-1::1
Simple Hit Counter
Skip to content

Products

Solutions

×
×
Sign In

EN

EN - EnglishCN - 简体中文DE - DeutschES - EspañolKR - 한국어IT - ItalianoFR - FrançaisPT - Português do BrasilPL - PolskiHE - עִבְרִיתRU - РусскийJA - 日本語TR - TürkçeAR - العربية
Sign In Start Free Trial

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

Behavior
Biochemistry
Bioengineering
Biology
Cancer Research
Chemistry
Developmental Biology
View All
JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

Biological Techniques
Biology
Cancer Research
Immunology
Neuroscience
Microbiology
JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduate courses

Analytical Chemistry
Anatomy and Physiology
Biology
Cell Biology
Chemistry
Civil Engineering
Electrical Engineering
View All
JoVE Science Education

Visual demonstrations of key scientific experiments

Advanced Biology
Basic Biology
Chemistry
View All
JoVE Lab Manual

Videos of experiments for undergraduate lab courses

Biology
Chemistry

BUSINESS

JoVE Business

Video textbooks for business education

Accounting
Finance
Macroeconomics
Marketing
Microeconomics

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Authors

Teaching Faculty

Librarians

K12 Schools

Products

RESEARCH

JoVE Journal

Peer reviewed scientific video journal

JoVE Encyclopedia of Experiments

Video encyclopedia of advanced research methods

JoVE Visualize

Visualizing science through experiment videos

EDUCATION

JoVE Core

Video textbooks for undergraduates

JoVE Science Education

Visual demonstrations of key scientific experiments

JoVE Lab Manual

Videos of experiments for undergraduate lab courses

BUSINESS

JoVE Business

Video textbooks for business education

OTHERS

JoVE Quiz

Interactive video based quizzes for formative assessments

Solutions

Authors
Teaching Faculty
Librarians
K12 Schools

Language

English

EN

English

CN

简体中文

DE

Deutsch

ES

Español

KR

한국어

IT

Italiano

FR

Français

PT

Português do Brasil

PL

Polski

HE

עִבְרִית

RU

Русский

JA

日本語

TR

Türkçe

AR

العربية

    Menu

    JoVE Journal

    Behavior

    Biochemistry

    Bioengineering

    Biology

    Cancer Research

    Chemistry

    Developmental Biology

    Engineering

    Environment

    Genetics

    Immunology and Infection

    Medicine

    Neuroscience

    Menu

    JoVE Encyclopedia of Experiments

    Biological Techniques

    Biology

    Cancer Research

    Immunology

    Neuroscience

    Microbiology

    Menu

    JoVE Core

    Analytical Chemistry

    Anatomy and Physiology

    Biology

    Cell Biology

    Chemistry

    Civil Engineering

    Electrical Engineering

    Introduction to Psychology

    Mechanical Engineering

    Medical-Surgical Nursing

    View All

    Menu

    JoVE Science Education

    Advanced Biology

    Basic Biology

    Chemistry

    Clinical Skills

    Engineering

    Environmental Sciences

    Physics

    Psychology

    View All

    Menu

    JoVE Lab Manual

    Biology

    Chemistry

    Menu

    JoVE Business

    Accounting

    Finance

    Macroeconomics

    Marketing

    Microeconomics

Start Free Trial
Loading...
Home
JoVE Science Education
Engineering
Evaluating the Heat Transfer of a Spin-and-Chill
Evaluating the Heat Transfer of a Spin-and-Chill
JoVE Science Education
Chemical Engineering
A subscription to JoVE is required to view this content.  Sign in or start your free trial.
JoVE Science Education Chemical Engineering
Evaluating the Heat Transfer of a Spin-and-Chill

4: Evaluating the Heat Transfer of a Spin-and-Chill

7,707 Views
08:44 min
April 11, 2017

Overview

Source: Michael G. Benton and Kerry M. Dooley, Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA

The Spin-and-Chill uses heat transfer and fluid flow fundamentals to chill beverages from room temperature to 38 °F in as little as 2 min. It would take a refrigerator approximately 240 min and an ice chest approximately 40 min to achieve an equivalent temperature change. This is accomplished Spin and Chill by spinning a can or bottle at up to 500 rpm, which creates little or no foaming.

