Login processing...

Trial ends in Request Full Access Tell Your Colleague About Jove

This content is Free Access.

Japanese
細胞死に対するアッセイ
 

細胞死に対するアッセイ:細胞毒性能のクロム放出アッセイ

Article

Transcript

Please note that all translations are automatically generated.

Click here for the English version.

このビデオでは、クロム放出アッセイを実行し、エフェクター細胞の細胞毒性電位を決定する方法を観察します。

免疫細胞は、がんやウイルスに感染した細胞などの潜在的に有害な細胞を体から同定し、除去する役割を担っています。T細胞やNK細胞のようないくつかの免疫細胞は、細胞傷害性電位として知られている性質を有し、標的細胞を同定し、タンパク質の分解、リシス、およびそれらの標的細胞の死を誘発するタンパク質を分泌する能力である。細胞傷害性の定量化は、免疫細胞の活性化と効力を測定するために重要であり、クロム放出アッセイは、この目的のために一般的に使用されます。

この方法は、ユーザーが異なる条件下で特定の種類の免疫細胞によって誘発されるシキシック度を比較することを可能にし、癌免疫療法および免疫関連疾患の研究に有益である。まず、標的細胞は、癌細胞と同様に、細胞によって取り込まれる放射性同位元素、クロム51でインキュベートされる。次に、これらの無線標識細胞は、目的の単離された免疫細胞と共培養され、エフェクター細胞とも呼ばれ、丸底に、96-ウェルプレートで2つの細胞型間の相互作用を容易にする。

アッセイの全体的なセットアップは、適切なコントロールと共に、免疫細胞の異なる濃度を有する特定の数の標的細胞をインキュベートすることを含む。この共培養により、エフェクター細胞は標的細胞にアポトーシスおよび溶解を誘導し、その結果、細胞内クロム51を上清中に放出する。次に、あらかじめ最適化された時点で、放出されたクロムを含む上清が全てのウェルから採取される。クロム51は、放射性である、自発的にガンマ放射線を放出するために放射性崩壊を受ける。アッセイプレート内のすべてのウェルからの上清中のガンマ放射線レベルは、標的細胞のリシスの定量可能な出力を表す。これはガンマカウンターを使用して測定され、免疫細胞の細胞毒性電位を決定するために使用されます。

まず、標的細胞は、この例ではヒト黒色腫細胞株WM793を、単一細胞懸濁液に調製する。これを行うには、まず組織培養フラスコから培養物を取り出し、1X PBSの5ミリリットルで細胞を洗浄します。PBSをデカントし、約2分間プレートにトリプシンの1ミリリットルを追加します。フラスコ表面からセルを緩めるためにフラスコを軽くタップし、フラスコに5ミリリットルのRPMIメディアを追加します。細胞を収集し、15ミリリットルの円錐形のチューブにこの懸濁液を追加するために、上下にメディアをピペット。

1200 RPMで5分間遠心分離機にチューブを置きます。次に、チューブからメディアを取り外し、細胞ペレットを破壊しないようにします。チューブの底部をそっとフリックして細胞ペレットを破壊し、チューブに10ミリリットルのメディアを追加します。その後、メディアをゆっくりと上下にピペットし、細胞を懸濁液に入れます。次に、ヘモサイトメーターを用いて細胞濃度を決定し、元の細胞懸濁液の2ミリリットルを新しい15ミリリットルの円錐管に移す。チューブを遠心分離機に入れ、細胞を1200RPMで5分間ペレットします。遠心分離後、余分な媒体をチューブから廃棄物容器に注ぎます。簡単に残された媒体の小容量で細胞ペレットを再中断するためにチューブを渦。

次に、この特定の放射能専用のラボ空間に移動してクロム51を使用する準備をする。すべてのステップの間にクロム51の安全な貯蔵および使用のための十分な鉛の保護、ならびにクロム51のサンプルが保管されている場所を示す適切な看板がある必要があります。パンケーキプローブを装備したガイガーカウンターも、汚染の可能性のあるスペースでサービスを提供する必要があります。

放射能を適切に使用するように設定したら、クロム51の100マイクロキュアをターゲット細胞懸濁液に直接加えます。次に、チューブに小さな放射性テープを追加して、サンプルとチューブが放射性であることを示します。リードシールドで37度のインキュベーターにチューブを入れ、1時間インキュベートし、15~20分ごとにチューブをフリックします。

標的細胞が標識している間、エフェクター細胞の単一細胞懸濁液を調出す。この例では、ヒト末梢血モノ核細胞、またはPDMCは、標準密度勾配遠心分離により全血から単離し、10〜6番目の濃度に5倍であった。このエフェクターセル懸濁液を使い捨て試薬貯蔵所に移し、この懸濁液の200マイクロリットルを96ウェルの丸底プレートの行Bの各ウェルに加えます。次に、プレートのGを通して行Cの各井戸にRPMIの100マイクロリットルを追加します。

