Summary

Métodos rápidos e enzimáticos para amplificação de modelos mínimos e lineares para prototipagem de proteínas usando sistemas livres de células

Published: June 14, 2021
doi:

Summary

O estudo descreve um protocolo para a criação de grandes (μg-mg) quantidades de DNA para campanhas de triagem de proteínas a partir de fragmentos de genes sintéticos sem clonagem ou uso de células vivas. O modelo mínimo é digerido e circularizado e, em seguida, amplificado usando amplificação do círculo de rolamento isotérmico. Reações de expressão livre de células poderiam ser realizadas com o produto não purificado.

Abstract

Este protocolo descreve o desenho de um modelo de DNA mínimo e os passos para a amplificação enzimática, permitindo a prototipagem rápida de proteínas assayable em menos de 24 h usando a expressão livre de células. Depois de receber DNA de um fornecedor, o fragmento genético é amplificado, cortado, circularizado e crio-bancário. Uma pequena quantidade do DNA bancado é então diluída e amplificada significativamente (até 106x) usando amplificação do círculo de rolamento isotemal (RCA). A RCA pode produzir quantidades de microgramas do modelo de expressão mínima dos níveis de picograma do material inicial (níveis de mg se todos os fragmentos sintéticos iniciais forem usados). Neste trabalho, uma quantidade inicial de 20 pg resultou em 4 μg do produto final. O produto RCA resultante (concatemer do modelo mínimo) pode ser adicionado diretamente a uma reação livre de células sem etapas de purificação. Devido a este método ser inteiramente baseado em PCR, ele pode permitir futuros esforços de triagem de alto rendimento quando juntamente com sistemas automatizados de manuseio de líquidos.

Introduction

A expressão genética livre de células (CFE) emergiu como uma ferramenta poderosa com muitas aplicações. Tais aplicações incluem detecção de doenças1,2,3,4,5,6, micronutrientes e detecção de moléculas pequenas7,8,9,10,11,12, biomanufacturing13,14,15,16,17 ,18, educação19,20,21, fabricação de proteínas difíceis de fabricação17,22,23,24,25,26,27, e triagem variante23,28,29,30,31,32 ,33. Isso se deve à natureza aberta dos sistemas livres de células e à flexibilidade que eles conferem. Muitos artigos de grande revisão oferecem educação histórica e perspectivas futuras sobre a tecnologia34,35,36,37,38,39,40,41,42,43,44.

Uma reação típica sem células consiste em três componentes principais: extrato celular, mistura de energia e modelo genético. O extrato de célula ativa contém todas as máquinas necessárias para transcrição e tradução (TXTL) e pode ser processado de várias maneiras36. Intermediários glicólticos, eletrólitos, aminoácidos e cofatores na mistura de energia suportam o processo TXTL. É uma grande fonte de variabilidade em experimentos sem células45 e pode ser preparado de muitas maneiras34,46. A preparação do modelo genético tem visto menos melhorias desde que os métodos tradicionais de clonagem resultam em plasmídeos com excelentes características de expressão. A desvantagem desses métodos tradicionais é o tempo de reviravolta e a quantidade de conhecimento biológico necessários para construí-los e propagar- los. Os esforços recentes de otimização resultaram em fluxos de trabalho simples de 24 horas para a preparação do extratocelular 47,48 que podem ser realizados em paralelo com a preparação do mix de energia49,50. No entanto, a clonagem tradicional adiciona vários dias à linha do tempo de prototipagem do CFE(Tabela 1)23. Produtos PCR rapidamente amplificados do fragmento genético comercial podem ser usadosdiretamente 51, mas isso limita o número de experimentos de prototipagem à medida que apenas 1 μg de DNA é produzido, o que corresponde a aproximadamente cinco reações (volumes tradicionais de 15 μL). Com essas etapas adicionais de circularização e amplificação isotérmica, quantidades maiores do que miligramas do DNA são possíveis (~5.000 reações por 1 mg). Isso aumenta drasticamente o número de testes que podem ser feitos em triagem de alta produtividade de proteínas ou redes enzimáticas combinatórias (engenharia metabólica livre de células); também permite a preservação efetiva da biblioteca de modelos lineares como DNA de alta concentração. Além disso, uma quantidade aumentada de modelo seria necessária para protótipo de quantidades maiores de proteína necessárias para aplicações científicas materiais (fibras à base de proteínas e hidrogéis). Algumas limitações de modelos lineares podem ser superadas usando um extrato de BL21 DE3 Star ou usando métodos recentemente descobertos para proteger modelos lineares da degradação52,53,54. No entanto, isso não aborda ter estoques limitados de DNA produzido pelo fornecedor para amplificação de PCR ou a questão da perícia biológica e equipamentos necessários para a clonagem.