In this experiment, the efficacy of spinning a cylinder (i.e., soda can) at high speeds to cool a soft drink will be evaluated. Operational parameters, such as rpm and spin time, will be varied to assess their effect on heat transfer, and the heat transfer coefficient will be calculated using a lumped parameter model.

Procedure

1. Testing the Spin-and-Chill

  1. Fill the aluminum soda can with room temperature water and then record the temperature.
  2. Measure the total weight of the ice being used with the balance, enough to surround the Spin-and-Chill.
  3. Seal the aluminum soda can using a plastic sealing lid and insert the assembly into the Spin-and-Chill.
  4. Activate the Spin-and-Chill. It should run about 2 min at ~ 300 rpm.
  5. Remove the aluminum soda can from the Spin-and-Chill and remove the plastic sealing lid. Record the final temperature of the water within the aluminum soda can.
  6. Record the amount of ice that melted using either a graduated cylinder or a balance.

2. Lumped Parameter Model

  1. Starting with the can at room temperature, perform ~ 4 single runs using the Spin-and-Chill. Each should run last ~ 2 min at a constant rpm (e.g., 500).
  2. Record the final temperature of the water within the can after each run.
  3. Then, run the Spin-and-Chill sequentially three times starting with a warm can. Perform a reasonable number of replicates for the sequential Spin-and-Chill experiment. It should run for ~ 2 min at a constant rpm (e.g., 500).
  4. Record the amount of ice melted and final temperature after each run. Be careful when you open the can - it may or may not foam if a carbonated beverage is used.
  5. Repeat as desired to test the effect of Spin-and-Chill parameters. For example, vary the operating rpm at constant spin times or vary the spin times at constant rpm.

Spin-and-chills are household examples of heat transfer technology. They can be analyzed to understand engineering processes that are widely studied and applied in industry. Spin-and-chills cool soft drinks much faster than refrigerators or ice chests. They operate by rotating soda cans within a reservoir of ice at speeds of hundreds of revolutions per minute. The spin-and-chill utilizes convective heat transfer to cool the soda cans. By measuring the cooling rate under different conditions, the convective behavior can be determined. Which can be used to improve the cooling efficiency as well as model and understand related heat transfer situations. This video illustrates the operating principles of the spin-and-chill, demonstrates experiments that evaluate convective heat transfer, and discusses related applications.

The spin-and-chill is modeled as consisting of a warm soda can submerged in a large, cold environment. The can has thin walls and is filled with fluid. The fluid is hottest at the center and coldest at the rim. And the temperature distribution is symmetric around the can's axis of rotation. As the can spins, the fluid inside is cooled. The surroundings are assumed to be so large that they do not appreciably warm up. This visualization can be divided into several zones, each characterized by its unique temperature distribution and heat transfer mechanism. The wall is modeled as a thin membrane. Its dominant mechanism of heat transfer is conduction. The spread of heat without macroscopic motion of the medium. The can wall is so thin, however, that conduction in the wall is negligible. On either side are boundary layers, regions of fluid with strong temperature gradients. Here the dominant mechanism of heat transfer is convection. Heat transfer aided by the motion of fluids. During rapid spinning, conduction is negligible inside the can, because the contents are well-mixed. Finally, in the bulk regions, conduction once again predominates. However, because the volume of ice is large compared to the fluid in the can, the temperature in the bulk ice phase does not change appreciably. And conduction is negligible. Because conduction within the can is negligible and convection is the determinant factor in cooling the fluid in the can, lumped parameter analysis can be used to model the cooling behavior. The lumped parameter analysis reduces a thermal system to a single discrete lumped resistance. Where the temperature difference of each individual resistance is considered unknown. The lumped parameter model assumes the greatest resistance to heat transfer occurs in the boundary layers. As the can cools over time, the temperature of the bulk decreases uniformly over its volume. Using the equation shown, one can calculate the lumped heat transfer coefficient, h, for a can being cooled using a spin-and-chill. The heat transfer coefficient takes into account all of the resistances to convective heat transfer, and lumps them into one constant. That constant is a ratio of heat flux to the driving force for heat flow. In this case, the difference between the temperature of the fluid in the can and the temperature of the ice. Those are the principles. Now let's demonstrate how to study convective heat transfer using a spin-and-chill.