さて、PBMCのシリアル希釈を行い、まず行Bのウェル内の100マイクロリットルの細胞を除去し、これを行Cに追加することによって、エフェクター細胞番号の範囲を持つために開始します。次いで、100マイクロリットルの細胞を行Cから行Dに移すことによってエフェクター細胞をさらに希釈し、シリアル希釈を続ける。行Gに達したら、ウェルから100マイクロリットルを移動し、その行の各ウェルに100マイクロリットルの最終容積を残します。次に、100マイクロリットルの組織培養培地を行Aのウェルに加え、標的細胞からのクロム51の自発的放出の制御として機能し、エフェクター細胞をこの行に添加してはならない。次に、ターゲットセルを追加する準備ができるまで、プレートを37°Cのインキュベーターに入れます。

インキュベーション期間の後、インキュベーターから標的細胞を除去し、5ミリリットルのFBSで洗浄し、過剰なクロム51を除去する。次に、チューブを指定された遠心分離機に入れ、1200 rpmで5分間回転させます。放射性FBS洗浄を適切な廃棄物容器に取り出し、FBSの新鮮な5ミリリットルでペレットを再度サスペンドして洗浄工程を繰り返します。チューブを指定された遠心分離機に入れ、1200 rpmで5分間再び回転させます。2回目の洗浄を取り外し、ガイガーカウンターを使用して放射能を取り込んだペレットを確認します。最後に、ペレットを完全培地の10ミリリットルで再懸濁し、標識されたクロム51を、標的細胞懸濁液を使い捨て試薬貯蔵所に注ぐ。次いで、これらの標識標的細胞の100マイクロリットルを96ウェルエフェクター細胞板の全ウェルに添加する。次に、1%NP-40の100マイクロリットルを行Hのウェルに水に加え、この各行のすべての標的細胞をlyseseする。これらのウェルは、1 分あたりの合計数 (cpm) を決定するコントロールとして使用されます。

プレートが準備されたので、プレートの両側に小さなテープを加えて蓋を固定し、クロム51が含まれていることを示すために蓋に放射性テープを置きます。次に、放射性サンプルを取り扱うマークが付いている遠心分離機にプレートを置きます。実験プレートが 1 つだけ使用されている場合は、遠心分離機にバランス プレートを追加します。遠心分離機を1200rpmに設定し、プレートをスピードアップさせます。速度で一度、マシンを停止します。遠心分離機からプレートを取り出します。次に、プレートを37°Cのインキュベーターに入れ、小さな鉛シールドをプレートの上に置き、安全性を高めます。16時間インキュベートして、標的細胞がリズできるようにします。

インキュベーション期間の終わりに、プレートの端の周りのテープを慎重に取り外し、蓋を取り外します。次に、収穫フレームをプレート上に置き、綿栓ごとに小さなフィルターディスクが設置されていることを確認します。今、ゆっくりと穏やかに井戸に綿のプラグを押します。約10秒後、綿栓の圧力を離し、綿のプラグをチューブストリップに移します。これらのチューブをそれぞれ二次 FACS チューブに入れます。最後に、FACSチューブをガンマカウンターにロードし、各条件で放出されるクロム51の量を定量するためにサンプルを実行します。チューブがカウンターに積み込まれた順序を注意深く記録します。

ここでは、最初の3レーンに非刺激PBMCを追加し、CPG刺激PMBCをレーン4~6に追加しました。この例では、サンプルが元のプレートにレイアウトされ、三重の平均が計算されたのと同じ方法で、スプレッドシートのセルに 1 分あたりのカウントが入力されました。例えば、第1の条件について、細胞A1、A2、およびA3は、細胞I3において平均化された。平均が決定されると、各条件の特定のリシスの割合は、この式を使用して計算できます。例えば、50対1のエフェクター細胞の比率を有する非刺激細胞に対する比を計算するために、この例では1164.67である自発的なCPMを標的とする細胞に対して、実験CPM、1129から差し引いた。67. この数値を最大 CPM と自発的な CPM の差で割り、100 を掛けて特定のリシスの割合を与えることができます。これは、各条件に対して計算されます。次に、これらのデータをグラフ化して、非刺激PBMCとCPG刺激PBMCの両方に対する比比と比性リシスの比較を示すことができます。この例では、CPGで刺激されたエフェクター細胞は、標的細胞に対するエフェクター細胞の比率が増加するにつれて、より効果的に標的細胞を殺した。この増加は、非刺激されたPBMCでは観察されなかったが、標的細胞リシスの観察増加のためにCPG刺激が必要であることを示す。

Read Article

Get cutting-edge science videos from JoVE sent straight to your inbox every month.

Waiting X
simple hit counter