Este trabalho apresenta um protocolo explicitamente projetado para aumentar a quantidade de modelo de expressão que pode ser obtido a partir de pequenas quantidades de fragmentos genéticos produzidos por fornecedores (tipicamente 500-1000 ng de pó liofilizado). O método descrito não requer as habilidades necessárias para realizar clonagem tradicional em plasmídeos ou transformação e propagação em células vivas. Ao receber um fragmento genético no e-mail, o usuário pode produzir modelos suficientes para muitas reações livres de células, empregando amplificação do círculo de rolamento isoterânmico (RCA) (Figura 1)23. Embora a quantidade de DNA recebida do fornecedor possa ser suficiente para esforços limitados de triagem, ele é rapidamente esgotado, e a recodência de fragmentos genéticos é demorada e cara. O método também é especialmente adequado para genes tóxicos e difíceis de clonar em E. coli.

Protocol

1. Projetando o fragmento genético NOTA: O fragmento genético deve ter todos os elementos genéticos necessários para transcrição/tradução, incluindo promotor, site de ligação ribossosome (RBS), codon inicial, gene de interesse e exterminador. Embora o exterminador não seja necessário para um modelo de expressão linear (LET), será importante se o usuário decidir inserir a sequência em um plasmídeo. Estas sequências foram levantadas do pJL1-sfGFP plasmid55…

Representative Results

A expressão de sfGFP dos modelos RCA foi comparável à do plasmídeo pJL1 ao usar apenas 0,30 μL de DNA RCA não purificado em uma reação de 15 μL(Figura 2A). Na verdade, duplicar e triplicar a quantidade de modelo parece não oferecer nenhum benefício no extrato BL21 DE3 Star, sugerindo níveis já saturados do modelo a 0,30 μL por reação. Por outro lado, parece haver um benefício para aumentar a quantidade de modelo RCA quando adicionado ao extrato celular originado da cepa SHuf…

Discussion

O gene de interesse pode ser qualquer proteína desejada, mas é melhor começar com uma proteína fluorescente como repórter conveniente para leitura em tempo real ou ponto final em um leitor de placas de poço para novos adotantes deste método. Para novas sequências proteicas, copie a sequência de aminoácidos da proteína desejada e cole-a na ferramenta de otimização de codon desejada61,62. Geralmente existem muitos organismos disponíveis e cepas de <em…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Os autores reconhecem que o NIH 1R35GM138265-01 e o NSF 2029532 para apoio parcial deste projeto.

Materials

Alaline Formedium DOC0102
Ammonium glutamate MP Biomedicals MP21805951
Arginine Formedium DOC0106
Asparagine Formedium DOC0114
Aspartic Acid Formedium DOC0118
ATP Sigma A2383
Axygen Sealing Film Corning PCR-SP
CMP Sigma C1006
Coenzyme A Sigma C3144
CutSmart Buffer NEB B7204S Provided with HindIII
Cysteine Formedium DOC0122
DNA Clean and Concentrator Kit Zymo Research D4004 Used for purifying DNA
dNTPs NEB N0447
E. coli tRNA Sigma (Roche) 10109541001
Folinic Acid Sigma 47612
Gene Fragment IDT
Glutamic Acid Formedium DOC0134
Glutamine Formedium DOC0130
Glycine Formedium DOC0138
GMP Sigma G8377
HEPES Sigma H3375
HindIII-HF NEB R3104L
Histidine Formedium DOC0142
Isoleucine Formedium DOC0150
Leucine Formedium DOC0154
Lysine Formedium DOC0158
Magnesium glutamate Sigma 49605
Methionine Formedium DOC0166
Microtiter Plate (384 well) Greiner 781906
Microtiter Plate (96 well) Greiner 655809
Multimode Plate Reader BioTek Synergy Neo2
NAD Sigma N8535
NanoPhotometer Implen NP80
OneTaq DNA Polymerase NEB M0480
PCR Tube VWR 20170-012
Phenylalanine Formedium DOC0170
Phosphoenolpyruvate Sigma (Roche) 10108294
Potassium glutamate Sigma G1501
Potassium oxalate Fisher Scientific P273
Proline Formedium DOC0174
Putrescine Sigma P5780
Serine Formedium DOC0178
Spermidine Sigma S0266
T4 DNA Ligase NEB M0202S
T4 DNA Ligase Reaction Buffer NEB B0202S Provided with T4 DNA Ligase
TempliPhi Amplification Kit Cytiva 25640010 Used for RCA
Thermal Cycler Biorad C1000 Touch
Thermoblock Eppendorf ThermoMixer FP
Threonine Formedium DOC0182
Tryptophan Formedium DOC0186
Tyrosine Formedium DOC0190
UMP Sigma U6375
Valine Formedium DOC0194

