Summary

Standardiseret hæmoragisk chok induktion styret af cerebral oximetri og forlænget Hæodynamisk monitorering i grise

Published: May 21, 2019
doi:

Summary

Hæmoragisk chok er en alvorlig komplikation hos alvorligt tilskadekomne patienter, hvilket fører til livstruende ilt under forsyning. Vi præsenterer en standardiseret metode til at inducere hæmoragisk chok via blod tilbagetrækning i grise, der er styret af Hæmodynamik og mikrocirkulerende cerebral iltning.

Abstract

Hæmoragisk chok rangerer blandt de vigtigste årsager til alvorlig skade-relaterede død. Tabet af kredsløbssygdomme volumen og ilt bærere kan føre til en utilstrækkelig ilttilførsel og irreversibel organsvigt. Hjernen udøver kun begrænset kompensations kapacitet og er især i høj risiko for svær hypoxisk skade. Denne artikel viser den reproducerbare induktion af livstruende hæmoragisk chok i en svine model ved hjælp af beregnede blod tilbagetrækning. Vi titrerer stød induktion styret af nær-infrarød spektroskopi og forlænget hæmodynamisk monitorering for at vise systemisk kredsløbssvigt samt cerebral mikrocirkulatorisk iltudtømning. Sammenlignet med lignende modeller, der primært fokuserer på foruddefinerede fjernelses volumener til stød induktion, fremhæver denne fremgangsmåde en titrering ved hjælp af den resulterende fejl i makro-og mikrocirkulationen.

Introduction

Massive blodtab er blandt de vigtigste årsager til skade relaterede dødsfald1,2,3. Tabet af kredsløbssygdomme væske og ilt bærere fører til hæmodynamisk fiasko og svær ilt under forsyning og kan forårsage irreversibel organsvigt og død. Sværhedsgraden af chok påvirkes af yderligere faktorer som hypotermi, koagulopati og acidose4. Især hjernen, men også nyrerne mangler kompensations kapacitet på grund af høj iltforbrug og manglende evne til tilstrækkelig anaerob energi generation5,6. Til terapeutiske formål er hurtig og umiddelbar handling afgørende. I klinisk praksis er væske genoplivning med en balanceret elektrolyt opløsning den første mulighed for behandling, efterfulgt af administration af røde blodlegemer og frisk frossen plasma. Trombocyt koncentrater, katekolaminer, og optimering af Koagulering og syre-base status støtteterapi til at genvinde normale fysiologiske forhold efter vedvarende traumer. Dette koncept fokuserer på genoprettelse af hæodynamik og makro cirkulation. Flere undersøgelser viser imidlertid, at mikrocirkulatorisk perfusion ikke genoprettes samtidig med makrocirkulationen. Især, cerebral perfusion forbliver forringet og yderligere ilt under forsyning kan forekomme7,8.

Brugen af dyremodeller giver forskerne mulighed for at etablere nye eller eksperimentelle strategier. Svins og menneskers sammenlignelige anatomi, homologi og fysiologi gør det muligt at drage konklusioner om specifikke patologiske faktorer. Begge arter har et lignende metabolisk system og respons på farmakologisk behandling. Dette er en stor fordel i forhold til små dyremodeller, hvor forskelle i blodvolumen, hæodynamik, og generelle fysiologi gør det næsten umuligt at efterligne et klinisk scenario9. Desuden kan autoriseret medicinsk udstyr og hjælpematerialer let anvendes i svine modeller. Desuden er det let muligt at få grise fra kommercielle leverandører, som tillader en høj mangfoldighed af genetik og fænotyper og er omkostningsreducerende10. Den model af blod tilbagetrækning via skibet kanyle er ganske almindeligt11,12,13,14,15.

I denne undersøgelse, udvider vi begrebet hæmoragisk chok induktion via arteriel blod tilbagetrækning med en nøjagtig titrering af hæodynamisk fiasko og cerebral iltning svækkelse. Hæmoragisk chok opnås, hvis hjertets indekset og det gennemsnitlige arterielle tryk falder til under 40% af baseline-værdien, hvilket har vist sig at forårsage betydelig forringelse af den cerebrale regionale iltnings mætning8. Puls kontur kardiel udgang (PiCCO) måling anvendes til kontinuerlig hæodynamisk monitorering. For det første skal systemet kalibreres ved transpulmonært-modilution, som gør det muligt at beregne hjerte indekset for det ekstravaskulære lunge vandindhold og den globale ende-diastoliske volumen. Efterfølgende beregnes det kontinuerlige hjerte indeks ved puls kontur analyse og giver også dynamiske preload-parametre som puls tryk og slagvolumen variation.

