The role of recently discovered disease-associated genes in the pathogenesis of neuropsychiatric disorders remains obscure. A modified bilateral in utero electroporation technique allows for the gene transfer in large populations of neurons and examination of the causative effects of gene expression changes on social behavior.
As genome-wide association studies shed light on the heterogeneous genetic underpinnings of many neurological diseases, the need to study the contribution of specific genes to brain development and function increases. Relying on mouse models to study the role of specific genetic manipulations is not always feasible since transgenic mouse lines are quite costly and many novel disease-associated genes do not yet have commercially available genetic lines. Additionally, it can take years of development and validation to create a mouse line. In utero electroporation offers a relatively quick and easy method to manipulate gene expression in a cell-type specific manner in vivo that only requires developing a DNA plasmid to achieve a particular genetic manipulation. Bilateral in utero electroporation can be used to target large populations of frontal cortex pyramidal neurons. Combining this gene transfer method with behavioral approaches allows one to study the effects of genetic manipulations on the function of prefrontal cortex networks and the social behavior of juvenile and adult mice.
Genome-wide association studies (GWAS) have driven the discovery of novel candidate genes that are associated with brain pathologies1,2,3,4. These studies have been particularly beneficial in understanding devastating neuropsychiatric disorders such as schizophrenia (SCZ), where the investigation of novel genes has served as a launching point for new lines of research and therapeutic intervention5,6. Genes harboring risk for SCZ show biased expression in the prefrontal cortex (PFC) during prenatal and early postnatal development, a region implicated in the pathology of several neuropsychiatric disorders7. Additionally, mouse models of psychiatric disorders exhibit abnormal activity in PFC networks6,8,9. These results suggest that SZC-associated genes might play a role in the developmental wiring of this region. Further investigation using animal models is required to understand the contribution of these candidate genes to the establishment of connections in the PFC and to determine whether these genes have a causative role in the pathogenesis of neuropsychiatric disorders. Genetic manipulation techniques in mice that allow for the study of gene expression changes on specific neuronal circuits during prenatal and early postnatal development are a promising method to understand the molecular mechanisms that link gene expression changes to PFC dysfunction.
Genetic mouse lines offer a method to study the impact of particular genes on brain development and function. However, relying on transgenic mice can be limiting since there are not always commercially available lines to examine the effects of specific genes on developing neural circuits. Moreover, it can be extremely costly and time consuming to develop custom mouse lines. The use of intersectional genetic manipulation strategies that combine transgenic mice with viral approaches has revolutionized the understanding of the brain10,11,12. Despite much progress, viral strategies come with certain limitations depending on the viral vector type, including limits in packaging capacity that can restrict viral expression13 and cell toxicity associated with viral expression14. Furthermore, in most experimental conditions, robust gene expression using adeno-associated virus (AAVs) requires approximately 2 to 4 weeks15, making routine viral strategies unfeasible to manipulate genes during early postnatal development.
In utero electroporation (IUE) is an alternative approach that allows for a rapid and inexpensive gene transfer16,17 that, when coupled with fluorescent labeling and pharmacogenetic or optogenetic approaches, provides a powerful platform to dissect the function of neuronal circuits. Additionally, with the development of CRISPR-Cas9 genome editing genes can be overexpressed or precisely altered through cell-type specific knock-down or knock-out of specific genes or through the modulation of promoters18,19. Gene manipulation approaches using IUE are especially advantageous when the effect of genes on neuronal circuits need to be tested during narrow developmental windows20. IUE is a versatile technique and overexpression can be easily accomplished by inserting a gene into an expression vector under a specific promoter. Additional control of gene expression can be achieved by driving expression using promoters of different strengths or using inducible promoters capable of temporally controlling gene expression21,22. Additionally, IUE allows for the targeting of cells within specific cortical layers, cell types and brain regions, which isn’t always feasible using other approaches5,17. Recent advances in the IUE configuration based on the use of three electrodes, which generates a more efficient electric-field distribution, have expanded the functional repertoire of this method and allowed scientists to target new cell types and increase the efficiency, accuracy, and number of cells that can be targeted23,24. This technique was recently used to determine the causative role of complement component 4A (C4A), a gene linked to SCZ, in PFC function and early cognition5.