The procedure requires a spin-and-chill, ice, and a sealable aluminum sample can. Record the dimensions of the can. Fill it with water and record its mass and temperature. Then seal the can with a plastic sealing lid. Weigh the ice that will be used in the setup. Load it into the apparatus, and finally, insert the aluminum can. Set the spin-and-chill to perform a single two-minute cycle at 300 RPM, and switch it on. After the spin completes, withdraw the can, remove the lid, and measure the temperature of the water. Lastly, use a graduated cylinder to measure the amount of ice that has melted. Use sequential cycles to assess the effects of longer run times on cooling the fluid in the can. In sequential cycles, a two-minute cycle is performed as before, and the temperature is recorded. Then the can is replaced in the spin-and-chill, and another two-minute cycle is started. In addition to spin time, study the effect of modifying other parameters. Such as rotational speed on cooling performance. Perform two-minute cycles at multiple speeds, ranging from a few RPM to over 500 RPM.

Data for the lumped parameter model was averaged over 10 single-run trials. Each lasting two minutes at 300 RPM. On average, a two-minute run decreased the temperature of the can from 82.12 degrees Fahrenheit to 55.88 degrees Fahrenheit. Substituting in the relevant physical and geometric characteristics of the can, the heat transfer coefficient can be calculated. The thermodynamic efficiency was estimated by dividing the heat lost by the can to the heat required to melt the ice during the run. Using sequential runs at a constant RPM, it was shown that cooling performance was enhanced with longer cycle times. However, the sequential cycles show that cooling efficiency decreases with time. This decrease in efficiency is common in heat transfer, when the temperature differential driving the heat transfer becomes smaller. Varying the RPMs at a fixed run time shows the effect of speed on cooling performance. A faster spin time led to a larger temperature drop within the can. The heat transfer efficiency was greatest when the spin-and-chill was operated at the highest RPM.

The heat transfer process observed in the spin-and-chill is seen in many laboratory and industrial settings. High pressure freezing is used to preserve tissue samples for transmission electron spectroscopy. In a process analogous to the spin-and-chill, samples are exposed to pressurized liquid nitrogen jets. Permitting quick, non-destructive cryofixation. This is particularly useful for plant tissues, which must be rapidly frozen to prevent cellular damage through the formation of ice. Similar procedures are used to preserve human muscle cells or stem cells. Nuclear reactors also operate on the principles of convective heat transfer. They contain a core within which a highly-controlled fission reaction occurs. The core is submerged in a stream of pressurized water, which absorbs the heat generated by the fission reaction and vaporizes. The vaporized water is then used to drive generators. The safety of these reactors, regardless of scale, largely depends on the control of the convective heat transfer process that occurs at its core.

You've just watched JOVE's introduction to the heat transfer in the spin-and-chill. You should now be familiar with convective heat transfer, a procedure for measuring parameters affecting convective heat transfer, and some applications. As always, thanks for watching.

Transcript

Spin-and-chills are household examples of heat transfer technology. They can be analyzed to understand engineering processes that are widely studied and applied in industry. Spin-and-chills cool soft drinks much faster than refrigerators or ice chests. They operate by rotating soda cans within a reservoir of ice at speeds of hundreds of revolutions per minute. The spin-and-chill utilizes convective heat transfer to cool the soda cans. By measuring the cooling rate under different conditions, the convective behavior can be determined. Which can be used to improve the cooling efficiency as well as model and understand related heat transfer situations. This video illustrates the operating principles of the spin-and-chill, demonstrates experiments that evaluate convective heat transfer, and discusses related applications.