Denne teknik er veletableret i kliniske og eksperimentelle indstillinger. Nær-infrarød spektroskopi (NIRS) er en klinisk og eksperimentelt etableret metode til at overvåge ændringer i cerebral iltforsyning i realtid. Selvklæbende sensorer er fastgjort til venstre og højre pande og beregner den cerebrale iltning ikke-invasivt i hjernens frontale cortex. To bølgelængder af infrarødt lys (700 og 900 nm) udsendes og detekteres af sensorerne efter at være reflekteret fra cortex væv. For at vurdere det cerebrale iltindhold beregnes bidrag af arteriel og venøs blod i 1:3 relationer og opdateres i 5 s intervaller. Følsomheden i dybden af 1-4 cm er eksponentiel faldende og påvirket af penetreret væv (f. eks. hud og knogler), selv om kraniet er gennemsigtigt til infrarødt lys. Teknikken letter hurtige terapeutiske handlinger for at forhindre patienter fra negative resultater som delirium eller hypoxisk cerebral skade og fungerer som mål parameter i tilfælde af nedsat hjerte output16,17. Kombinationen af begge teknikker under eksperimentel Shock muliggør en nøjagtig titrering af makrocirkulationen samt cerebral mikrokredsløbs svækkelse for at studere denne livstruende hændelse.

Protocol

Forsøgene i denne protokol er blevet godkendt af den statslige og den institutionelle dyrebeskyttelses Komité (Landesuntersuchungsamt Rheinland-Pfalz, Koblenz; Formand: Dr. Silvia Eisch-Wolf; referencenummer: 23 177-07/G 14-1-084; 02.02.2015). forsøgene blev gennemført i overensstemmelse med dyre forskningen rapportering af in vivo eksperimenter (ANKOMME) retningslinjer. Undersøgelsen blev planlagt og gennemført mellem november 2015 og marts 2016. Efter udvidet litteratur forskning blev svine modellen valgt som en …

Representative Results

Efter påbegyndelse af stød induktion kan der registreres en kort tidsperiode for kompensation. Med igangværende blod fjernelse, den førnævnte cardio-kredsløbssygdomme dekompensering, som overvåges af et signifikant fald i crso2, hjertets indeks, intrathorakale blodvolumen indeks, og den globale ende-diastoliske volumen indeks (figur 2 , Figur 3og figur 4). Desuden observeres signifi…

Discussion

Protokollen beskriver en metode til at inducere hæmoragisk chok via kontrolleret arteriel blødning i svin, der styres af systemisk Hæmodynamik, samt af cerebral microkredsløbs svækkelse. Shock betingelser blev opnået ved en beregnet blod tilbagetrækning af 25-35 mL kg-1 og bekræftet af de nævnte sammensatte af surrogat parametre indikerer betydelige hjerte-kredsløbssvigt. Hvis ubehandlet, denne procedure var dødelig inden for 2 h i 66% af dyrene, hvilket understreger sværhedsgraden og reproducerbar…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Forfatterne vil gerne takke Dagmar Dirvonskis for hendes fremragende tekniske support.