Presented here is an experimental pipeline that combines gene transfer approaches to target large populations of excitatory neurons in the frontal cortex, including the PFC, with behavioral paradigms that not only enables the study of cell and circuit-level changes, but also allows behavior to be monitored throughout early postnatal development and adulthood. First described is a method to bilaterally transfect large populations of layer (L) 2/3 pyramidal neurons in frontal cortical regions. Next, tasks to assay social behavior in juvenile and adult mice are outlined. Cell counts can be obtained upon the completion of behavioral tasks to quantify the extent and location of cell transfection. Furthermore, the number of cells transfected can be correlated with behavioral data to determine if a greater number of transfected cells leads to greater perturbations in behavior.
All experimental protocols were conducted according to the National Institutes of Health (NIH) guidelines for animal research and were approved by the Boston University Institutional Animal Care and Use Committee (IACUC).
1. DNA solution preparation
2. Ordering or breeding timed-pregnant mice
3. Design and assembly of three prong electrode
4. Preparation for surgery
5. In utero electroporation surgery
6. Assaying early social behavior in a maternal interaction task
NOTE: This protocol is adapted from previous publications5,25. Perform this task after mice have been born from postnatal day (P) 18-21.
7. Assaying adult social behavior task
8. Analyzing behavioral data
9. Post hoc cell counting to characterize extent of cell transfection
Successful development and implementation of a custom-built electroporator and three prong- electrode.
For IUEs, an inexpensive custom-built electroporator was built based on a previously described design27 (Figure 1A and Figure 2). A three prong electrode was made23,24 using plastic forceps with 2 negative electrodes attached to the tips of the prongs and the positive electrode was attached to the end of a toothbrush handle (Figure 1B). The electroporator and three prong electrode were tested to ensure proper function. IUE was performed by exposing the uterine horns, injecting plasmid DNA and electroporating each embryo (Figure 1C). The three prong electrode can be held fairly easily in two hands as shown (Figure 1B, right), using the prongs to stabilize the embryo’s head. L2/3 PFC pyramidal somas and their processes were labeled with GFP via IUE, thus confirming the success of the gene transfer experiment.
Targeting a large population of neurons bilaterally in the frontal cortex of mice.
The total number of transfected cells and the distribution of transfected neurons can be quantified for both juvenile and adult mice5. Using this bilateral IUE method, about 4000-6000 L2/3 pyramidal neurons were transfected with the pCAG-GFP plasmid (Figure 3A). Additionally, most of these cells were localized to frontal cortical regions including the frontal association cortex, motor association areas, prelimbic and infralimbic cortex and the orbital and anterior cingulate cortex (Figure 3B). A representative example shows the rostral-caudal distribution of transfected neurons in an adult control mouse (P60, Figure 3C) and the distribution between hemispheres (Figure 3D). This confirms the ability of bilateral IUEs to target and genetically label large populations of L2/3 pyramidal neurons in the frontal cortex.
Social behavior in juvenile and adult mice.
The first part of the maternal interaction task tested the ability of control P18 transfected mice (IUE with pCAG-GFP plasmid) to find nest bedding (maternal interaction 1 [MI1]). This tests the sensorimotor abilities of the juvenile mice. Control mice spent more time exploring their nest bedding than exploring fresh bedding. Thus, suggesting that, as expected, these mice have intact sensorimotor abilities and exploratory behavior (Figure 4A and Figure 3B). The second part of the task (MI2) takes advantage of the tendency of mice to be motivated to interact with and be near their mother. In this task, pups spent most of their time near their mother while spending significantly less time exploring the empty cup or nest bedding (Figure 4C,D). These results suggest that IUE control mice exhibit normal homing behavior.