References

  1. Sun, Q., et al. A simple and low-cost paper-based colorimetric method for detecting and distinguishing the GII.4 and GII.17 genotypes of norovirus. Talanta. 225, 121978 (2021).
  2. Pardee, K., et al. Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell. 165 (5), 1255-1266 (2016).
  3. Pardee, K., et al. Paper-based synthetic gene networks. Cell. 159 (4), 940-954 (2014).
  4. Ma, D., Shen, L., Wu, K., Diehnelt, C. W., Green, A. A. Low-cost detection of norovirus using paper-based cell-free systems and synbody-based viral enrichment. Synthetic Biology. 3 (1), (2018).
  5. Park, S., Lee, J. W. Detection of coronaviruses using rna toehold switch sensors. International Journal of Molecular Sciences. 22 (4), 1772 (2021).
  6. Cao, M., Sun, Q., Zhang, X., Ma, Y., Wang, J. Detection and differentiation of respiratory syncytial virus subgroups A and B with colorimetric toehold switch sensors in a paper-based cell-free system. Biosensors and Bioelectronics. 182, 113173 (2021).
  7. Mcnerney, M. P., et al. Point-of-care biomarker quantification enabled by sample-specific calibration. Science Advances. 5 (9), (2019).
  8. Silverman, A. D., Akova, U., Alam, K. K., Jewett, M. C., Lucks, J. B. Design and optimization of a cell-free atrazine biosensor. ACS Synthetic Biology. 9 (3), 671-677 (2020).
  9. Salehi, A. S. M., et al. Cell-free protein synthesis approach to biosensing hTRβ-specific endocrine disruptors. Analytical Chemistry. 89 (6), 3395-3401 (2017).
  10. Garamella, J., Majumder, S., Liu, A. P., Noireaux, V. An adaptive synthetic cell based on mechanosensing, biosensing, and inducible gene circuits. ACS Synthetic Biology. 8 (8), 1913-1920 (2019).
  11. Glasscock, C. J., et al. Dynamic control of pathway expression with riboregulated switchable feedback promoters. ACS Synthetic Biology. 16, (2019).
  12. Thavarajah, W., et al. Point-of-use detection of environmental fluoride via a cell-free riboswitch-based biosensor. ACS Synthetic Biology. 9 (1), 10-18 (2020).
  13. Pardee, K., et al. Portable, on-demand biomolecular manufacturing. Cell. 167 (1), 248-259 (2016).
  14. Nelson, J. A. D., et al. Hydrofoam and oxygen headspace bioreactors improve cell-free therapeutic protein production yields through enhanced oxygen transport. Biotechnology Progress. 37 (2), 3079 (2020).
  15. Cai, Q., et al. A simplified and robust protocol for immunoglobulin expression in Escherichia coli cell-free protein synthesis systems. Biotechnology Progress. 31 (3), 823-831 (2015).
  16. Ogonah, O. W., Polizzi, K. M., Bracewell, D. G. Cell free protein synthesis: a viable option for stratified medicines manufacturing? A brief history of cell free synthesis systems. Current Opinion in Chemical Engineering. 18, 77-83 (2017).
  17. Zawada, J. F., et al. Microscale to manufacturing scale-up of cell-free cytokine production-a new approach for shortening protein production development timelines. Biotechnology and Bioengineering. 108 (7), 1570-1578 (2011).
  18. Stark, J. C., et al. On-demand biomanufacturing of protective conjugate vaccines. Science Advances. 7 (6), (2021).
  19. Huang, A., et al. BioBitsTM Explorer: A modular synthetic biology education kit. Science Advances. 4 (8), 1-11 (2018).
  20. Stark, J. C., et al. BioBits health: classroom activities exploring engineering, biology, and human health with fluorescent readouts. ACS Synthetic Biology. 8 (5), 1001-1009 (2019).
  21. Stark, J. C., et al. BioBitsTM Bright: A fluorescent synthetic biology education kit. Science Advances. 4 (8), 33 (2018).
  22. Shinoda, T., et al. Cell-free methods to produce structurally intact mammalian membrane proteins. Scientific Reports. 6, (2016).
  23. Dopp, J. L., Rothstein, S. M., Mansell, T. J., Reuel, N. F. Rapid prototyping of proteins: Mail order gene fragments to assayable proteins within 24 hours. Biotechnology and Bioengineering. 116 (3), 667-676 (2019).