Materials

3-way-stopcock blue Becton Dickinson Infusion Therapy AB Helsingborg, Sweden 394602 Drug administration
3-way-stopcock red Becton Dickinson Infusion Therapy AB Helsingborg, Sweden 394605 Drug administration/Shock induction
Atracurium Hikma Pharma GmbH , Martinsried AM03AC04* Anesthesia
Canula 20 G Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 301300 Vascular access
Datex Ohmeda S5 GE Healthcare Finland Oy, Helsinki, Finland Hemodynamic monitor
Desinfection  Schülke & Mayr GmbH, Germany 104802 Desinfection 
Heidelberger Verlängerung 75CM Fresenius Kabi Deutschland GmbH 2873112   Drug administration/Shock induction
INVOS 5100C Cerebral Medtronic PLC, USA Monitore for cerebral regional oxygenation 
INVOS Cerebral/Somatic Oximetry Adult Sensors Medtronic PLC, USA 20884521211152 Monitoring of the cerebral regional oxygenation 
Endotracheal tube Teleflex Medical Sdn. Bhd, Malaysia 112482 Intubation
Endotracheal tube introducer   Wirutec GmbH, Sulzbach, Germany 5033062 Intubation
Engström Carestation GE Heathcare, Madison USA Ventilator
Fentanyl Janssen-Cilag GmbH, Neuss AA0014* Anesthesia
Gloves Paul Hartmann, Heidenheim, Germany 9422131 Self-protection
Incetomat-line 150 cm Fresenius, Kabi GmbH, Bad Homburg, Germany 9004112 Drug administration
Ketamine Hameln Pharmaceuticals GmbH, Zofingen, Schweiz AN01AX03* Sedation
Laryngoscope Teleflex Medical Sdn. Bhd, Malaysia 671067-000020 Intubation
Logical pressure monitoring system Smith- Medical GmbH,  Minneapolis, USA MX9606 Hemodynamic monitor
Logicath 7 Fr 3-lumen 30cm Smith- Medical GmbH,  Minneapolis, USA MXA233x30x70-E Vascular access/Drug administration
Masimo Radical 7 Masimo Corporation, Irvine, USA Hemodynamic monitor
Mask for ventilating dogs Henry Schein, Melville, USA 730-246 Ventilation
Original Perfusor syringe 50ml Luer Lock B.Braun Melsungen AG, Melsungen, Germany 8728810F Drug administration
PICCO Thermodilution. F5/20CM EW  MAQUET Cardiovascular GmbH, Rastatt, Germany PV2015L20-A   Hemodynamic monitor
Percutaneous sheath introducer set 8,5 und 9 Fr, 10 cm with integral haemostasis valve/sideport Arrow international inc., Reading, USA AK-07903 Vascular access/Shock induction
Perfusor FM Braun B.Braun Melsungen AG, Melsungen, Germany 8713820 Drug administration
Potassium chloride Fresenius, Kabi GmbH, Bad Homburg, Germany 6178549 Euthanasia
Propofol 2% Fresenius, Kabi GmbH, Bad Homburg, Germany   AN01AX10* Anesthesia
 Pulse Contour Cardiac Output (PiCCO2 Pulsion Medical Systems, Feldkirchen, Germany Hemodynamic monitor
Sonosite Micromaxx Ultrasoundsystem Fujifilm, Sonosite Bothell, Bothell, USA  Vascular access
Stainless Macintosh Size 4 Teleflex Medical Sdn. Bhd, Perak,  Malaysia 670000 Intubation
Sterofundin B.Braun Melsungen AG, Melsungen, Germany AB05BB01* balanced electrolyte infusion
Stresnil 40mg/ml   Lilly Germany GmbH, Wiesbaden, Germany QN05AD90 Sedation
Syringe 10 mL Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 309110 Drug administration
Syringe 2 mL Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 300928 Drug administration
Syringe 20 mL Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 300296 Drug administration
Syringe 5 mL Becton Dickinson S.A. Carretera Mequinenza Fraga, Spain 309050 Drug administration
venous catheter 22G B.Braun Melsungen AG, Melsungen, Germany 4269110S-01 Vascular access
*ATC:  Anatomical Therapeutic Chemical / Defined Daily Dose Classification 