Adult control mice (P60) spent approximately 35% of the time exploring a novel object (total time spent in the arena = 5 min, Figure 5A,B). When presented with a novel and familiar object, adult mice spent more time exploring the novel object, suggesting intact interest in novelty (Figure 5C,D). In the sociability task, control adult mice spent similar amounts of time exploring a novel mouse and empty cup (Figure 5E,F). This behavior was automatically tracked using the freely available DeepLabCut software26. Example videos show successful labeling of various points on a mouse, including the limbs, centroid, head and ears (Video 1). DeepLabCut was used to determine when mice were rearing by examining the length of the mouse’s body, since this distance becomes shorter when the mouse rears (Video 2).
Figure 1: In utero electroporation using a custom-built electroporator and a three prong electrode. (A) Image of the custom-built electroporator (left) and its front panel (right). 1: Power Indicator. 2: Power Switch. 3: Pulse Indicator. 4: Test Mode Switch. 5: Voltage Selector. 6: Pulse Width Control. 7: Electrode (+). 8: External Trigger (TTL). 9: Electrode (-). (B) Image of the custom-built three prong electrode (left) and the recommended method to hold the three prong electrode during the IUE (right). (C) Left: Diagram depicting IUE surgery performed in E16 dams. Right: representative 20X confocal image of IUE with GFP targeted to L2/3 mPFC. Yellow asterisk: L2/3 GFP+ neurons. Left panel scale bar = 250 µm. Right panel scale bar = 75 µm. Figures and data adapted from Comer et al., 20205. Please click here to view a larger version of this figure.
Figure 2: Circuit diagram of the custom-made electroporator. A diagram depicting the custom-made electroporator circuit based off previously described examples27. Please click here to view a larger version of this figure.
Figure 3: Targeting large populations of L2/3 frontal cortex neurons using IUE. (A) Total number of GFP+ cells in juvenile control mice. N = 15 mice. (B) Percentage of GFP+ cells per area in adult control mice. N = 22 control mice. (C) Representative sections showing rostro-caudal extent of transfected cells in the frontal cortex. Images in left panels are zoomed areas from the right panels (red square). Frontal association cortex: FrA. Supplementary motor cortex: M2. Prelimbic cortex: PL. Infralimbic cortex: IL. Anterior cingulate cortex: ACC. Medial orbitofrontal cortex: MO. Ventral orbitofrontal cortex: VO. Lateral orbitofrontal cortex: LO. Anterior insular cortex: AI. Frontal cortex area 3: Fr3. Primary motor cortex: M1. Primary somatosensory cortex: S1. Piriform cortex: Pir. Anterior olfactory nucleus: AO. Caudate-putamen: Cpu. Black numbers: Bregma coordinates. Left panel scale bar = 0.5 mm. Right panel scale bar = 1 mm. Mean ± SEM. (D) Data showing the number of cells electroporated on the right versus left hemisphere within each mouse. Showing uninterpolated cell counts from 14 adult mice electroporated with pCAG-GFP plasmid. Paired t-test. p = 0.4757. Data adapted from Comer et al., 20205. Please click here to view a larger version of this figure.
Figure 4: Assessing sensorimotor abilities, exploratory behavior and early social interactions in juvenile transfected mice. (A) Representative example of path traveled (black trace) by a P18 control pup in MI1 task. Fresh bedding corners (fresh 1 and 2, pink) and nest bedding corner (green). (B) Control pups spent more time exploring the nest bedding than the fresh bedding in the MI1 task. ***p < 0.001, ****p < 0.0001. Two-way ANOVA and Sidak's post test. (C) Representative example of path traveled (black trace) by a P18 control pup in MI2 task. Dam’s cup (dam: blue), Empty cup (empty cup: yellow), Nest bedding corner (nest: green). (D) Control pups spent more time interacting with their dam than with the empty cup or nest bedding. Two-way ANOVA and Sidak's post test. ****p < 0.0001. N = 15 control mice. Figures and data adapted from Comer et al., 20205. Please click here to view a larger version of this figure.