The spin-and-chill is modeled as consisting of a warm soda can submerged in a large, cold environment. The can has thin walls and is filled with fluid. The fluid is hottest at the center and coldest at the rim. And the temperature distribution is symmetric around the can's axis of rotation. As the can spins, the fluid inside is cooled. The surroundings are assumed to be so large that they do not appreciably warm up. This visualization can be divided into several zones, each characterized by its unique temperature distribution and heat transfer mechanism. The wall is modeled as a thin membrane. Its dominant mechanism of heat transfer is conduction. The spread of heat without macroscopic motion of the medium. The can wall is so thin, however, that conduction in the wall is negligible. On either side are boundary layers, regions of fluid with strong temperature gradients. Here the dominant mechanism of heat transfer is convection. Heat transfer aided by the motion of fluids. During rapid spinning, conduction is negligible inside the can, because the contents are well-mixed. Finally, in the bulk regions, conduction once again predominates. However, because the volume of ice is large compared to the fluid in the can, the temperature in the bulk ice phase does not change appreciably. And conduction is negligible. Because conduction within the can is negligible and convection is the determinant factor in cooling the fluid in the can, lumped parameter analysis can be used to model the cooling behavior. The lumped parameter analysis reduces a thermal system to a single discrete lumped resistance. Where the temperature difference of each individual resistance is considered unknown. The lumped parameter model assumes the greatest resistance to heat transfer occurs in the boundary layers. As the can cools over time, the temperature of the bulk decreases uniformly over its volume. Using the equation shown, one can calculate the lumped heat transfer coefficient, h, for a can being cooled using a spin-and-chill. The heat transfer coefficient takes into account all of the resistances to convective heat transfer, and lumps them into one constant. That constant is a ratio of heat flux to the driving force for heat flow. In this case, the difference between the temperature of the fluid in the can and the temperature of the ice. Those are the principles. Now let's demonstrate how to study convective heat transfer using a spin-and-chill.

The procedure requires a spin-and-chill, ice, and a sealable aluminum sample can. Record the dimensions of the can. Fill it with water and record its mass and temperature. Then seal the can with a plastic sealing lid. Weigh the ice that will be used in the setup. Load it into the apparatus, and finally, insert the aluminum can. Set the spin-and-chill to perform a single two-minute cycle at 300 RPM, and switch it on. After the spin completes, withdraw the can, remove the lid, and measure the temperature of the water. Lastly, use a graduated cylinder to measure the amount of ice that has melted. Use sequential cycles to assess the effects of longer run times on cooling the fluid in the can. In sequential cycles, a two-minute cycle is performed as before, and the temperature is recorded. Then the can is replaced in the spin-and-chill, and another two-minute cycle is started. In addition to spin time, study the effect of modifying other parameters. Such as rotational speed on cooling performance. Perform two-minute cycles at multiple speeds, ranging from a few RPM to over 500 RPM.

Data for the lumped parameter model was averaged over 10 single-run trials. Each lasting two minutes at 300 RPM. On average, a two-minute run decreased the temperature of the can from 82.12 degrees Fahrenheit to 55.88 degrees Fahrenheit. Substituting in the relevant physical and geometric characteristics of the can, the heat transfer coefficient can be calculated. The thermodynamic efficiency was estimated by dividing the heat lost by the can to the heat required to melt the ice during the run. Using sequential runs at a constant RPM, it was shown that cooling performance was enhanced with longer cycle times. However, the sequential cycles show that cooling efficiency decreases with time. This decrease in efficiency is common in heat transfer, when the temperature differential driving the heat transfer becomes smaller. Varying the RPMs at a fixed run time shows the effect of speed on cooling performance. A faster spin time led to a larger temperature drop within the can. The heat transfer efficiency was greatest when the spin-and-chill was operated at the highest RPM.

The heat transfer process observed in the spin-and-chill is seen in many laboratory and industrial settings. High pressure freezing is used to preserve tissue samples for transmission electron spectroscopy. In a process analogous to the spin-and-chill, samples are exposed to pressurized liquid nitrogen jets. Permitting quick, non-destructive cryofixation. This is particularly useful for plant tissues, which must be rapidly frozen to prevent cellular damage through the formation of ice. Similar procedures are used to preserve human muscle cells or stem cells. Nuclear reactors also operate on the principles of convective heat transfer. They contain a core within which a highly-controlled fission reaction occurs. The core is submerged in a stream of pressurized water, which absorbs the heat generated by the fission reaction and vaporizes. The vaporized water is then used to drive generators. The safety of these reactors, regardless of scale, largely depends on the control of the convective heat transfer process that occurs at its core.