References

  1. Kutcher, M. E., et al. A paradigm shift in trauma resuscitation: evaluation of evolving massive transfusion practices. JAMA Surgery. 148 (9), 834-840 (2013).
  2. Allen, B. S., Ko, Y., Buckberg, G. D., Sakhai, S., Tan, Z. Studies of isolated global brain ischaemia: I. A new large animal model of global brain ischaemia and its baseline perfusion studies. European Journal of Cardio-Thoracic Surgery. 41 (5), 1138-1146 (2012).
  3. Noll, E., et al. Comparative analysis of resuscitation using human serum albumin and crystalloids or 130/0.4 hydroxyethyl starch and crystalloids on skeletal muscle metabolic profile during experimental haemorrhagic shock in swine: A randomised experimental study. European Journal of Anaesthesiology. 34 (2), 89-97 (2017).
  4. Tisherman, S. A., Stein, D. M. ICU Management of Trauma Patients. Critical Care Medicine. , (2018).
  5. Nielsen, T. K., Hvas, C. L., Dobson, G. P., Tonnesen, E., Granfeldt, A. Pulmonary function after hemorrhagic shock and resuscitation in a porcine model. Acta Anaesthesiologica Scandinavica. 58 (8), 1015-1024 (2014).
  6. Bogert, J. N., Harvin, J. A., Cotton, B. A. Damage Control Resuscitation. Journal of Intensive Care Medicine. 31 (3), 177-186 (2016).
  7. Gruartmoner, G., Mesquida, J., Ince, C. Fluid therapy and the hypovolemic microcirculation. Current Opinion in Critical Care. 21 (4), 276-284 (2015).
  8. Ziebart, A., et al. Effect of gelatin-polysuccinat on cerebral oxygenation and microcirculation in a porcine haemorrhagic shock model. Scandinavian Journal Trauma Resuscitation Emergency Medicin. 26 (1), 15 (2018).
  9. Bassols, A., et al. The pig as an animal model for human pathologies: A proteomics perspective. Proteomics Clinical Applications. 8 (9-10), 715-731 (2014).
  10. Alosh, H., Ramirez, A., Mink, R. The correlation between brain near-infrared spectroscopy and cerebral blood flow in piglets with intracranial hypertension. Journal of Applied Physiology. 121 (1985), 255-260 (2016).
  11. Hartmann, E. K., et al. Ventilation/perfusion ratios measured by multiple inert gas elimination during experimental cardiopulmonary resuscitation. Acta Anaesthesiologica Scandinavica. 58 (8), 1032-1039 (2014).
  12. Hartmann, E. K., Duenges, B., Baumgardner, J. E., Markstaller, K., David, M. Correlation of thermodilution-derived extravascular lung water and ventilation/perfusion-compartments in a porcine model. Intensive Care Medicine. 39 (7), 1313-1317 (2013).
  13. Hartmann, E. K., et al. An inhaled tumor necrosis factor-alpha-derived TIP peptide improves the pulmonary function in experimental lung injury. Acta Anaesthesiologica Scandinavica. 57 (3), 334-341 (2013).
  14. Ortiz, A. L., et al. The influence of Ringer’s lactate or HES 130/0.4 administration on the integrity of the small intestinal mucosa in a pig hemorrhagic shock model under general anesthesia. Journal of the Veterinary Emergency and Critical. 27 (1), 96-107 (2017).
  15. Ziebart, A., et al. Low tidal volume pressure support versus controlled ventilation in early experimental sepsis in pigs. Respiratory Research. 15, 101 (2014).
  16. Hoffman, G. M., et al. Postoperative Cerebral and Somatic Near-Infrared Spectroscopy Saturations and Outcome in Hypoplastic Left Heart Syndrome. The Annals of Thoracic Surgery. 103 (5), 1527-1535 (2017).
  17. Hickok, R. L., Spaeder, M. C., Berger, J. T., Schuette, J. J., Klugman, D. Postoperative Abdominal NIRS Values Predict Low Cardiac Output Syndrome in Neonates. World Journal for Pediatric and Congenital Heart Surgery. 7 (2), 180-184 (2016).
  18. Weiner, M. M., Geldard, P., Mittnacht, A. J. Ultrasound-guided vascular access: a comprehensive review. Journal of Cardiothoracic and Vascular Anesthesia. 27 (2), 345-360 (2013).
  19. Kumar, A., Chuan, A. Ultrasound guided vascular access: efficacy and safety. Best Practice & Research: Clinical Anaesthesiology. 23 (3), 299-311 (2009).