Figure 5: Assessing social interactions in adult transfected mice. (A) Representative example of path traveled (black trace) by P60 control adult mouse in novel object interaction task. pink corner = location of novel object. (B) Control mice spent approximately 35% of the time exploring the novel object (5 min total time). Percent time spent in corner with novel object shown. (C) Representative examples of path traveled (black trace) by a P60 control adult mouse in novel object recognition task. pink corner: location of novel object. green corner: location of familiar object. (D) Control mice spent more time exploring the novel object than the familiar object. Discrimination index (DI) shown; DI = ((time with novel object – time with familiar object) / (time with novel object + time with familiar object)). (E) Representative examples of path traveled (black trace) by P60 control adult mouse in sociability task. pink corner: location of novel mouse under mesh wire cup. green corner: location of empty mesh wire cup. (F) Control mice spent on average equal time exploring an empty cup and a cup containing a novel mouse. Graph shows DI ((time with novel mouse – time with empty cup) / (time with novel mouse + time with empty cup)). Since mice were not socially isolated prior to the task, the drive to interact with a novel mouse might have been diminished. However, there was still exploration of the novel mouse. N = 22 control mice. Figures and data adapted from Comer et al., 20205. Please click here to view a larger version of this figure.
Video 1: Using DeepLabCut to automatically track animal position in behavioral tasks. A representative video of an adult mouse in the social interaction task that has been labeled using DeepLabCut. Various parts of the mouse can be labeled such as the limbs and head. Using the centroid is appropriate to track the position of the animal but other points can be used to identify more complex behaviors, such as grooming or rearing. Please click here to view this video. (Right-click to download.)
Video 2: Using DeepLabCut to automatically track rearing in behavioral tasks. A representative video of an adult mouse in the social interaction task that has been labeled using DeepLabCut. The red arrow shows the length of the mouse with the arrow pointing towards the head of the mouse. The length of the arrow can be used to determine with the mouse is rearing, since the length of the mouse, and the arrow, becomes smaller when the mouse rears. Please click here to view this video. (Right-click to download.)
Herein, a pipeline is described that combines the manipulation of novel genes of interest in large populations of frontal cortical neurons with behavioral assays in mice. Moreover, this pipeline allows for the longitudinal study of behavior in the same mice both during early postnatal development and in adulthood. This technique bypasses the need to rely on genetic animal models that can be costly in terms of time and expenses. The strength of this protocol is that it can be used to study neurodevelopmental and neuropsychiatric disorders for which recent GWAS have discovered novel genetic associations28,29. Although this method provides cell-type specific transfection of excitatory neurons, one limitation is that it is less feasible to target other brain cell types such as interneurons or glial cells. However, multiple studies suggest a modified approach to target other brain cell-types30,31. Additionally, by modifying the position of the electrodes relative to the embryo’s head and changing the timing of the IUE, other brain regions can be bilaterally transfected including the hippocampus, amygdala, cerebellum, and the visual, somatosensory and motor cortices24,32. Additionally, different cortical layers can be targeted by performing IUE at different developmental stages.
Although IUE can have a high success rate, there are critical steps and troubleshooting of the method that is required at times. It is necessary that plasmids are carefully designed and validated in cell lines. As with all cloning, care must be taken to ensure proper gene expression such as confirming the sequence is in frame. Additionally, the effect of gene manipulation (e.g., overexpression or silencing) should be confirmed taking into consideration that expression levels could vary across the developmental time course of the mouse and developmental date of IUE. Western blot and qPCR can be used to determine the extent of genetic overexpression5. It is recommended to co-electroporate a reporter gene, such as GFP, in a separate plasmid since proteins tagged with GFP can be mis-folded or lose their function. Alternatively, if a reporter is not used the experimenter can use in situ hybridization, qPCR or western blot to determine expression levels of the gene of interest5.
