资料来源: 布莱克斯堡弗吉尼亚理工大学土木与环境工程系罗伯特. 里昂
与汽车或烤面包机的生产相比, 在那里成千上万的相同的复制品和广泛的原型测试是可能的, 每个土木工程结构是独一无二的, 非常昂贵的再生产 (图 1)。因此, 土木工程师必须广泛地依靠分析建模来设计其结构。这些模型是对现实的简化抽象, 用来检查性能标准, 特别是与强度和刚度有关的准则是否不被违反。为了完成这项任务, 工程师需要两个组件: (a) 一组理论, 解释结构如何响应负载, 即力和变形如何相关, 以及 (b) 在这些理论中区分的一系列常量如何材料 (如钢材和混凝土) 的反应不同。
图 1: 世贸中心 (纽约市) 交通枢纽。
现今大多数工程设计都采用线性弹性原理来计算结构的力和变形。在弹性理论中, 需要一些材料常数来描述应力与应变的关系。应力被定义为单位面积的力, 而应变被定义为当受力除以该尺寸的原始大小时的尺寸变化。这些常数的两个最常见的是弹性模量 (E), 它将应力与应变有关, 而泊松比 (ν) 是横向与纵向应变的比值。本试验将介绍在建筑材料实验室中用于测量力 (或应力) 和变形 (或应变) 的典型设备, 并用它们测量典型铝棒的 E 和ν 。
在本实验中, 测量了两个基本材料常数: 弹性模量 (E) 和泊松比 (v)。本实验演示了如何使用玫瑰应变计测量实验室设置中的这些常数。实验所得的值分别与 1万 ksi 和0.3 的公布值吻合较好。这些值是应用弹性理论进行工程设计的关键, 本文所描述的实验技术是获取材料常数的典型方法。要获得这些值, 必须非常小心地使用高分辨率仪器和可追踪的校准程序。特别是, 使用基于应变仪的设备和16?…