  20. Lamperti, M., et al. International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Medicine. 38 (7), 1105-1117 (2012).
  21. Mayer, J., Suttner, S. Cardiac output derived from arterial pressure waveform. Current Opinion in Anesthesiology. 22 (6), 804-808 (2009).
  22. Medtronic. . Operations Manual INVOS ® System, Model 5100C. , (2013).
  23. Wani, T. M., Rafiq, M., Akhter, N., AlGhamdi, F. S., Tobias, J. D. Upper airway in infants-a computed tomography-based analysis. Paediatric Anaesthesia. 27 (5), 501-505 (2017).
  24. Tuna Katircibasi, M., Gunes, H., Cagri Aykan, A., Aksu, E., Ozgul, S. Comparison of Ultrasound Guidance and Conventional Method for Common Femoral Artery Cannulation: A Prospective Study of 939 Patients. Acta Cardiologica Sinica. 34 (5), 394-398 (2018).
  25. Teeter, W. A., et al. Feasibility of basic transesophageal echocardiography in hemorrhagic shock: potential applications during resuscitative endovascular balloon occlusion of the aorta (REBOA). Cardiovascular Ultrasound. 16 (1), 12 (2018).
  26. Kontouli, Z., et al. Resuscitation with centhaquin and 6% hydroxyethyl starch 130/0.4 improves survival in a swine model of hemorrhagic shock: a randomized experimental study. European Journal of Trauma and Emergency Surgery. , (2018).
  27. Nikolian, V. C., et al. Improvement of Blood-Brain Barrier Integrity in Traumatic Brain Injury and Hemorrhagic Shock Following Treatment With Valproic Acid and Fresh Frozen Plasma. Critical Care Medicine. 46 (1), e59-e66 (2018).
  28. Williams, T. K., et al. Endovascular variable aortic control (EVAC) versus resuscitative endovascular balloon occlusion of the aorta (REBOA) in a swine model of hemorrhage and ischemia reperfusion injury. The Journal of Trauma and Acute Care Surgery. 85 (3), 519-526 (2018).
  29. Aly, S. A., et al. Cerebral tissue oxygenation index and lactate at 24 hours postoperative predict survival and neurodevelopmental outcome after neonatal cardiac surgery. Congenital Heart Disease. 12 (2), 188-195 (2017).
  30. Sorensen, H. Near infrared spectroscopy evaluated cerebral oxygenation during anesthesia. The Danish Medical Journal. 63 (12), (2016).
  31. Cem, A., et al. Efficacy of near-infrared spectrometry for monitoring the cerebral effects of severe dilutional anemia. Heart Surgery Forum. 17 (3), E154-E159 (2014).
  32. Edmonds, H. L., Ganzel, B. L., Austin, E. H. Cerebral oximetry for cardiac and vascular surgery. Seminars in Cardiothoracic and Vascular Anesthesia. 8 (2), 147-166 (2004).
  33. Murkin, J. M., et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesthesia & Analgesia. 104 (1), 51-58 (2007).
  34. Hong, S. W., et al. Prediction of cognitive dysfunction and patients’ outcome following valvular heart surgery and the role of cerebral oximetry. European Journal of Cardio-Thoracic Surgery. 33 (4), 560-565 (2008).
  35. Al Tayar, A., Abouelela, A., Mohiuddeen, K. Can the cerebral regional oxygen saturation be a perfusion parameter in shock?. Journal of Critical Care. 38, 164-167 (2017).
  36. Torella, F., Cowley, R. D., Thorniley, M. S., McCollum, C. N. Regional tissue oxygenation during hemorrhage: can near infrared spectroscopy be used to monitor blood loss?. Shock. 18 (5), 440-444 (2002).
  37. Yao, F. S., Tseng, C. C., Ho, C. Y., Levin, S. K., Illner, P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. Journal of Cardiothoracic and Vascular Anesthesia. 18 (5), 552-558 (2004).
  38. Slater, J. P., et al. Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. The Annals of Thoracic Surgery. 87 (1), 36-44 (2009).
  39. Brodt, J., Vladinov, G., Castillo-Pedraza, C., Cooper, L., Maratea, E. Changes in cerebral oxygen saturation during transcatheter aortic valve replacement. Journal of Clinical Monitoring and Computing. 30 (5), 649-653 (2016).