If plasmids have been verified but there are no animals that appear to be positive for transfection, thoroughly check all equipment, especially the electroporator, to ensure proper function. When delivering voltage pulses to embryos, the uterine horns should be moistened well with warmed saline and the electrodes should produce bubbles upon generation of the voltage pulse. If no bubbles are present when the voltage is delivered, there is likely a problem with the electroporator. Alternatively, the cDNA might not have been injected properly into the ventricle. When cDNA is injected properly into the lateral ventricle, the fast green dye will be visible in the shape of a crescent. Lastly, the position of the electrodes is important. If the electrodes are positioned slightly incorrectly, cells might not be transfected in the region of interest. Therefore, when checking for a successful transfection, save some more caudal brain sections to see, if perhaps, the wrong brain region was transfected. Once this method has been practiced, an experienced surgeon can expect to achieve a success rate of nearly 90%. This protocol can be modified to target other brain regions of interest. For example, it is possible to target most cortical regions bilaterally and even certain subcortical regions, including the hippocampus23 . It is also possible to further cut down costs by building a custom electroporator, which was used in the data presented here5,27.
Future studies could make use of this method to understand the role of newly discovered gene candidates in various neurological diseases. The presented pipeline offers a relatively quick assay to test the effects of specific genetic manipulations on early postnatal development and behavior into adulthood. Future efforts using this method have the potential to discover which genes play a causative role in certain brain disorders, including SCZ and autism spectrum disorder.
The authors have nothing to disclose.
We thank Lisa Kretsge for critical feedback and editing to the manuscript. We thank all research assistants in the Cruz-Martín lab who were invaluable in helping with perfusions and cell counting of behavior brains. We thank Andrzej Cwetsch for input on the design of the tripolar electrode, and Todd Blute and the Boston University Biology Imaging Core for use of the confocal microscope. This work was supported by a NARSAD Young Investigator Grant (AC-M, #27202), the Brenton R. Lutz Award (ALC), the I. Alden Macchi Award (ALC), the NSF NRT UtB: Neurophotonics National Research Fellowship (ALC, #DGE1633516), and the Boston University Undergraduate Research Opportunities Program (WWY). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
13mm Silk Black Braided Suture | Havel's | SB77D | Suture skin |
Adson Forceps | F.S.T. | 11006-12 | IUE |
C270 Webcam | Logitech | N/A | Record behavior |
Electroporator | Custom-built | N/A | See Figure 1 and 2 and Bullmann et al, 2015 |
EZ-500 Spin Column Plasmid DNA Maxi-preps Kit, 20preps | Bio Basic Inc. | BS466 | Pladmid preparation |
Fast Green FCF | Sigma | F7252-5G | Dye for DNA solution |
Fine scissors- sharp | F.S.T. | 14060-09 | IUE |
Fisherbrand Gauze Sponges | Fisher Scientific | 1376152 | IUE |
Gaymar Heating/Cooling | Braintree | TP-700 | Heating Pad |
Glass pipette puller | Sutter Instrument, | P-97 | IUE |
Glass pipettes | Sutter Instrument, | BF150-117-10 | IUE |
Hair Removal Lotion | Nair | N/A | Hair removal |
Hartman Hemostats | F.S.T. | 13002-10 | IUE |
Open field maze- homemade acrylic arena | Custom-built | N/A | 50 × 50 × 30 cm length-width-height |
pCAG-GFP | Addgene | 11150 | Mammalian expression vector for expression of GFP |
Picospritzer III | Parker Hannifin | N/A | pressure injector |
Retractor – 2 Pronged Blunt | F.S.T. | 17023-13 | IUE |
Ring forceps | F.S.T. | 11103-09 | IUE |
Sterilizer, dry bead | Sigma | Z378569 | sterelize surgical tools |
SUTURE, 3/0 PGA, FS-2, VIOLET FOR VET USE ONLY | Havel's | HJ398 | Suture muscle |
Water bath | Cole-Parmer | EW-12105-84 | warming sterile saline |