  24. Sachse, R., Dondapati, S. K., Fenz, S. F., Schmidt, T., Kubick, S. Membrane protein synthesis in cell-free systems: From bio-mimetic systems to bio-membranes. FEBS Letters. 588 (17), 2774-2781 (2014).
  25. Salehi, A. S. M., et al. Cell-free protein synthesis of a cytotoxic cancer therapeutic: Onconase production and a just-add-water cell-free system. Biotechnology Journal. 11 (2), 274-281 (2016).
  26. Georgi, V., et al. On-chip automation of cell-free protein synthesis: New opportunities due to a novel reaction mode. Lab on a Chip. 16 (2), 269-281 (2016).
  27. Thoring, L., et al. Cell-free systems based on CHO cell lysates: Optimization strategies, synthesis of “difficult-to-express” proteins and future perspectives. PLoS One. 11 (9), (2016).
  28. Dopp, J. L., Reuel, N. F. Simple, functional, inexpensive cell extract for in vitro prototyping of proteins with disulfide bonds. Biochemical Engineering Journal. 164, 107790 (2020).
  29. Isaksson, L., Enberg, J., Neutze, R., Göran Karlsson, B., Pedersen, A. Expression screening of membrane proteins with cell-free protein synthesis. Protein Expression and Purification. 82 (1), 218-225 (2012).
  30. Techner, J. M., et al. High-throughput synthesis and analysis of intact glycoproteins using SAMDI-MS. Analytical Chemistry. 92 (2), 1963-1971 (2020).
  31. Kim, H. C., et al. Implementing bacterial acid resistance into cell-free protein synthesis for buffer-free expression and screening of enzymes. Biotechnology and Bioengineering. 112 (12), 2630-2635 (2015).
  32. Rolf, J., Siedentop, R., Lütz, S., Rosenthal, K. Screening and identification of novel cGAS homologues using a combination of in vitro and in vivo protein synthesis. International Journal of Molecular Sciences. 21 (1), (2020).
  33. Haslinger, K., Hackl, T., Prather, K. L. J. Rapid in vitro prototyping of O-methyltransferases for pathway applications in Escherichia coli. bioRxiv. , (2020).
  34. Dopp, J. L., Tamiev, D. D., Reuel, N. F. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnology Advances. 37 (1), 246-258 (2018).
  35. Gregorio, N. E., Levine, M. Z., Oza, J. P. A user’s guide to cell-free protein synthesis. Methods and Protocols. 2 (1), 24 (2019).
  36. Cole, S. D., Miklos, A. E., Chiao, A. C., Sun, Z. Z., Lux, M. W. Methodologies for preparation of prokaryotic extracts for cell-free expression systems. Synthetic and Systems Biotechnology. 5 (4), 252-267 (2020).
  37. Chiba, C. H., Knirsch, M. C., Azzoni, A. R., Moreira, A. R., Stephano, M. A. Cell-free protein synthesis: advances on production process for biopharmaceuticals and immunobiological products. BioTechniques. 70, (2021).
  38. Laohakunakorn, N. Cell-free systems: A proving ground for rational biodesign. Frontiers in Bioengineering and Biotechnology. 8, 788 (2020).
  39. Dondapati, S. K., Stech, M., Zemella, A., Kubick, S. Cell-free protein synthesis: A promising option for future drug development. BioDrugs. , 1-22 (2020).
  40. Noireaux, V., Liu, A. P. The new age of cell-free biology. Annual Review of Biomedical Engineering. 22, 51-77 (2020).
  41. Khambhati, K., et al. Exploring the Potential of Cell-Free Protein Synthesis for Extending the Abilities of Biological Systems. Frontiers in Bioengineering and Biotechnology. 7, (2019).
  42. Carlson, E. D., Gan, R., Hodgman, C. E., Jewett, M. C. Cell-free protein synthesis: Applications come of age. Biotechnology Advances. 30 (5), 1185-1194 (2012).
  43. Rosenblum, G., Cooperman, B. S. Engine out of the chassis: Cell-free protein synthesis and its uses. FEBS Letters. 588 (2), 261-268 (2014).
  44. Swartz, J. R. Transforming biochemical engineering with cell-free biology. AIChE Journal. 58 (1), 5-13 (2012).
  45. Cole, S. D., et al. Quantification of interlaboratory cell-free protein synthesis variability. ACS Synthetic Biology. 8 (9), 2080-2091 (2019).
  46. Caschera, F., Noireaux, V. A cost-effective polyphosphate-based metabolism fuels an all E. coli cell-free expression system. Metabolic Engineering. 27, 29-37 (2015).