  40. Yoshimura, A., et al. Altered cortical brain activity in end stage liver disease assessed by multi-channel near-infrared spectroscopy: Associations with delirium. Scintific Reports. 7 (1), 9258 (2017).
  41. Douds, M. T., Straub, E. J., Kent, A. C., Bistrick, C. H., Sistino, J. J. A systematic review of cerebral oxygenation-monitoring devices in cardiac surgery. Perfusion. 29 (6), 545-552 (2014).
  42. Forman, E., et al. Noninvasive continuous cardiac output and cerebral perfusion monitoring in term infants with neonatal encephalopathy: assessment of feasibility and reliability. Pediatric Research. 82 (5), 789-795 (2017).
  43. Tweddell, J. S., Ghanayem, N. S., Hoffman, G. M. Pro: NIRS is " standard of care " for postoperative management. Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual. 13 (1), 44-50 (2010).
  44. Lewis, C., Parulkar, S. D., Bebawy, J., Sherwani, S., Hogue, C. W. Cerebral Neuromonitoring During Cardiac Surgery: A Critical Appraisal With an Emphasis on Near-Infrared Spectroscopy. Journal of Cardiothoracic and Vascular Anesthesia. 32 (5), 2313-2322 (2018).
  45. Thudium, M., Heinze, I., Ellerkmann, R. K., Hilbert, T. Cerebral Function and Perfusion during Cardiopulmonary Bypass: A Plea for a Multimodal Monitoring Approach. Heart Surgery Forum. 2 (1), E028-E035 (2018).
  46. Putzer, G., et al. Monitoring of brain oxygenation during hypothermic CPR – A prospective porcine study. Resuscitation. 104, 1-5 (2016).
  47. Weenink, R. P., et al. Detection of cerebral arterial gas embolism using regional cerebral oxygen saturation, quantitative electroencephalography, and brain oxygen tension in the swine. Journal of Neuroscience Methods. 228, 79-85 (2014).
  48. Mader, M. M., et al. Evaluation of a New Multiparameter Brain Probe for Simultaneous Measurement of Brain Tissue Oxygenation, Cerebral Blood Flow, Intracranial Pressure, and Brain Temperature in a Porcine Model. Neurocritical Care. , (2018).
  49. Mikkelsen, M. L. G., et al. The influence of norepinephrine and phenylephrine on cerebral perfusion and oxygenation during propofol-remifentanil and propofol-remifentanil-dexmedetomidine anaesthesia in piglets. Acta Veterinaria Scandinavica. 60 (1), 8 (2018).
  50. Nelskyla, A., et al. The effect of 50% compared to 100% inspired oxygen fraction on brain oxygenation and post cardiac arrest mitochondrial function in experimental cardiac arrest. Resuscitation. 116, 1-7 (2017).
  51. Klein, K. U., et al. Intraoperative monitoring of cerebral microcirculation and oxygenation–a feasibility study using a novel photo-spectrometric laser-Doppler flowmetry. European Journal of Trauma and Emergency Surgery. 22 (1), 38-45 (2010).
  52. Ziebart, A., et al. Pulmonary effects of expiratory-assisted small-lumen ventilation during upper airway obstruction in pigs. Anaesthesia. 70 (10), 1171-1179 (2015).
  53. Reisz, J. A., et al. All animals are equal but some animals are more equal than others: Plasma lactate and succinate in hemorrhagic shock-A comparison in rodents, swine, nonhuman primates, and injured patients. The Journal of Trauma and Acute. 84 (3), 537-541 (2018).
  54. Smith, D. M., Newhouse, M., Naziruddin, B., Kresie, L. Blood groups and transfusions in pigs. Xenotransplantation. 13 (3), 186-194 (2006).
  55. Boysen, S. R., Caulkett, N. A., Brookfield, C. E., Warren, A., Pang, J. M. Splenectomy Versus Sham Splenectomy in a Swine Model of Controlled Hemorrhagic. Shock. 46 (4), 439-446 (2016).
  56. Wade, C. E., Hannon, J. P. Confounding factors in the hemorrhage of conscious swine: a retrospective study of physical restraint, splenectomy, and hyperthermia. Circulatory Shock. 24 (3), 175-182 (1988).

Play Video

Cite This Article
Ziebart, A., Kamuf, J., Ruemmler, R., Rissel, R., Gosling, M., Garcia-Bardon, A., Hartmann, E. K. Standardized Hemorrhagic Shock Induction Guided by Cerebral Oximetry and Extended Hemodynamic Monitoring in Pigs. J. Vis. Exp. (147), e59332, doi:10.3791/59332 (2019).

View Video