You've just watched JOVE's introduction to the heat transfer in the spin-and-chill. You should now be familiar with convective heat transfer, a procedure for measuring parameters affecting convective heat transfer, and some applications. As always, thanks for watching.

Explore More Videos

Spin-and-chillHeat TransferTechnologyEngineering ProcessesConvective Heat TransferCooling EfficiencyModelUnderstandHeat Transfer SituationsExperimentsApplicationsSoda CanReservoir Of IceRotatingRevolutions Per MinuteCooling RateTemperature DistributionFluidWallThin Membrane

Related Videos

Testing the Heat Transfer Efficiency of a Finned-tube Heat Exchanger

08:35

Testing the Heat Transfer Efficiency of a Finned-tube Heat Exchanger

Chemical Engineering

18.4K Views

Using a Tray Dryer to Investigate Convective and Conductive Heat Transfer

07:41

Using a Tray Dryer to Investigate Convective and Conductive Heat Transfer

Chemical Engineering

44.4K Views

Viscosity of Propylene Glycol Solutions

08:04

Viscosity of Propylene Glycol Solutions

Chemical Engineering

34.0K Views

Porosimetry of a Silica Alumina Powder

09:11

Porosimetry of a Silica Alumina Powder

Chemical Engineering

10.0K Views

Demonstration of the Power Law Model Through Extrusion

10:22

Demonstration of the Power Law Model Through Extrusion

Chemical Engineering

10.9K Views

Gas Absorber

07:51

Gas Absorber

Chemical Engineering

37.5K Views

Vapor-liquid Equilibrium

11:32

Vapor-liquid Equilibrium

Chemical Engineering

92.5K Views

The Effect of Reflux Ratio on Tray Distillation Efficiency

11:20

The Effect of Reflux Ratio on Tray Distillation Efficiency

Chemical Engineering

79.2K Views

Efficiency of Liquid-liquid Extraction

09:21

Efficiency of Liquid-liquid Extraction

Chemical Engineering

49.5K Views

Liquid Phase Reactor: Sucrose Inversion

11:00

Liquid Phase Reactor: Sucrose Inversion

Chemical Engineering

10.1K Views

Crystallization of Salicylic Acid via Chemical Modification

11:41

Crystallization of Salicylic Acid via Chemical Modification

Chemical Engineering

24.7K Views

Single and Two-phase Flow in a Packed Bed Reactor

10:39

Single and Two-phase Flow in a Packed Bed Reactor

Chemical Engineering

19.5K Views

Kinetics of Addition Polymerization to Polydimethylsiloxane

10:01

Kinetics of Addition Polymerization to Polydimethylsiloxane

Chemical Engineering

16.8K Views

Catalytic Reactor: Hydrogenation of Ethylene

08:56

Catalytic Reactor: Hydrogenation of Ethylene

Chemical Engineering

31.0K Views

Evaluating the Heat Transfer of a Spin-and-Chill

08:44

Evaluating the Heat Transfer of a Spin-and-Chill

Chemical Engineering

7.7K Views

JoVE logo
Contact Us Recommend to Library
Research
  • JoVE Journal
  • JoVE Encyclopedia of Experiments
  • JoVE Visualize
Business
  • JoVE Business
Education
  • JoVE Core
  • JoVE Science Education
  • JoVE Lab Manual
  • JoVE Quizzes
Solutions
  • Authors
  • Teaching Faculty
  • Librarians
  • K12 Schools
About JoVE
  • Overview
  • Leadership
Others
  • JoVE Newsletters
  • JoVE Help Center
  • Blogs
  • Site Maps
Contact Us Recommend to Library
JoVE logo

Copyright © 2025 MyJoVE Corporation. All rights reserved

Privacy Terms of Use Policies
WeChat QR code