  47. Levine, M. Z., et al. Activation of energy metabolism through growth media reformulation enables a 24-hour workflow for cell-free expression. ACS Synthetic Biology. 9 (10), 2765-2774 (2020).
  48. Hunt, J. P., et al. Streamlining the preparation of “endotoxin-free” ClearColi cell extract with autoinduction media for cell-free protein synthesis of the therapeutic protein crisantaspase. Synthetic and Systems Biotechnology. 4 (4), 220-224 (2019).
  49. Dopp, J. L., Jo, Y. R., Reuel, N. F. Methods to reduce variability in E. Coli-based cell-free protein expression experiments. Synthetic and Systems Biotechnology. 4 (4), 204-211 (2019).
  50. Sun, Z. Z., et al. Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology. Journal of Visualized Experiments: JoVE. , e50762 (2013).
  51. Schinn, S. M., Broadbent, A., Bradley, W. T., Bundy, B. C. Protein synthesis directly from PCR: Progress and applications of cell-free protein synthesis with linear DNA. New Biotechnology. 33 (4), 480-487 (2016).
  52. Sitaraman, K., et al. A novel cell-free protein synthesis system. Journal of Biotechnology. 110 (3), 257-263 (2004).
  53. Marshall, R., Maxwell, C. S., Collins, S. P., Beisel, C. L., Noireaux, V. Short DNA containing χ sites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems. Biotechnology and Bioengineering. 114, 2137-2141 (2017).
  54. Sun, Z. Z., Yeung, E., Hayes, C. A., Noireaux, V., Murray, R. M. Linear DNA for rapid prototyping of synthetic biological circuits in an escherichia coli based TX-TL cell-free system. ACS Synthetic Biology. 3 (6), 387-397 (2014).
  55. . Addgene: pJL1 Available from: https://www.addgene.org/69496/ (2021)
  56. . IDT Codon Optimization Tool Available from: https://www.idtdna.com/pages/tools/codon-optimization-tool (2021)
  57. Hadi, T., et al. Rolling circle amplification of synthetic DNA accelerates biocatalytic determination of enzyme activity relative to conventional methods. Scientific Reports. 10 (1), 10279 (2020).
  58. . New England Biolabs Tm Calculator Available from: https://tmcalculator.neb.com/#!/main (2021)
  59. Shin, J., Noireaux, V. Efficient cell-free expression with the endogenous E. Coli RNA polymerase and sigma factor 70. Journal of Biological Engineering. 4, (2010).
  60. Colant, N., et al. A rational approach to improving titer in Escherichia coli-based cell-free protein synthesis reactions. Biotechnology Progress. 37 (1), 3062 (2021).
  61. Burgess-Brown, N. A., et al. Codon optimization can improve expression of human genes in Escherichia coli: A multi-gene study. Protein Expression and Purification. 59, 94-102 (2008).
  62. Maertens, B., et al. Gene optimization mechanisms: A multi-gene study reveals a high success rate of full-length human proteins expressed in Escherichia coli. Protein Science. 19 (7), 1312-1326 (2010).
  63. Eckert, K. A., Kunkel, T. A. DNA polymerase fidelity and the polymerase chain reaction. Genome Research. 1 (1), 17-24 (1991).
  64. Dopp, J. L., Reuel, N. F. Process optimization for scalable E. coli extract preparation for cell-free protein synthesis. Biochemical Engineering Journal. 138, 21-28 (2018).
  65. Liu, D. V., Zawada, J. F., Swartz, J. R. Streamlining Escherichia Coli S30 extract preparation for economical cell-free protein synthesis. Biotechnology Progress. 21 (2), 460-465 (2005).
  66. Levine, M. Z., Gregorio, N. E., Jewett, M. C., Watts, K. R., Oza, J. P. Escherichia coli-Based Cell-Free Protein Synthesis: Protocols for a robust, flexible, and accessible platform technology. Journal of Visualized Experiments: JoVE. (144), e58882 (2019).
  67. Kwon, Y. C., Jewett, M. C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Scientific Reports. 5, (2015).

Play Video

Cite This Article
Dopp, J. L., Reuel, N. F. Rapid, Enzymatic Methods for Amplification of Minimal, Linear Templates for Protein Prototyping using Cell-Free Systems. J. Vis. Exp. (172), e62728, doi:10.3791/62728 (2021).

View Video