochemical Journal. 439, 207-214 (2011).
  4. Strecker, V., Wumaier, Z., Wittig, I., Schägger, H. Large pore gels to separate mega protein complexes larger than 10 MDa by blue native electrophoresis: Isolation of putative respiratory strings or patches. Proteomics. 10, 3379-3387 (2010).
  5. Porra, R. J., Thompson, W. A., Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 384-394 (1989).
  6. Blum, H., Beier, H., Gross, H. J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis. 8, 93-99 (1987).
  7. Aro, E. -M., et al. Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. Journal of Experimental Botany. 56, 347-356 (2005).
  8. Suorsa, M., et al. Light acclimation involves dynamic re-organization of the pigment-protein megacomplexes in non-appressed thylakoid domains. The plant journal for cell and molecular biology. 84, 360-373 (2015).
  9. Laemmli, U. K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 227, 680-685 (1970).
  10. Schägger, H., Pfeiffer, K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. The EMBO Journal. 19, 1777-1783 (2000).
  11. Rantala, S., Tikkanen, M. Phosphorylation-induced lateral rearrangements of thylakoid protein complexes upon light acclimation. Plant Direct. 2, 1-12 (2018).
  12. Rantala, M., Tikkanen, M., Aro, E. -M. Proteomic characterization of hierarchical megacomplex formation in Arabidopsis thylakoid membrane. Plant Journal. 92, 951-962 (2017).
ניתוח של מתחמי חלבון ממברנה תילקואיד מאת כחול מקורי אלקטרופורזה בג'ל
Play Video
PDF DOI DOWNLOAD MATERIALS LIST

Cite this Article

Rantala, M., Paakkarinen, V., Aro, E. M. Analysis of Thylakoid Membrane Protein Complexes by Blue Native Gel Electrophoresis. J. Vis. Exp. (139), e58369, doi:10.3791/58369 (2018).More

Rantala, M., Paakkarinen, V., Aro, E. M. Analysis of Thylakoid Membrane Protein Complexes by Blue Native Gel Electrophoresis. J. Vis. Exp. (139), e58369, doi:10.3791/58369 (2018).

Less
Copy Citation Download Citation Reprints and Permissions
View Video

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
Simple Hit Counter